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The aim of the course is to deal with matrices with much more entries, with computation of eigenvalues

and eigenvectors. In particular, the cost of computing the determinant is large, i.e., the characteristic poly-

nomial has high degree. Therefore, we want computability and closeness of the eigenvalues.

Numerically, we want to evaluate the deviation of the value and the actual computation.
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Remarks about this Note:

While compiling this collection of notes, I have attempted to abide to the following conventions:
¢ Vectors will be represented as bold cases, such as x and y.

* Matrices with m rows and n columns of entries in field IF (denoted IF""*") will be represented with

capitalized letters, such as A, where a;; represents the the entry of row i and column j.

¢ The field F of the R-module, unless otherwise specified, will be assumed to be F = C, otherwise, it
would most often be F = R.

e For matrix multiplication (which is an action) A.x, it is a linear map f : C" — C" as y = A.x, which
can be alternatively represented as f : x — Ax.

¢ For null space and range, the notation standards were used in modern algebra, i.c., naming them as
kernels (ker) and image (im).

¢ sup and inf were used in generic case over max and min unless there is a clear evidence that maxi-

mum or minimum is well-defined. Readers shall only drop those notation by their own discretion.

While recording each theorem/proposition/definition/remark/..., I have tried to make a name that briefly
describes what it is about, just like the conventions in Dr. Sheldon Axler’s Linear Algebra Done Right.
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I Preliminaries

I.1 Vector Spaces and Subspaces

The Numerical Linear Algebra has its foundations on linear algebra.
Note: Unless otherwise specified, the proofs of the theorems in this section is omitted, as they are assumed

backgrounds in a typical linear algebra course.
Definition I.1.1. Linearity.

A function f is linear if:

fix+y)=f(x)+ f(y) forall x,y € C",
fax) = af(x) forall « € C and x € C".

Theorem 1.1.2. Linear Function as a Matrix.

If f:C" — C™ is linear transformation, then there exists A € C"™*" such that f(x) = A.x for all x e C".

Remark 1.1.3. Linear Combinations.

For A € C"*™, we may write:

A=a;;] = [Al Ay - Am/]
and for x e C™:
X1
X2
AXx = [Al A, - Am]. | = 1A+ A + - + X AR
Xn

Definition I.1.4. Matrix Multiplication.

Let A e C*" and C € C"*", their matrix multiplication is defined as:
[bij] = B = AC = [ag][ck],

in which the entry b;; in B is:
m
bij = Y aixcj-
k=1

Remark I.1.5. Multiplication of Matrices as Columns.

For the above multiplication that B = AC, if we write B as vectors we have:

[Bl By --- Bn]:A[Cl C, - Cn]:[A.C1 ACy - A.Cn],
hence:
cij
Bj—AG = [A1 Ay o Am|. C:Zj :
Cmj

hence each column of B = AC is a linear combination of the columns of A.
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Definition 1.1.6. Inner and Outer Product.
Let u, v e C", their inner product (or dot product) is:
u-v=ulV=u01 +uyoy+-+uyo, €C,

where as the outer product is:

U101 U102 -+ U0y
U071 U0 -+ U0y

uvl = . . ) ) = [vlu nu - vnu] .
Up01 UpT2 -+ UpTy

Definition I.1.7. Range and Null Space.
For A e C"*", its range (or image) is:
imA ={y:y= Ax for some x € C"} = span{A1,A,,--- ,An} < C".

Its null space (or kernel) is:
kerA ={x: Ax=0} cC"

Theorem I.1.8. Rank-Nullity Theorem (Fundamental Theorem of Linear Maps).

For A € C"™*", the dimension of the range (or rank) and the dimension of the null space (or nullity)
follows:
dim(im A) + dim(ker A) = n.

Moreover, for the transpose of A, we have:

dim(im AT) = dim(e A).

Proposition 1.1.9. Properties on the Rank of A.
Assume that A € C"*", the following holds:
(i) dim(im A) < n.

(il) dim(im A) < m.

The result (ii) is a direct result of (i) and Rank-Nullity for transpose of A. Moreover, this implies that

dim(im A) < min{m, n}.
Definition 1.1.10. Full Rank.

For A € C"™*", A is full rank if dim(im A) = min{m, n}.

10
An example of a full rank matrixis |0 1
00

Definition I.1.11. Nonsingular Square Matrix.



N.L.A. Notes 3

A m-by-m square matrix A is nonsingular if A.x = 0 has unique solution x = 0.

Proposition 1.1.12. Equivalent Facts for Square Matrices.

The following are equivalent:
(i) A is nonsingular,
(ii) A is invertible, i.e., there exists A~! such that A=1A = AA~! =14,
(iii) For all b e C™, A.x = b has unique solution,
(iv) Columns of A are linearly independent,
(v) dim(im A) = m,
(vi) imA =C™,
(vii) dim(ker A) =0,
(viii) ker A = {0},
(ix) detA # 0,

(x) A is an isomorphism.

In particular, since A being nonsingular is the equivalent of being injective for square matrices, it is an
isomorphism, hence all (ii) to (x) are equivalent to (i).

Remark 1.1.13. Coordinates in C™.

There are many basis in C™:

(i) The Canonical Basis:

o= {e1/e2/' o /en}/

where: )
0 0
0 1 0
e1=|.|,e2=|.]|,,e1=
0] 0 1
Hence, for any b € C", we have:
by ]
by
b= | | =bei+bey+ - +byenm.
by, |

(ii) Another Basis (Arbitrary):

,B = {V1/v2/‘ te /Vn}-
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Here, for any b € C"", we are looking forward to having;:
by
)
b=|  |=qaqvitceovit+  +cuvm = [V1 vy - vm] .C,
by

and since the matrix is invertible, it leads to that:

-1
c=[v1 vy - vm] .b,

in which by solving for ¢ here, we have completed the decomposition.

Remark 1.1.14. Remarks on Complex Numbers.

For z € C = R(i) in which iZ=—-1, we may represent z = a + ib, where a,b € R. Thus, we can visualize
the real and imaginary parts, respectively.

Figure I.1. Real and Complex Plane.
Here, we have the magnitude as:
|z| = Va% + b?,
and we have the complex conjugate as:

Z =a—ib.

Example I.1.15. Matrix Operations.
Let A € C"*" that is:

a1 a12
A= (a1 ax

its transpose is:

a1 a1
AT = |d1p ax ,
its complex conjugate is:
ar an
A= |G a2
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and the Hermitian conjugate is:
A* = (A)T.

In R", the dot product for x,y € R", we have:

m
x-y =xTy =) %y
k=1
In particular, we can define the norm as:

m
_ _ 2
x| = VxTx =, | > x2.
k=1

In C", i.e., when [F = C, and the inner product for x,y € C", we have:

m
ooyy =x"y = ) Ty
k=1
Again, we have the norm as:

x| = Vo0 = | Y= | O il

since we have Xgx; = |x¢|2, know as the modulus.

In particular x = 0 if and only if |x| = 0.

Proposition 1.1.16. Distributivity of Matrix Operator.

For any A € C"™*" and B € C"*?, we have:

(AB)T = BTAT and (AB)* = B*A*.

Definition 1.1.17. Orthogonality.

For any x,y € C", x and y are orthogonal if x*.y = 0.
For sets S = {vq,va,---,vn} < C™ is orthogonal set if the vectors are pairwise orthogonal, i.e., vi*.v]- =0
foralli # j.

a

Theorem 1.1.18. Orthogonality — Linear Independence.

If S = {vq,va,---,vn} € C™ is a orthogonal set of nonzero vectors, then S is linearly independent.

Proof. Here, we let A;’s be set such that:
m
Z /\ka =0.
k=1
For all 1 < i < m the inner product with v;, giving us that:

m
Z )\ka*Vi = O*Vl =0.
k=1
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Thus, by orthogonality and the nonzero vectors, we have:
Ai=0foralll <i<m,

which enforces S to be linearly independent. O

Corollary 1.1.19. Surjective + Orthogonal —> Basis.

Suppose that S = {vq, V2, ,vn} < Vis a basis in which V = span{vy,vy,---,Vn}, then S is a orthogonal
basis of V.

Definition 1.1.20. Orthogonal Basis.

An orthogonal basis can be g = {vq,va, -+, v} € C" with property that v;*.v; = 0 for all i # j.
In particular, we have V = span(f) as a subspace of C™.

Theorem 1.1.21. Orthogonal Projection.

Given an orthogonal basis:

,B = {VerZr" : /Vr} o Cm

of V = span(f) and a vector b € V, we have the coordinates of b with respect to f, i.e., the unique scalars
c1,- , ¢ such that b = Y, cxvy, are:
Vk*b

k= foralll<k<r
Vil

Proof. For all 1 <i < m, we take the inner product of the linear combinations with v;*, we have:
r
2
vi*b = ) cevi*vic = cilvil?,
k=1
as desired. O

Definition 1.1.22. Orthonormal Basis.
Abasis B = {v1,va,- -, vi} < C" is orthonormal if:
(i) B is orthogonal, and

(i) each vector in 8 is unit, i.e., ||v;]| = 1.

In the orthonormal basis, the orthogonal projections will, in turn, be:
r
b= Z(Vk*b)Vi-
k=1

Definition I.1.23. Orthogonal Matrix with F = R.
A matrix A € R™*™ is called orthogonal if AT = A7l je, ATA =1d,, and AAT = Id,,.

This can be similarly defined in matrices with complex entries.
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Definition 1.1.24. Unitary Matrix with F = C.
A matrix Q € C"™*™ is called unitary if Q* = Q~1,i.e., Q*Q = Id;, and QQ* = Idy,.

Theorem 1.1.25. Equivalences with Unitary.

For a matrix Q € C"*™, the following conditions are the equivalent:
(i) Q is unitary, i.e., Q*Q = Id,,

(ii) The columns of Q = [Q1 Q - Qm] are orthonormal, i.e.:
|Qil = 1and Q;*Qj =0 forall i # j,

(iii) For all x e C™, we have ||Q.x| = |x|, i.e., the action f : x — Q.x is an isometry.

Proof. (i) = (ii): Suppose that Q*Q = Id,,, then we have:

Q" Q:"Q1 Q1"Q2 -+ Q1*Qm 10
Q" Q2*Q; Q2"Q2 -+ Q2"Qn 0 1

| [Ql Q - Qm] - : : . : R
Qm* Qm*Ql Qm*QZ Qm*Qm 0 0

which follows along with (ii).
(i) = (iii): Still, suppose that Q*Q = Id,,, then for all x € C™, we have:

1Qx]* = (Qx)*(Qx) = x*Q*Qx = x*(Q*Q)x = x* Id; x = xxx = [x|?,

as desired.

Suppose that we want to solve that Q.x = b, where Q is unitary. If we denote:

Q= [Ql Q - Qm]r
we have that:
x1Q1 +xQ2 + -+ +x4,Qm = b,

so we have:
x=Q*Q.x = Q*b.
I.2 Normed Vector Space
Definition I.2.1. Euclidean Length.
Let x € C"", the Euclidean length of x is:
m
Il = Vxwx = | D
k=1

Definition 1.2.2. Norm.
A norm is a function || ¢ | : C* — R with the following properties for all x,y € C" and « € C:

(i) Positivity: x| =0,
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(ii) Definiteness: x =0 < x| =0,
(iii) Triangle Inequality: ||x +y| < [x]| + |ly[, and

(iv) Homogeneity: ||ax| = |a||x].

Example 1.2.3. Examples of Norms.

The 1-norm is ||x|1 Y1" 4 |xk]-
The p-norm (where 1 < p < ) is x|, = (3}, |xk|F’)1/p.
The co-norm is ||x||c = maxy << |Xil- .

For a fixed norm, we have unit sphere:
§=1{x:[xl =1}

and the unit ball as:
B — {x: x| <1}.
Example 1.2.4. 2-norm (Euclidean Norm) in R2.

The unite sphere of 2-norm would satisfy that [x|, = 1, or equivalently, |x|?> = 1, hence equivalent to

x% + x% = 1 since we are in the real field. Thus it is the unit circle.

X2

X1

Figure 1.2. Unit Sphere in 2-norm.

Example 1.2.5. 1-norm in R?.

The unite sphere of 1-norm would satisfy that |x|; = 1, or equivalently, |x1| + |x2| = 1 since we are in the
real field. Thus it is the diamonds.

X2

X1

—_

Figure 1.3. Unit Sphere in 1-norm.

Example 1.2.6. co-norm in R?.

The unite sphere of co-norm would satisfy that |x|« = 1, or equivalently, max{|x1|, |x2|} = 1 since we are
in the real field. Thus it is the diamonds.

X2

X1

Figure 1.4. Unit Sphere in co-norm.
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Remark 1.2.7. Note on Invalid p-norms.

When 0 < p <1, | ¢, is no longer a norm as it violates triangle inequality.

Example I1.2.8. Calculation on Norms.
2 2
Let x = . € C#, we have the norms as:

Ixlly = 2]+ 1] =3,
Ixl2 = 4/12% + 112 = V5,
[xlloo = max{[2], [1]} = 2.

Proposition 1.2.9. Monotonicity of Norms.

For any x € C", x|l = |x[2 = [x]oo-

Remark 1.2.10. Stretch of a Norm.

Let A € C™*", consider the function f : C" — C™ such that x — A.x. The stretch of xneq0 caused by

multiplication by A is:
|A-x]

Ix]ls

where the norms (|  |+) are identical.

Definition 1.2.11. Matrix Norms.

Let A € C"™*", the matrix norm induced by a vector norm is:

Ax
HAHM”’X)I = sup H H*
xeC" P
x7#0

Since we can restrict the search on the unit circle, which is compact, we can use max instead of the sup.

Proof. Let x € C" be nonzero and arbitrary, we want to show that the stretch of x and u = x/|x||, that is

x = ||x|u, hence we have:

Axe] _ JAGX] _ xAwl A
Ix] Il Il ' [ul
which implies that they are equivalent. O

Theorem 1.2.12. Equivalence of Matrix Norm.

Let A € C"™*", the matrix norm can be computed as:

”AHMan = ma% HAXH*

[x] =1

Example 1.2.13. Computing Matrix Norm.
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1 2
Let A = lo 2] , we may compute its matrix norm induced by the vector norms for norm | e |1, as:
|Af1 = max [A.uls,
X
=1

T
where for all u = |uy up| , we have A.u = u1Aq + upA;. Since ||u]; = 1, we have |uq| + |up| = 1.
Consider A.e; = (1,0) and A.e; = (2,2), we may demonstrate the transformation as:

X2 (2,2)

Figure 1.5. Transformation of Unit Sphere in 1-norm with Matrix A.

Notice that the maximum of the 1-norm after transformation A is, in fact, |A.(0,1)]; = [(2,2)]1 = 2] +
|2| = 4. Hence, we have |A| = 4.

Note that the same computation can be done with 2-norms or other norms, however, the computation will

a

be more lengthy and complicated. For example, |A|2 ~ 2.9308 and |A|sx = 3.

Theorem 1.2.14. 1-norm of Matrix is Maximum of Norm of Vectors.

For any A € C"*", where A = [Al A, - An]. The 1-norm of A is given by:

m
Al = Al = 1.
IA]2 s 1Al max (kzl ak]|>

Observe that this conclusion aligns with the above example, where |A1| = 1 and |Az| = 4, so |Al; = 4.

T
Proof. Suppose A € C"*", A = [Al A, - An,], and u = [ul Uy - un] such that |ul; = 1,
hence we can represent:
Au = u1A1 +upAs + - + uyAq.
When we take the norm for both sides, we have:
|Au] = Ju1A1 + upAz + -+ + upAnl.

Then, by triangle inequality and properties of norm, we can have:

[Aul < [urAa] + JuzAz| + -+ + [unAnl

= |url[ Al + [ual|Az] + - - + |un]| A

< max [A;].
1<j<n

Hence, for all u, we have:
A. < Asll4.
|Au] < 113?2(” |Ajl1
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Note that the above equality holds when u = ejx where j* is the largest where |A.A;x|| is the largest of
|A1ll, ---, |An|- Hence, the maximum over all the unit vectors of A.u is equal to the maximum of the

magnitude of the columns, hence the equality holds trivially. O

Theorem 1.2.15. co-norm of Matrix.
T
For any A € C"*", where A = [Rl R, --- Rm] . The co-norm of A is given by:

|AJo = max [Ry*|1.
1<k<

IKS

Example 1.2.16. Calculation of Matrix Norm.

Let A =

2
], note that:
2

|A1] = 1] +[0] =1,

|A2] = 0] +[2] = 2,

IRy*| = 1]+ 2] =3,

IR2™[ = [0] + |2] = 2.
Hence, |All; = 4 and |Allc = 3.

Theorem 1.2.17. Cauchy-Schwarz Inequality.

For any x,y € C", we have:

Xyl < [x[2 - Iy,

and the equality holds if and only if they are scalar multiples of each other, i.e., parallel.

Recall that in R2 or R3, and any x,y in the space, we have:
x-y =xTy = |x[]y| cos 6.

Hence, in such case:

.
e A
Iyl
Theorem 1.2.18. Holder’s Inequality.
For any p and g such that:
1
— 4 — = 1[
P 4

which is called harmonic conjugates, then:

Xyl < [x[plyll-
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Proposition 1.2.19. Matrix Norm for Outer Product.

For any x € C", y € C", and the matrix A = xy* € C"*". We have:

[ All2 = Ix]ly]-

Proof. Note that by the equivalent definition of norms:

[A] = max |A.u].
[ull=1

Note that by associativity:
[Au] = 10y®)ul = Ix(y*w)| = [(y* x| = [y*ul[x],
and by Cauchy-Schwarz, we have:
[ Al = ly*ullx] < [yl lallx],

with equality when u is parallel to y, thus:

A = max [Aul = [x][y[[a] =[xyl
[ul|=1 O
ueC”
Theorem 1.2.20. Inequality for Matrix and Vector Norm.
For any vector norm and induced matrix norm, and for all A € C"*" and x € C", we have:
lAX] < [ Al mlx]-
Proof. By definition:
| Ax]
|A] = max ,
ec” x|
[Ix]| 0
hence for eneric x € C", we have:
|AX|
IA] = ,
x|
hence implying that |A.x|| < |A||x]. O

Corollary 1.2.21. Inequality for Matrix Multiplication.

For any matrix norm induced by vector norm, and for all A € C"*" and B € C"**?, then:

|AB] < [[AlB]|

Proof. Note that:
|AB|| = max |AB.ul.
lull=1
ueC?
For the inequality:
|AB.uf < |A[[[B-ul < |A[[B] |u]

Taking when the equality holds (by Cauchy-Schwarz), the equality holds. O
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Remark 1.2.22. Recalling Axioms of Normed Vector Space.
For all A, B e C™*", for all « € C, the following must hold:

(i) Positivity and definiteness: |A|| = 0 and |A|| = 0 if and only if A =0,
(ii) Triangular inequality: |A + B| < |A| + |B|, and
(iii) Homogeneity: |[aA| = ||| A]l.

Definition 1.2.23. Forbenius norm.

Let A € C"*" its Forbenius norm is defined to be:

m m
1Ale = | X D]
i=1j=1

1/2

2
lll,]

Theorem 1.2.24. Equivalent Definition of Forbenius Norm.

Let A e C"™*" its Forbenius norm is:
|A[r = v/ Te(A*A).

Proof. It is easy to find that the diagonals of A*A are A;*A;, and since the trace is the sum of the squares,

then:
n n n m n
2 2 2 2
Tr(A*A) = > AP = D laia P+ 4+ D laiml® = >0 D il
i=1 i=1 i=1 j=1i=1
and the sums can be switched since it is finite sum. O

Example 1.2.25. Isometry.

The following matrices are isometric:
(i) Rotation matrices,
(ii) Reflection matrices, and

(iii) Permutation of coordinates.

Proposition 1.2.26. Invariant of Unitary Matrix.

If Q e C"™*" is unitary, and P € C"*™, then for all A € C"*", we have:
(i) Left unit: [QA[2 = Af2 and [QA[F = [A]p.

(ii) Right unit: [AP| = | Al, and |AP| = |All.

Proof. (i) By definition:
[QA|l2 = max |QA.uf; = max ||Q.(A.u)| = max [|[A.uly = |Al?.
eC” ueC” eC”

[ul2=1 [uf2=1 [uf2=1



N.L.A. Notes 14

For Forbenius norm, we have:
IQA|F = \/Tr ((QA)*(QA)) = \/Tr(A*Q*QA) = /Tr(A*A) = | Alf.
(ii) For the right unitary:

|AP||, = max |AP.u|; = max |A.v|y,
ueC” ueC”
[uf2=1 [[uf2=1
where v € C" and |v[ = |Puf2 = 1. Note that the map is valid since P is isometry, hence it is
invertible, thus S — S is invertible, hence, we have the above to be | A|>.
For Forbenius norm, we have:

|AP|p = 4/Tr ((AP)*(AP)) = \/Tr(P*A* AP) = \/Tr(PP*A*A) = \/Tr(A*A) = | Af. O

I.3 Eigenspace

Definition 1.3.1. Eigenvalue.

Let A € C"™*™ be a square matrix, x is an eigenvector of A with associate eigenvalue A € C such that:

x # 0 and A.x = Ax.

Example 1.3.2. Finding Eigenvalue and Eigenvector.

Let A =

1
(1)] , we may notice that for x = lol , we have:

Ax = 2x.

cosm/4 —sinmt/4
Else, for the rotation matrix A = / /

. , and note that there is no real eigenvalues, the
sinrt/4  cos7t/4

complex eigenvalues are:
A = etim/4

Theorem 1.3.3. Singular < 0 is Eigenvalue.

Let A be a m-by-m matrix, A is singular if and only if 0 is an eigenvalue.

Proof. A is singular <= There exists x # 0 such that Ax =0 <= Ax =0x < A = 0is eigenvalue. [

Definition 1.3.4. Characteristic Polynomial.

The characteristic polynomial of a matrix A € C"*™ is:
det(A —AId) = 0.

Hence, we may define the polynomial that:

det(A) = > sgn(@) [ [ a0,
i=1

0ES,
where ¢ is the permutation, Sy, is the n-th cyclic group, and sgn is the sign function of the permutation,
i.e., even or odd.
The degree of the characteristic polynomial is the dimension of the square matrix, and by the fundamental

theorem of algebra, since C is algebraically closed, we are guaranteed with full set of complex eigenvalues.
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Proposition I1.3.5. Roots of Characteristic Polynomial are Eigenvalues.

The roots of the characteristic polynomial are the eigenvalues with respective multiplicity. If an eigenvalue
has multiplicity 1, then it is a simple eigenvalue.

Remark 1.3.6. Diagonalized Matrices.

When A is diagonal, the eigenvalues are the entries on the diagonal.

Theorem 1.3.7. Determinant and Eigenvalues.

det A is the product of the eigenvalues counted with multiplicity.

Theorem 1.3.8. Complex Conjugates in Real Field.

Suppose A € Ry, has only real entries, then the coefficients in p4 are also real. If A = a +ib is an
eigenvalues, then:

(i) A = a—ib is also an eigenvalue, and

(ii) A has the same multiplicity with A.

Proof. Note that:

RS
=
=
I
N
=
=
=
=
Il
o

»
=
=

=
>
-
Il
(@]

Hence A is also a root. O
If A is real and symmetric, then we have:
AT = Aand A* = A,

then we have only real eigenvalues.
Definition 1.3.9. Eigenspace.
The eigenspace associated with eigenvalue A; is:

ker(A —A;1d) = {x: (A—A;1d).x = 0}.
Every vector in this subspace is a eigenvector of A with eigenvalue A;.
Definition 1.3.10. Geometric Multiplicity.

The geometric multiplicity of an eigenvalue A; is defined as:

dim (eigenspace of A;) = dim (ker(A — A;1d)) = # of Linearly Independent Eigenvectors of A;.
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Proposition 1.3.11. Monotonicity of Multiplicity.

For each matrix A € C"*" with an eigenvalue A, we have:
1 < Geometric Multiplicity(A) < Algebraic Multiplicity(A).
The second equality holds when A is diagonal.

Example 1.3.12. Example of Strict Inequality.

510
Let A= |0 5 0], note that5 is an eigenvalue, we may observe that its algebraic multiplicity is 3.
0 05

Consider A —51d = := B, and note that:

o O O
S O =
S O O

ker B = {(x1,0,x3) : x1,x3 € C}.
Hence, the geometric multiplicity, we have 2, which is strictly less than the algebraic multiplicity.
Definition 1.3.13. Defective Eigenvalue and Non-Defective Matrix.

If Geometric Multiplicity(A) < Algebric Multiplicity(A), then A; is a defective eigenvalue.
A € C"™*™ is non-defective if it has m independent eigenvectors, which is equivalently Geometric Multiplicity(A) <
Algebric Multiplicity(A) for all eigenvalues of A.

a

Proposition 1.3.14. Distinct Eigenvalues — LI Eigenvectors.

Suppose A € C™ ™ jis a matrix with eigenvectors {x1,---,xx} whose corresponding eigenvalues as
{A1, .-+, Ag}. If all eigenvalues are distinct, then the eigenvectors are linearly independent.
If k = m, then all eigenvectors of A are linearly independent.

The above case does not account for invertible matrix, as zero can be an eigenvalue.
Definition 1.3.15. Similar Matrices.

Suppose A, B € C"™*™, they are similar if A = SBS™! for some invertible matrix S.

Proposition 1.3.16. Consequences of Similar Matrices.

Suppose A, B € C"™*™ are similar, then:
(i) det A = detB,

(ii) pa(A) = pp(A), and

(iii) The set of all eigenvalues of A and B are identical.

Definition 1.3.17. Diagonalizable.
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A e C™" is diagonal if it is similar to a diagonal matrix D € C™*™, i.e., there exists invertible matrix
S € C"™*™ such that A = SDS™1.

a

Theorem 1.3.18. Diagonalizable < Non-defective.

Suppose A € C"*™. A is diagonalizable if and only if A has m linearly independent eigenvectors, i.e., A

is non-defective.

Proof. Note that A = SDS~! is equivalent to AS = SD, hence equivalent to:
481 AS; - ASw|=|d11S1 d22S2 - S|

Hence, we equivalently have A.S; = d,;S;, so S; is a set of eigenvector of A with eigenvalues d;;. Since S

is invertible, all columns of S are linearly independent. O

Corollary 1.3.19. Distinct Eigenvalues = Diagonalizable.

If A e C"*"™ has m distinct eigenvalues, then A is diagonalizable.

This corollary is an immediate consequence of Diagonalizable <= Non-defective.

The Complex Spectral Theorem can be generalized to the real Spectral Theorem.

Proposition 1.3.20. Kernel of A and A*A are Same.

For any A € C"*", we have:
ker A = ker(A*A).

Proof. We first show that ker A — ker(A*A). Suppose x € ker A, then Ax = 0, so A*A.x = 0, hence
x € ker(A*A).

For the other inclusion, we suppose x € ker(A*A) = 0, then x*A* Ax = x*.0. By collecting the terms, we
have (A.x)*(A.x) = 0, which implies that |A.x|? = 0, and by the axiom of normed vector space, we have
A.x = 0, which implies that x € ker A. O

I.4 Diagonalization and Singular Value Decomposition

Remark 1.4.1. Matrices as Stretches.

Let A € C"*'™ be a matrix with complex entries. The map T : C" — C™ which for any x € C", having

x — A.x, deforms a unit circle S = {x : |[x|2 = 1} into an ellipse.

Definition I.4.2. Singular Values of Matrix.

Let A € C"*'™ be a matrix with complex entries. We let v; be the vector such that:

|Av1]| = max [Auly,
ueC”

Juf2=1
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and we let u; be the unit vector of v, and the singular value ¢y satisfies that:
o = ||Avy].
There also exists vy € C2 such that v, L v; and A.v, L A.vq, and we define the other singular value oy:

0y = HAV2H

Proposition 1.4.3. Properties of Full Rank 2-by-2 Matrices.

Let A be a 2-by-2 matrix with full rank, there exists vy, vy € R? with the following properties:
(i) B = {v1,Vva} is an orthonormal basis of IR?.

(ii) If we define A.v1 = oquy and A.vy = opup, we have 07 = 0p > 0 and A.vq | A.xv,.

In particular, we can rewrite it as:

[A.vl A.vz] = [alul azuz],

A [Vl Vz] = [u1 112] l(g (702]
~ " -

14 u

which results in:

by
Since U and V are unitary, we have:
A=UxV*.

In general, for matrix A € C"*" with dim(im A) = r, we can write:

A = U o X o V.
m m m m
Can Cme mei’l CnXTl

Proposition 1.4.4. Properties of ¢*e for Matrices.

For any matrix A € C"*", with dim(im A) = r, we have:
(i) A*A is n-by-n matrix and Hermitian (self-adjoint), i.e., (A*A)* = A*A,
(ii) dim (dim(A*A)) =7,
(iii) A*A has r nonzero eigenvalues Ay > Ay > --- > A, >0, while A, =App=--- = A, =0.

(iv) A*A and AA* have the same nonzero eigenvalues.

Proof. (i) Trivial.

(ii) Concerning the rank-nullity theorem, we have:

dim (im(A*A)) = n — dim (ker(A*A)) = n — dim(ker A) = dim(im A).

(iii) Consider the eigenspace for A = 0, we have:

Eg = ker(A —0-1d) = ker A.
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Then, we have the dimension of Eqg as n — r, so A has r nonzero eigenvalues. Suppose A # 0 is an
eigenvalue of A*A, so there exists x # 0 such that A*A.x = Ax, then we have x*A*A.x = Ax*.x, so

we have | A.x|? = A|x|?, so:
_ lAxP?

A= > 0.
x|

(iv) Suppose that A # 0 is an eigenvalue of A*A, then there exists x # 0 such that A*A.x = Ax, so:
AA*Ax = AAX,

hence the eigenvalue of AA* A and the eigenvector is A.x (since x is eigenvector and A # 0, A.x # 0,
otherwise it is a contradiction). [

Proposition I.4.5. Single Value Decomposition.

Suppose A € C"*" such that dim(im A) = r < min{m, n} in which A : C* — C", then there exists:

(i) an orthonormal basis {vy---,Vy, Vi1, -+, Vn} of C",
[ —
basis for ker A

(ii) another orthonormal basis { u1---,uy ,Upt1,- -, um} of C™, and
—_—

basis for im A

(iii) r singular values, withoy >0y > --- > 0, > 0,
such that:
(i) U*U =uu* =1d,

(i) V¥V = VV* =1d, and

o 0 0 0

Gpz=|9 - 0 Of
0 0 o 0
0 0 0 0

Remark 1.4.6. Single Value for Full Rank.

Suppose A is square and full rank, it is r x r and ker A = {0}, im A = C". Moreover, the have the bases
B ={v1,va, - ,vi} and ¢y = {u, uy, - - - , u}, while the X matrix is:

o] 0 0
0 oy - 0
Z: . . . .
0 O oy

is square, diagonal, and full rank.

Theorem 1.4.7. Spectral Theorem.

Suppose B € C"*" is Hermitian (i.e., B* = B), then B has n real eigenvalues and it is orthogonally
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diagonalizable, i.e., B has n orthonormal eigenvectors = {v1,Vy,- -, Vn}, such that, if we define:

S:= [V] e vn,]
we have:
M 0 - 0
0 Ay --- 0
S*AS =D = ) )
0 0 An

Hence A = SDS*.

Remark 1.4.8. Remark on Real Spectral Theorem.

For the case above, we want to construct unitary U € C"™*"™, V e C™*", and £ € C™*" that is diag-
onalizable such that A = UXV™*. The sketch of the proof would be solving for U, X, V, where we first
compute:
A*A = (USV*)*(USV*) = VE*U*ULV*,
hence implying that:
A*A = V(Z*T)V*,

which implies that:

V = 7V1 e Vn/]
which gives:
o2 0 0 0
0 0 o2 0
|0 0 0 O

Hence, the singular values are 0; = 4/A; with 1 <i <.
For the process, we diagonalize A* A with respect to orthonormal basis
mathbfv;} and take v;’s to form columns of V and compute 0;4/A; to form X.

Then, we choose u;’s via:

A.Vi

u; = fori=1,2,---,r.

1
For the remaining u,41,-- -, uy are chosen to be orthonormal to uy, - - -, Uy, using Graham Schmidt pro-

cess.
Example 1.4.9. Finding SVD.

1 -1
Let A= -1 1 [, wenote that m =3, n = 2, and r = 1 since there is only one linearly independent

—4 4
column.

(i) First, we find A*A, that is:

A*A =
—-18 18

18 —18]
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and we note that eigenvalues as:

1

A*A. !
1

= [O] and A*A.
0

1
(ii) Now, since we have the eigenvalues as 36 and 0, whose eigenvectors are v; = 1/ V2 [ 1] and

1
vy =1/ V2 L} , then the first singular value is o7 = 6, then we have:

o Aw 1|
! o1 3v2
(iii) Then, we look for us 1 u3, in which we want:
1 1
32 [y1 Y2 y3] -1|=0,
—4
which returns to:
Vi =y2+4y3
As of right now, we have:
Y2 +4y3 1 4
y=| v2 | =¥2|1|+ys|0
Y3 0 1
Note that we want them to be orthogonal, that is:
1 2
1| and | -2
0 1

Technically, we should use Graham Schmidt to find an orthonormal basis, but this can be observed
easily.

a

Proposition 1.4.10. Block Matrix Multiplication.

Suppose A € C"*" and B € C"*F, we can break:
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In particular, we can write:
Ay - Ag||Bia -+ By,

AB=| i oot

Axy 0 Awp| | Bpa

where computation is distributive as if they are scalar entries.

on]
=
=

There is an alternative way to compute v = {uy,---, Uy, Uy41,- - - , um}, hence:
A=UXV* «— AV = UXV*V = UX.
The right hand side can be simplified into:

g0 0 0 0
UZz[ul u - um] 0 0 0 =[01u1 oouy - Umum].
0 0 o O
0 0 0 O
For the left hand side, we have:
AV:[Avl Avy - Avp Avppq - Avn].
Hence, for the first r columns, we have:
Vi

u; = fori=1,2,---,r,

Ul
where as for the last vectors, they are the kernel of the map, and must be set to be an orthonormal set that

is also orthogonal to prior entries.

Theorem 1.4.11. Properties about Matrix Norms.

For any m x n matrix A, we have:

@) ||All2 = oy, ie., the largest singular value (as 0;’s are positive and ordered from large to small), and

(ii) |Alr =1/0? + 02+ + 02

Recall that || e |2 and | e ||f are invariant by multiplication by unitary matrices.

Proof. (i) Note that:
|All2 = [UEVF |2 = [UZ]2 = |Z]2

= max [X.ufp = max \/H“lHZ‘le + |ug|o + - + |ur20? = \/|1|2(712 -
ueC” ueC”
[ulla=1 [uf2=1
(ii) For Forbenius norm, we have:

|Allp = JUZV* | = |[UZ|F = [Z]F

— o1 oaP 4 4 0P = \JoR o+t oR 0



N.L.A. Notes 23

Proposition 1.4.12. Hermitian — Orthogonally Diagonalizable.

Suppose A is Hermitian, then A is orthogonally diagonalizable.
Moreover, the singular values of A are 0; = |A;|, where A;’s are the ordered (by absolute value) of eigenval-

ues of A.

Proof. Let A = SDS*, in particular:

A0 - 0 vq*
0 )L2 cee 0 Vz*
U - R .
th 1 set of ei t fA
orthonormal set or eigenvectors o 0 0 .. An Vn*
Not necessarily SVD, as eigenvalues can be non-positive
Ml 0 0| | vr®
0 [A2f -~ O v2*
= [sgn()\l)vl sgn(Az)vy - sgn()\n)vn] . ) . P
v 0 0 - |Adl] [va®
——
X 14
where the sign function is defined to be:
1 ifx>0,
sgn(x) =
-1 ifx<O.

Now, as we consider the SVD for A € C"*", where dim(im A) = r, we have:

2 — —
/_/%
Vl>X<
o - 0 0 -+ 0 .
A . : 7 TOWS
r columns  m—r columns : *
- - Vr
A= u1uz~-~urur+1---um] 0 o 0 0 "
Vr+1
0 0 0
n —r rows
: I _ |
|0 0 0 0

Computationally, we find that:
(i) v1,-+-,Vr, Vet1,- -+, Vn are orthonormal eigenvectors of A* A with respective eigenvalues, and
(i) w1, -, ur, Uy, -+ -, upm are orthonormal eigenvectors of AA* with respective eigenvalues.

Recall the block computation, we have:

5 o] [V*

0 of|Vy

Definition 1.4.13. Reduced Singular Value Decomposition.

A=[0 w) — [TE+ w0 [0+ o) N;

With the construction above, with A € C"*" being Hermitian, we have reduced Singular Value Decompo-
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sition, that is:

A = U o £ o V.

m m m m

men mer CT’XT C?’Xi’l
Note that with reduced SVD, we have:
A= [0’1111 ouy - (T,ur] = qu1Vy + 0puavs + - + 0y uLVy,

which is called the rank-one decomposition of A. Hence A is the sum of rank-one matrices with weights
op=z0p =20 > 0.

Remark 1.4.14. Approximating a Matrix.

By choosing a p < r, we have the rank-p approximation of A such thatL
;ﬁ\p =ouvy + -+ Upupv;,

where we have dim(im ;l\p) =p.

Example 1.4.15. Using SVD to Compress Image(s).

Suppose we use a 400-by-400 matrix to represent a gray-scale image, i.e., A € [0,255]*00%4%0 that is:

Ain A - Arao0
Axr Azp o+ Azaoo
A= . . . ’
Ago01 Az - Aa00,400

where each entry represents the gray-scale in that pixel, where 0 represents black and 255 represents
white, and the grays are within (0, 255), while becoming lighter as the number increases.
Consider the reduced SVD, we may write A into:

A= (71111Vic + 0’2112V§< + -+ 0}11400VZOO,
in which we only consider the first p terms, we are able to reduce the rank in order to store less data for
the image. In this way, for rank p, we only need to store (1 + 400 + 400) x p values rather than everything.

Original Picture: rank =400

Compressed Picture: rank =1

100
200

300

400
200 400 200 400

Compressed Picture: rank =20 Compressed Picture: rank =40

Figure 1.6. Compressing an image of full rank 400 into lower ranks.
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With the example image above, we note that when rank is 10, the image is roughly recognizable, where

as at rank 40, the image is clear enough.

a

I.5 Projection

Definition I.5.1. Idempotent.

For matrix P € C"™*™ is idempotent ot projector if P> = P.

Hence, for all x € C™, we have P.x = P2.x, i.e., P.x = P(P.x).
Definition I.5.2. Orthogonal Projector on Vector.
For a fixed nonzero v € C™, we define that orthogonal projector onto v as:

1 vv*
Py = —vv* =
v

vV !
Geometrically, we may represent the projector as:

x — Pyx -

-

-
-
P

Figure 1.7. Geometric feature of the Orthogonal Projector.

Theorem 1.5.3. Geometric Properties with Orthogonal Projection.
For all x € C", we have:
(i) Pyx € span{v},ie., y || v, and

(i) x — Pyx L v.

Proof. (i) For the projector, we have:

1 *x
Pyx = —vv*x = — v = kv = span{v}.
T VP2 k

(ii) For the inner product:

1
v (x — Pyx) = v¥ix—v* [ —vv*x | = vix — —=v*vvix = 0.
b= Fe) (o) I

Proposition 1.5.4. Orthogonal Projector is Idempotent.

Let Py be the orthogonal projector onto v, P2 = P,
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Proof. We may deduce that:

1 1 1
P2 _ (= * - ® _ T * *
v (|v2w ) (|v2> VT EY Y

x*v "
= —vVvV = ——=vv = D,.
v Iv|? D
Recall that if § = {vyq,---, v} is an orthogonal basis of a subspace V < C", then for all x € V, we can
write:
X =C1Vy +Cva+ -+ CpVy,
%

v¥x
where each ¢; = W foralli=1,2,---,7.
A4

Only when we have a orthogonal basis, we have the following sum:

vix V3X ViX
X= —=V]+ Vo4 4+ ——=Vvp =Py x+ Py, x+--- + Py x.
[val2 " v2? w275 "

However, on non orthogonal basis, this might not be true.

Let {v1, vz} be an orthogonal basis and let {wq, w,} be a non-orthogonal basis in R?, we can present the

following projections of x € R2.

X = Py, x + Py,x Py, x Py, x + Py, x

Figure 1.8. Projection with orthogonal basis (left) and non-orthogonal basis (right).

Proposition I.5.5. Complementary Projector is Project.

If P e C™*™ is a projector, then Id —P is also a projector.

Proof. Note that:
(Id—P)? = (Id—P)(Id —P) = 1d>* =P — P+ P> = 1d>*~P — P+ P = Id®> —P. O

Remark 1.5.6. Kernel and Image of Complementary Projector.
Consider a orthogonal projector on a line v # 0, and for v e C™, with Py = vv*/|v|?, so we have:
(Id —=P)x = x — Pyx.
Recall the kernel and image of the projector:
im(Py) = span{v},
ker(Py) = {w: v¥w = 0} = (span{v})~.
However, for the complementary projector, we have:
im(Id —Py) = {w : v’*w = 0} = ker(Py),
ker(Id —Py) = span{v} = im(Py).
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For any Idempotent matrices P> = P, we first find ker P such that:
w=x—Px,
We find that:
Pw =Px—P2x=Px—Px=0.

Hence, w € ker P.
Also, we have w — (Id —P).x € im(Id —P).

Theorem I.5.7. Idempotent — Image and Kernel Relation.
If P = P2, then:
im(Id —P) = ker P.

Moreover:
im P = ker(Id —P).

Proof. (i) (im(Id —P) < ker P:) We let w € im(Id —P) be generic, then there exists x such that:
w = (Id—P).x =x—Px,
hence:
Pw=Px—P’x=Px—Px=0.
Therefore, w € ker P.
(im(Id —P) 2 ker P:) Let w € ker P be generic, i.e., P.w = 0, then we have:
(Id—P)w =w — P.w,
which results in w = (Id —P).w, so w € im(Id —P), as desired.
(ii) Let Q = Id —P, by the previous part, we have:
im(Id —Q) = ker Q,
hence, by Id —Q = Id —Id +P = P, hence:
im P = ker(Id —Q).

Proposition I.5.8. Idempotent —> Intersection of Image and Kernel is Trivial.

Let P = P2 be idempotent:
im P nker P = {0}.

Proof. We let w € im P n ker P be trivial, then:
w e im P = ker(Id —P),

w € ker P.
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This implies that:

(Id-P).w =0,
Pw=0,
which implies that w — P.w = 0, so w = 0. O
ker P
AW im P
0 ‘ >y
o

X

Figure 1.9. Kernel and image of P as idempotent.

Note that suppose dim(im P) = r, by rank-nullity, we have dim(ker P) = m — r, hence all dimensions are
captured by the image and the kernel, that can be represented by direct sum that:

imP®kerP = C".
Thus, any x € C" can be uniquely decomposed into:
X=y+w,

where y € im P and w € ker P.

To compute the y and w above, we have:

y € im P = ker(Id —P),
hence resulting in:

(Id-P).y =0,

hence y = P.y, and by acting P on x, we have:

Px=Py+Pw=y,
hence resulting in:

y = Px,

W=Xx—Y.
Remark 1.5.9. Eigenvalues and Diagonalizability.
Assume P = P? is idempotent:

(i) For all x € ker P, we have P.x = 0, hence P.x = 0.x.

(ii) For all x € im P = ker(Id —P), we have (Id —P).x = 0, so x = P.x hence P.x = 1.x.

(iii) Hence, for A = 0, the eigenvalue has geometric multiplicity of r, and the eigenvector has geometric
multiplicity of m —r.

In conclusion, idempotent implies diagonalizability.
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Proposition 1.5.10. Gram-Schmidt Process.

Let {vy, vz, -+ ,vp} be a basis of a subspace V = C™, the Gram-Schmidt Process allows us to construct an

orthogonal basis {uy,uz,-- -, up} such that span{vy, vz,---,vp} = span{ug, uy,--- ,up}.

Proof. The construction of the Gram-Schmidst is as follows:
(1) Let uj = Vvig.

(ii) We construct u; that is orthogonal to vy, let:
, ujvy
up = vy — component of v, that is parallel to u; = v, — ——5uy.
g |2

Note that readers can verify that span{uj, uz} = span{vy, vp}.

(iii) For uzm we think of it as:

ujvs u;vs u

— u] — 2.
[u[? [uz|?

V3
AT 7
L7 4 l
uz o/
e |
I : I
| |
I ! I
I ! I
I ! I
I u I
| | | span{uj, uz}
i
v3 projccte:d to up /’
(A
[
ANE4 ul

v3 projected to u1,
Figure 1.10. Subtracting the orthogonal projections gives the orthogonal component.

(k) At step k, we have:

k=1 uiy,
— J .
U = Vi — Z Hqu u].
j=1 1"
Hence, we have completed the construction for finitely dimensional basis. O
Remark 1.5.11. 3rd Step of Gram Schmidt.
Consider the built:
Q= [ql qz]
Here, the projector on span{qzi, q2} has:
Tr = Q2Q%

which, by block matrix multiplication, leads to:

T2As = Q2Q5A3 = (q7A3)q1 + (93 A3)q2,
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Hence, we have:
u3 = Az — A3 = (Id = To)As,

so we can define:
|us|

P; =1d —T,, so uz = P3A3, hence q3 = u
3 3

Theorem 1.5.12. For Idempotent, Hermitian < im P | ker P.

Suppose P = P? is idempotent:
P* =P < kerP LimP.

Proof. (=>:) Note that for any linear map P, ker P 1 im(P*), hence P = P* implies ker P 1 im P.
(==:) We choose:

ﬁ = {qll qz2,- - /qr}r

’)/ = {ql‘+1l ql‘+1/ Tty qm}/

as the orthonormal basis of im P and ker P, respectively. From assumption that ker P L im P, then 1 v,

so we have:

P-ql = Q1rP-CI2 = 42/"' IP'qr = q}’rP'qr-i-l = 0/' t qum =0.
hence, our matrix can be represented as:

[P.Ch Pqz -+ P.qr P.qri1 - P-qm]:[ql o qe 0 - 0]

Hence, we have:

q;‘ 1 -« 0 0 --- 0
: 0 0 0
*P _ qr . 0 0 _ ,
A P o v =10 00 0
[ dm _ 0 -~ 00 -~ 0]
in which the top r x ¥ rows are non-trivial. Thus:
Q*PQ =D,

hence P = QDQ*, so P* = (QDQ*)* = (Q*)*D*Q* = QDQ* = P. O

In fact, we may simplify the above prove by noticing orthogonality. Since the eigenvalues are non-negative,
we have P = QDQ* being the SVD of P where U = Q, X =D and V = Q.

If we are considering the parts of the nonzero entries of the matrices, we have P = Q£Q* = Q1d Q* = QQ*.
Note that:

O-lai  a
is the orthonormal basis of the range, hence inducing a rank-one decomposition, that is:
P=aqiqi + q2qz +-- + arq;-
Recall that doe the projection, we have:
CICH
lail?

ai = qiq; -
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Again, we would ask the question. What if the basis we have for im P is not orthonormal?

Figure 1.11. Projections when the basis is not orthogonal.
In such case, we have:
V =span{Aj, Ay, -+, A},

which are linearly independent but not necessarily orthonormal. Hence, we want to find an m x n matrix
P with the property that for all x e C™:

y=PxeVA\[w=x—-yLlLV.

Proposition 1.5.13. Matrix with full rank has Hermitian compose itself Invertible.

For A being a m x r matrix with dim(im A) = r, A*A is invertible.

Definition 1.5.14. Pseudo Inverse of a Matrix.

Suppose A is m x r and dim(im A) = r, we want to solve that:
A.x =Db with b €im A.
Hence, for A*Ax = A*b since A*A is square and invertible, then x = (A*A)*lA*b, and we have:
At = (A*A)1A*

as the pseudo-inverse of A.

Theorem 1.5.15. Pseudo Inverse Conditions.

For a matrix P € C™*™ that satisfies for all x € C™ that:
(i) y=PxeV,and
(i) w=x—-y LV,

is P = A(A*A)~"1A* for A being the matrix composed of the linearly independent vectors.

Proof. By (i), for any x e C"", we wanty = P.xe V, i.e.
€1

y:P.x:clAl—i—czAz—i—---—f—crAr:[Al Ar] | =Ac

~—
A Cr
——
C
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By (ii), we have:
x—Px 1l A= A*(x—Px) =0
x—Px 1A = A (x—Px)=0
Hence, we can get:
Af
D |.(x—=Px)=0.
Ay
Hence, A*(x — P.x) = 0, then A*(x — A.c) = 0, xp A*.x = A* Ac, which leads to ¢ = (A*A) "1 A* x, so:
Px=Ac=A(A*A)"LA*x for all x. O

Remark 1.5.16. Special Cases with Projector.

If {A1, -+, A} are orthonormal, then A*A =rId and P = AA*.
If V =span{v}, so A = [v], then:

vv*

P =v(viv) lv¥ = —
[v]?’

which the orthogonal projection on a line.

.6 OR Decomposition

Proposition I.6.1. Gram Schmidt for Normalization.

Let B = {A1,Ay, -, An} be a basis, the Gram-Schmidt process, gives v = {q1, qz2, - - -

ug
u=A; —q1=—+
u
ufA u
w=Ar— 2wy qr =
[ua] |uz
ulAj ufAj us
uz = A3 2w — 2wy —qa = —
[uq | [uz| [us|

,qn}, SO we have:

For this part, our goal is to have given a matrix A € C"*", we want to factor it as A = QR, where

Q e C™*™ js unitary and R € C"*" is upper triangular, i.c.:

B % e %
[Al A“] [ql * 9n  9n+1 ln] 0 0 *
0
0 0 - 0
A = 0 o R
m m o

CHIXVI mem CWIXH
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Remark 1.6.2. Reprise to Gram Schmidt.

We can first use Gram Schmidt to make a basis orthogonal, and normality is trivial as normalizing in the
induced normed vector space is straightforward.

a

Since with orthonormal basis, we have v € span(p) as for all A; € span 8 that:

1

n
Ai = Y (afA)g; = D.(afAj)qj + 0+ +0 = (qfA1)q1 + (a3 Az)q2 + - + (qf Aj)qi-
j=1 j=1

Using the block multiplication, we have:

[afA1 a3A2 q3As - qjAn]
0  q3A2 q3A3 - qpAn
0 0  q3As - qjAn
L0 0 0 - qiAn
Here, we may write this as the pseudo code that:
input: A_1, ..., A_n
output: gq_1, ..., gq_n
for j=1, ..., n:
u_j := A_j
for i =1, ..., j - 1: % There is nothing for j = 1

r_ij :=q_i"™* A_j
u_j :=u_j - r_ij q_j
% The above line has risk of Catastrophic Cancellation when subtracting similar number.
% There may be large rounding of error.
end
q_j :=u_j / llu_jll % Marked Step
r_jj = a_j"* Aj

Remark 1.6.3. Case when rank is less.

Let A has rank r < n, we should be pick arbitrary unit vectors orthogonal to the other basis at the marked
step to keep going with Gram Schmidt.

a

We get B = {q1, - ,qn} as a orthonormal set:
e when A is full rank, im A = span(f), and
* in any case im A  span(f).

Hence we have:

A=0R= [Ch q)n]R.
e We want to find {qn+1,--- ,1n} as orthonormal set orthogonal to g, with

* R having m — n zero rows.
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In particular, the (classical) Gram Schmidt will introduce large rounding error compounding up. Here,

we can introduce the modified Gram Schmidt for computing purposes.

Proposition 1.6.4. Modified Gram Schmidt.
Given {A1,A, -+ ,An}, columns of A = [Al A, - An]
(i) Initialize uy = Aq and q1 = uy/|uq].

(ii) Have u,(M) = A,, with:
(1)

w = w® = Pgup® = (1d —quqi*)uzV = M — qa(qfuy”’) = o — (qfu

() For the j-th step, we have:

gl))fh-

(1) _ A,
u; = Aj,
(2) (1) (1)
u =yt (qluj )91,
_ ) _ (=1 x (=1
Uy =ur =g - (‘ij1u]‘ )qj—1
for i =1, ..., n: % first loop to initialize all u_i’s
u i = A_i
fori=1, ..., n: % calculating each step
r_ii := [|u_ill
q i :=ui / [lu_ill
for j=1i+1, ..., n:
r_ij :=q_i"™* u_j
u_j :=u_j - r_ij * q_1i

Definition 1.6.5. Computational Complexity.

The complexity is measured by FLOPs: each operation is considered to operate with a unit time.

Example 1.6.6. Complexity of Inner Product.

Recallr_ ij := g_i"*u_j is an inner product. In general, we consider x*y for any x,y € C", hence there

will be m multiplications and m subtractions, hence it has 2m.

a

Hence, if we consider the second iterated loop with j with the above pseudo-code, we have the total

number of operations being:

n n n n n2—n
Z Z 4m=4m2 Z 1=4m- > ~ 2mn?.

i=1j=i+1 i=1j=i+1

If A e C"™*™ is Hermitian, i.e., A* = A, then we have the orthogonal diagonalization that Q*AQ = D,

where Q is unitary. However, we want to have the decomposition for the more general A, that is:
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Definition 1.6.7. Householder Triangularization.

If A e C"™" in which m > n, and sometimes we require dim(im A)A = n, then we have orthogonal
triangularization that:

[ * *_
Q*A=1|0 0 --- x| =R,
00 0
_0 o ... 0_

where Q € C"™*™ is unitary. (This is equivalent with A = QQ*A = Q, which is just QR decomposition).
The idea is that let:
Q* = QnQn-1---QQ1,

with each Qj being unitary, we have:

Q=(Q")" =QrQ;--Qu-
Example 1.6.8. A 5 x 3 Matrix with Householder Triangularization.
Let A be a 5 by 3 that:

* % %
I Y

A= = =],
* ok %
I )

so by 3 steps of each Qj, Q2, and Q3 to obtain that:

® % % * % % * % % ® % %
¥ ok % 0 % = 0 % = 0 = =

A:***&O**&OO*&OO*,
® % % 0 = = 0 0 = 0 0 O
® k% 0 = = 0 0 = 0 0 0

where Q7 changes entirely the first column, Q, changes all except the first row for the second column,
and Qs changes all except the first two rows for the third column.

a

Recall that unitary (Q* = Q~!) < ||Q.x| = |x|| for all x, which is isometry. Hence, the structure of Q is:
Id 0
Qk = [0 P,]
so we have:
Id 0 T B T B
o F| [0 x| |o Fx|

Here, we want Oy to be unitary, that is having orthonormal columns. So we need columns of F to be
orthonormal, so equivalently, F must be an isometry on C"~(*=1),
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* Il

Here, we take x = | : | € Ccm—(k=1) so we have F.x = . |, so we have:

v

h)
Ixllex

X2

Figure 1.12. Illustration of Householder reflection.

Hence, we have that F.x — x = ||x|e1 — x, hence, we have:

vv*

w = orthogonal projection of x onto v = Pyx = Wx,
v

so we have that v = —2w. Therefore, we have:
vv*
Fx=x—-2w = Id.x—Z—zx,
Iv|
hence we have:

*
F=Tld-2".
vl

Theorem 1.6.9. Properties of Householder Reflection.

For the F being a Householder Reflection, we have the following properties:
(i) F is unitary,
(ii) F is Hermitian,

(iii) F~! = For F? = Id.

Id
Remember that we have Qy = l

0 , we have:
0 F

(i) Qg is unitary,
(ii) Qi Hermitian, and

(iii) Qy is involuntary.

Remark 1.6.10. Computational Complexity for Householder Triangularization.
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We could haver defined:

Fx = —|x|e;,

we choose F.x that is farthest away from x, and the trick is choose F.x = —sgn(x1)|x|es.

So we have computational cost is ~ 2mn? — %n3.

Example 1.6.11. Householder QR Algorithm.

For the algorithm, we do:

for k=1 ... n:
x = A _k:m,k
v_k = sgn(x_i)llxlle_1 + x
vk =v_k / |lv_kll

A k:m,k:n = A_k:m,k:n - 2v_k(v_k™* A_k:m,k:n)

In particular, we have:
AW = QAT = Q1 Qi4,
and:

A = R=0,Q,_1- QiA.

We want to solve that A.x = b, which is equivalently QR.x = b, that is R.x = Q*.b.
To calculate Q*b, we use:

for k=1 ... n:
b_k:m = b_k:m - 2v_kv_k“*b_k:m

And to compute Q.u, we use:

for k =n ... 1:

u_k:m = u_k:m’ - 2v_kv_k7*u_k:m.

In particular A, : b, c : d meaning to obtain the ath to bth row and cth column to dth column of A.

a

Remark 1.6.12. Operation Count for Householder QR Decomposition.

Operation count is dominated by innermost for loop, that is the last line in Householder algorithm.
Note that A_k:m, j has length | = m — (k — 1), lets do operator count in terms of /, that is:

® A k:m,j—2v_k(v_K*A_k:m,j).

¢ Dot Product: I multiplications and I — 1 additions.
¢ scalar multiplication: I multiplications.

* subtraction: / subtractions.

Hence, there are a total of 4/ — 1 flops. This meas that we do approximately 4 flops for every entry operated
on.
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Then to count the total number of entries. For the kth step, we have:

Z 1)) (n—(k—1)) Z mn + ( n)(k*1)+(k*1)2)

k=1

n n
n) D (k—1)+ > (k—1)2
k=1 k=1
) 1 1
= mn +(—m—n)§n(n+l)+f

2
1 1 1 1 1

222 13 13 2 L3
x~ mn 27’}’11’[ 21’1 +31’l Zmn 61’1

By multiplying 4, we have 2mn? — gn (Recall that this was 2mn? for Gram-Schmidt process.)

nn+1))2n+1)
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II Applications with Computer Programming

II.1 MATLAB Preliminaries

The MATLAB programs can be helpful in conducting computations, and its embedded arrays allow linear

algebra computations.

x = (-128:128)°/128; % Create a column from -128 to 128 (inclusively) and normalize
A= [x.70 x.71 x.72 x.73]; % Create Matrix with each column being from -1 to 1 with 257 steps.

[Q,R] = qr(A,0); % QR factorization

scale = Q(257,:); % Calculate the scale
Q = Q*diag(l./scale); % Modify Q via diagonal matrix
plot(x,Q); % Plot x against Q.

05} i

05 / T i

Figure I1.1. MATLAB plot on the above code snippet.

Example I1.1.1. Computation Error of Gram Schmidt.

First, we have the matrix as:
~ [0.70000 0.707111

0.70001 0.70711
By keeping 5 digits, we have:

~[0.70710  1.0000
0.80811 0.0000 |

which is not very accurate. |

Of course, we may implement the (traditional) Gram Schmidt algorithm through MATLAB function. This

function on MATLAB takes in a matrix A and returns the factorization of Q and R.
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function [Q,R]
n = length(A);

zeros(n);

= clgs(A)

j=v]
]

zeros(n);

< o
] ]

zeros(n);
for j =1:n
V(:,j) = AC:,3);
for i = 1:j-1
R(i,j) = QC:,1)7*A(:,3);

V(:,3) = V(:,j) - R(1,j)*QC:,1);

end
R(j,3)
Qd:,3)

end

norm(V(:,3),2);
V(:,j)./R(,3);

end

I.2 Representation of Numbers

Consider the base 10 representation of 273, we have:

(273)10 = 2 x 102 + 7 x 10" + 3 x 10°.

Definition II.2.1. Base 2 Representation.

In base 2 representation, all numbers are represented by 0’s and 1’s. )

For example, consider 100101 in binary, we have:

(100101), = 1x 25 +0x2* +0x 22 +1x224+0x 2 +1x20 =32 4+4+1 =37.

Example I1.2.2. Converting Base 10 to Base 2.

Consider (156),0 and we want to make it base 2, we have:

Hence, we have (156)19 = (10011100)5,.

Then, we consider the representation of floating point number

numbers in [0, 1).

156 =78 x 240,

78 =39 x2+0,
39 =19x2+1,
19=9x%x2+1,
9=4x2+1,
4=2x2+0,
2=1x2+0,
1=0x2+1.

a

. Without loss of generality, we represent
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Consider the base 10 number, we have:
(0.345)10 =3x 1071 +4x 1072 +5 x 1073,
For base 2 number, we consider:

(01101); =1 x 27 +1x2724+1x27% =05+ 0.25+ 0.625 = (0.8125)10.

Example II1.2.3. Converting Base 10 Floating to Base 2.

Here, we consider converting base 10 floating points to base 2 floating points, namely (0.1);:

0.1 0.
01x2=02<1/|00
02x2=04<1|0.00
04x2=08<1|0.000
08x2=162>1 | 0.0001
06x2=122>1 | 0.00011
02x2=04<1 | 0.000110

Notice that there is a repeating pattern, so we have:
(0.1)19 = (0.0001100110011 - - - ) = (0.00011),.

This is a repeating decimals. If we were to reconvert, we have:
NN 1\ 1\ 1y Y Y (Y Y
2) “\2) T\2) T\z) T 2) T2 \2) T\2) T

- (1)4[1+1]1:3X1X1:1
2 2{1-(1/2* 2 16 15/16 10° )
The above example can account for some issues with the floating point inaccuracies in the representation
of numbers.

Definition II.2.4. IEEE Floating Point Representation.

For single precision, there are 32 bits, which is 4 bytes.

’ 1 sign bit ‘ #e 8 exponent bits ‘ #f 23 mantissa bits ‘

For double precision, there are 64 bits, which is 8 bytes.

’ 1 sign bit ‘ #e 11 exponent bits ‘ #f 52 mantissa bits ‘

a

Here we have the bits being stored in the continue memory locations. For converting to a base 10 number,
we have:
N = (=1)°(1+ f)2c %,

Here, 127 is the bias for single precision, note that 1+ f € [1.2).

1 1 1 23
mq E + -+ mp3 § .

e For e = 127, we just have +(1.my - - - mp3)2,

Let f = (0.my - - - mp3)2, we have it as:
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e For e = 128, we just have +(1mqmy. - - - my3)2, which has one less precision, that is 2722 and it is in
(2,4),

e For e = 129, we just have +(1mimyms. - - - mp3),, which has two less precision, and it is in [4, 8).
For the smaller numbers, we have:

e For e = 126, we have (0.1m - - - mp3)2, so the precision is one more, that is 224 the size of interval is
[1/2,1).

e For e = 127, we have (0.1m - - - mp3)2, so the precision is two more, , the size of interval is [1/4,1/2).

Example II1.2.5. Converting Base 10 to FP.

Consider converting from base 10 to FP, we have:
(15)10 = (1111),, (0.1)19 = (0.01111),,

thus we have:
(15.1)19 = 1111.00011 = 1.11100011 x 23

Hence the exponent is 127 4- 3 = 130, and the mantissa being 11100011, up to the correct number of digits:

1 sign bit | #e 8 exponent bits #f 23 mantissa bits
0 10000010 11100011001100110011001

In this case, we truncated all the digits afterwards, causing imprecisions.

In particular, the catastrophic cancellation since we are not considering the digits afterwards.

Even with double precisions points, the we still have the base as:
_1\s e—1023
(-17(1+ 2%,
bias

Definition II.2.6. Machine Representable Number.

A Machine representable number (MRN) is a number that can be represented exactly f,(x) = x.

Let f = (0.mymy - - - msp),, and we have the following case:
e For e = 1023, we have the values being in [1,2), with the coefficient of (1/2)%? ~ 2.220 x 10~1.
* For e = 1024, we have the values being in [2,4), with the coefficient of (1/2)%! ~ 4.441 x 10716,
e For e = 1025, we have the values being in [4,8), with the coefficient of (1/2)>" ~ 8.882 x 10~1.
* For e = 1077, we have the values being in [2%2,2%3), with the coefficient of (1/2)° = 1.

For any generic e, we have the following:
e Interval: [2¢71023,2¢-1022)

* Width of interval: 2671022 — ¢=1023 _ pe—1023,

e Step size: 2792+¢~1023 — 2e=1075 anq
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e Number of MRNs: 2752,

Example II1.2.7. Largest and Smallest (Positive) MRN.

The largest MRN is 111...1000...0 =~ 103%. Here, the step size is 101024=52,
(il

52 ones 972 zeros

The smallest MRN is 0.000...01000...0 = 271923 ~ 2470 x 107324, (This is evaluated to zero on com-
DRl il

1022 zeros 52 ones
puters).

The next smallest (real smallest) is 271023 4 2—(1023+52)

For each fixed e, it represents an interval, which got larger when e grows larger, with the numbers inside
being uniformly distributed along each interval:

[ 1 1 3 s
L L L / ’

Remark I1.2.8. Zero, Infinity, and NaN in Machine Representation.

For floating numbers, 0, o0, and NaN (not a number) cannot be represented conventionally, but they are

distributed with a special slot.

e For 0, we have:

1 sign bit | #e 11 exponent bits | #f 52 mantissa bits
Oor1 000...0 000...0

e For oo, we have:

1 sign bit | #e 11 exponent bits | #f 52 mantissa bits
Oor1 111...1 000...0

For the —oo, it makes the sign bit as negative.

e For NaN, we have:

1sign bit | #e 11 exponent bits | #f 52 mantissa bits
Oor1 111...1 111...1

Definition II.2.9. Machine Epsilon.

The machine epsilon, denoted €pachine, is the distance between 1 and the next larger MRN.

Example I1.2.10. Machine Epsilon for 1.

For the double precision floating point, we represent the number 1 as:

1 sign bit | #e 11 exponent bits | #f 52 mantissa bits
0 01111111111 000...0
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where the exponent is 1023 in base 10.
Therefore, the next MRN is:

1 sign bit | #e 11 exponent bits | #f 52 mantissa bits
0 01111111111 000...01

2—52

which is exactly 1 + , or the step size for e = 1023 is always 27°2. Therefore:

—52
€machine = 2 .

Remark I1.2.11. Absolute and Relative Error.

Let x be a positive real number, we have:
* Let f,(x) be the floating point representation of x.
¢ We assume that we are in double precision.

From x, you first determine ¢, and then we find the number on the interval (for simplicity, we just represent
4 points on the number line):

«— R
L

—
—
~
~

fp(x)

Suppose we have just truncation, we have:

| < 2752+€71024

¢ The absolute error is [x — f,(x) , which is the step size.

x — £p(x)] 9—52+e—1024 =

. . —52
¢ The relative error is o] S [CLp(Lt foe1om] ~ 157 < €machine-

The key conclusion is that the relative error is bounded above by the machine epsilon.
Alternatively, if we consider the numerator of the relative error as x, we have:
¥ —fp(x) _ [x—fp(x)| |fp(x)] ,
x| ()] [ e

Then, we consider the rounding off, so we have:

]
~

Now, the absolute error is halved, and relative error is bounded by €achine/2-

Here, we shall be concerned on how we can trust the computer.

For double precisions floating point, we have:

€machine = 2752 ~ 222045 x 10716,
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So we can keep about 15 to 16 digits accurate
Example I1.2.12. MATLAB Illustration on Numbers.

Below is a code segment of the illustration on MATLAB

>> 1.23456789012345678901234567890
ans = 1.23456789012346

>> ans + 100000000
ans = 1.000000012345679e+008

>> ans - 100000000
ans = 1.234567890553165

Note that for the second operation, the operation truncates the digits after the first 9, and when the same
number is subtracted, it results in some junk digits.

More specifically, look at the following code snippet:

>> 1.2345678901234567890 + 10000000 - 10000000
ans = 1.234567890553165

>> 1.2345678901234567890 + (10000000 - 10000000)
ans = 1.234567890123456

Here, we can observe that associativity does not hold over computer level computations.

This is caused by the similarity of significant digits, so only the first 15-th digits are exact, and from 16-th
digits afterwards, they may be affected by round-off.

This is an example of the Catastrophic Cancellation, which occurs when computing x — y, where x > y but

X~ y.
There, x — y can result in fewer significant digits than x and/or y.

Example I1.2.13. Trick to Eliminate Subtraction.

When we compute:

Vat+4—x
y=——> for x very large, and x > 0.
For x = 100>, MATLAB returns y = 0. However, we can have:
VX244 —x V2444 x P 44-x2 2
Y 2 Valtdt+x 2(War+d+x) VaZid4x

and without subtractions inside, we have the output approximately as 3.162278 x 10711,

Remark I1.2.14. Real Number and Floating Point.

Let x € R, and fp(x) be the floating point representation of x, which is a MRN, and it is defined as:

€machine = (_1)5(1 + f)2871023'
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The machine epsilon is determined as the absolute value of the difference between 1 and the next larger
MRP, that is 2752 for double precision floating point number.
The relative error in floating point approximating is:
|x — fp(x)]
X
Whereas for truncation, we redefine:

1 _
€machine = mz 2.

Thus, in both cases, we have:
lx — fp(x)|

<
I

€machine-

a

Below, we introduce a “axiom” of floating point representations, but it turns out to be direct from the

previous remark.

Proposition II.2.15. Property of Floating Point Representation.
For all x € R, there exists ¢ (positive or negative) with |¢| < €mnachine such that:
fp(x) = x(1 +¢).

Le., the relative distance between x and f,(x) is always smaller than €pachine-

Proof. Without loss of generality, we let x > 0, since x < 0 is a similar case. We have:

—€machineX < fp (x) = X < €machineX,

X — €machineX < fp x) < X + €machineX/

(
(

x(l - €machine) < fp x) < x(l + emachine)/
fp(x )
1- €machine < X <1+ €machine-

Therefore, there exists € with |¢| < €machine Such that:

fr(x

—p( ) =1+e¢,

X

so we have f,(x) = x(1 +¢), as desired. O

Then, we think about the floating point arithmetic.
Remark II.2.16. Notation for Arithmetics.

Here, we have R denote the real numbers, and F denote the machine representable numbers in floating
point with double precision. We think of f, : R — F.

The four main arithmetic operations on R are +, —, x, and —+.
The four main arithmetic operations on F are ®, ©, ®, and &.

a

Here, let * be the generic operator, since we have /' < IR, we defined the maps in F naturally pre-
composing the inclusion ¢ : 7 < R and post-compose with the f,. Therefore, for any x’,y’ € 7 c R, we
defined the operation as:

X @y =) = i(y) = fo(x" = y).
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Here, by the property of floating point representation, we have:

Y@y =fp(x' xy) = (' xy) (1+e),
where |e| < €machine-
Definition I1.2.17. Big O Notation.

Given two functions of real-valued inputs, a(t) and b(t) > 0, we have a(t) = O(b(t)) as t — 0 when there
exists C > 0 such that |a(t)| < C-b(t) in a neighborhood of t = 0, i.e., there exists some J > 0 such that the
statement holds for all |¢| < é.

a

Here, we can have an example with some function.

Example II1.2.18. Sine Function in Big O.

sint = O(|t]) as t — 0, since we have |sint| < [t in Bs(0) for some § > 0.
Remark I11.2.19. Floating Point with Machine Epsilon.

If x" = f,(x), then:
|x — ']
||

<1 €machiner

thus, we have:
x|
|x|

=0 (emachine) .

We say that the relative error is of the order of €pachine-
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III Computational Methods

III.1 Least Square Approximations
Consider A € C"™*" with A = [Al Ay, - An].
Remark III.1.1. Equivalence Conditions to Trivial Kernel.

For the above A, we have ker A = {0} < Aj,---, A, are linearly independent «<— dim(im A) = n.

In such case, we have m > n, that is, it must be square or having more rows.

Remark II1.1.2. Existence and Uniqueness of Solutions to Linear Equation.

From linear algebra, with A.x = b for matrix A and vectors x, b, we have:
(i) If b € im A, then there exists (at least) a solution to the linear equation.
(ii) If ker A = {0}, the uniqueness is guaranteed.

If b ¢ im A, then for all x, we have A.x # b.

Our goal is to choose x € C" so that A.x ~ b, i.e., A.x is as close to b as possible.

This leads to the least square problem: Given a matrix A € C"*" and a vector b € C”, we find x that

minimizes the residue:
€e=|b-Ax|

We are having the following assumptions:
(i) m = n, and
(ii) dim(im A) =n <= ker A = {0}.
Recall that we have ker A = ker(A*A), so ker A = {0} implies that A*A is invertible.

For the first case, we consider b € im A, so we have A.x = b being consistent but overdetermined, i.c.,
there are more equations than variables. The following is a illustration when n = 2:

Figure II1.1. Overdetermined equation in n = 2 plane for image.

Here, we then have A.x = b implying that A*A.x = A*b, in which A*A is invertible, hence x =
(A*A)~1A*b, in which we have:
At = (A*A)TA* e Cn xm,

which is the pseudo-inverse of A.
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Proposition IIL.1.3. Properties of Pseudo-inverse.

For a pseudo-inverse of A, denoted A, the following properties hold:
(i) ATA=(A*A)"1A*A =1d,,

11 = - = P.
ii) AAT = A(A*A)"1A* =P

Then, we shall consider the other case, i.e., if b ¢ im A, then the minimizer of infyccn |[b — A.x||7 is still
x — AT.b, where x is the vector of coordinates of y with respect to Ay, - -, Ap.

e For a generic x e C"", we have z = A.xeim A, and

e For any z € im A = span{Ay,-- -, Apn}, there exists x € C" such that z = A.x.

Remember that we want to minimize infyccn b — A.x|2, which is equivalent to minimizing inf,cim 4 [b —
z|, which can be considered as follows:

X1

Figure I11.2. The projection onto the image span.

Proposition IIL.1.4. Minimizer of the Approximation Problem.

Let A € C"™*" with m > n, we have dim(im A) = n. We fix b € C" arbitrarily. The minimizer of the
problem is:
inf |b—
nf b -z
isz =y, wherey = P.b = AAT.b.
Equivalently, the minimizer of infyecn |[b — A.x|z is x = ATb.

Such situation can be applied onto linear regression in statistics.
Example III.1.5. Linear Regression Example.
Let data points in IR? be:

{(xr, 1), (Xm, ym)},

so the linear model can be considered as:

Bo
y=,30+,51x+/32x2=[1 x xz]. B1
B2
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When By, 51, B2 are fixed, for each x;, the i-th prediction is:
Ji = Bo + Brxi + p2x7,
and the i-th residue is:
€ =i =i = yi — (Bo + Prxi + poxi),

so the sum of the square errors is:

SSE(Bo, p1,B2) = Y. & Z[ /30+/31x1+/32x)]2.

Here, we use the trick by: . .
1 X1 X]
A=t 1 i,
(1 X x2,
[ Bo 2
B= 1P|, b=]:
| B2 Y

Here, we have:
— (,3() + ﬁ1xl + betazx%)
b-ApB= :
— (Bo + B1xm + betarx2,)

Therefore, we have:
n

b~ ABR = ) [y~ (B + rxi + 2| = SSE(o, b, o),

i=1
so we are minimizing = A™.b.

Theorem IIL.1.6. Projections Minimize the Least Square Problem.

Let A € C"*", with m > n have dim(im A) = » (full rank). Let b € R™ ne arbitrary, the minimizer of the
problem is:

min b -z,
Zelm

is z =y, where:
y=Pb=AATb = A(A*A)"1A*D.

Equivalently, the minimizer of the problem minyecn [b — A.x]z is x = AT.b.

The full rank condition is helpful when trying to solve A.x = b, when b ¢ im A, so for all x, A.x # b.
Remark III.1.7. Computational Costs for Matrix Operations.

The computational cost to compute A* is:
o C(A*A) ~ 2mn?,
e C((A*A)™!) ~ 812, and

o C((A*A)T1A*) ~ 2mn>.
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Hence, the total computation cost for the projection for least square problem is 4mn? + §n3 . .

Note that there are other ways to compute x = AT.b by:
(i) Cholesky factorization,
(ii) QR factorization, and
(iii) SVD.
In particular, we have the QR factorization as:

A = Q o R
m m m
men mem men

where R has the top n rows being upper triangular.

Moreover, we may use the reduced QR decomposition that A = QR where we reduce to the n columns

for Q and R. However, we have:

*

qd1
Q" Q=|: [qi< q;"l]=1d.
*

qn
Also, we have span{qy,- -, qn} = span{Ay,--- ,An}, so P = Q(Q*Q)~'0* = QQ*.

We let y be the orthogonal projection of b onto im A, that is:
y=Pb= QQ*br

and let x be the coordinates of y with respect to {Aq,---, An}, so:

n
Y= Z x,‘Ai = Ax.
i=1
Therefore, we have A.x = QQ*b, that is QRx = QQ*b, by post-compose Q*, we can get Rx = Q*b,

which is easy to compute.
Remark II1.1.8. Algorithm and Cost of the Minimization Process.

The inputs are A and b, and the output is x, where x = At.b, we do the following:

(i) compute the reduced QR decomposition of A (with the householder triangularization, its complexity
is 2mn? — %n?’),
(ii) compute ¢ = Q*b (there are n dot products in C™, so a total of about 2mn), and then
(iii) solve R.x = Q*.b for x (for this part, note that the number of FLOP each block substitution is
1+3+5+---,thatis nz).

Therefore, the computational cost is ~ 2mn? — %n3. }
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III.2 Conditioning and Condition Number

Definition II1.2.1. I11 Conditioned.

A problem is “ill conditioned” when a small variation of data causes large variation of solution.

Example III.2.2. 111 Conditioned Problem.

Consider A.x = b, it is either:
(i) A e C"™*™ is invertible, then x = A~L.b, or
(ii)) AeC™", dim(im A) =n,and beim A, so x = A*.b.

Suppose we compute a solution X (not quite correct), and the error is:
e=0x=Xx—X,

which is the difference between the real and computed solution to A.x = b. In reality, this cannot be
computed since we do not have access to the real solution (that is why we are computing it.)
Hence, the goal is to find an upper bound for relative size of error, i.e.:

[ox|

IxI
What we can compute is the residue:

r=0b=b—-Ax=Ax—Ax=A(x—X) = Adx.
Therefore, we have dx = A~18b, hence its norm is:
léx| = AT éb] < JATY - |6b].
Then, since we have b = A.x, we have:
[bll = |AxX]| < [A]- [x],

Therefore, we may obtain the upper bound of the residual as:

|9 -1 |9
[Al- 1A :
I h —_—— Ib|
— conditional number of the matrix A —
relative size of error relativesizeo fresidual

Definition III.2.3. Condition Number of Matrix.

Let A be an invertible matrix, we have the condition number of A as:
K(A) = |A]-[|ATY).

The large condition number means ill-conditioned, and small condition number means well conditioned.

If A=! is hard to compute, then one eigenvalue is ~ 0, which implies large x(A).

When || e || = | e |2, we have:
71
K(A) = —.
()=
Here are some motivation of the condition number of a square, invertible matrix A:
-1
K(A) = Al A7
|

norm induced by vector norm
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For example, when having the 2 x 2 case, we ant to solve that A.x = b, and the solution is x = A7LbD,

where as the inverse is:

a b _1 1 d —b
A_[C d‘|=>A _udfbc —C g]'
_—

adj(4)

Note that when A is close to singularity, that is, det A is close to zero, then we have catastrophic can-
cellation, which happens when subtracting 2 numbers very close to each other. This is a large round-off
error.

In the m x m case, we de the inverse as:
[A Idn] RREF, [Idn ‘ A—l]

The gist is that when A is close to singularity, A~! cannot be computed accurately, so x = A~!b cannot

be computed accurately.

Let X be the estimate of the solution x, we can compute the residual as:

b=b—-Ax=Ax—Ax=A(x—X%).
—
ox error

Remark II1.2.4. Computation of J/x.
Here, we have x = A~16b, since we cannot compute Jx accurately.
The general rule for numerical linear algebra is to avoid computing det A and A~!, because they are:

(i) computationally intensive, and

(ii) computationally inaccurate when A is close to singularity.

Example III.2.5. Pseudo Inverse Case.

If A e C™*" such that m > n, with full rank and b € C™, then the minimizer of |b — A.x|; is:
x=Atb=(A*A)"1A*b.

We avoided inverting A* A by computing x via QR decomposition by solving R.x = Q*.b.

Later we will see techniques to compute:
¢ the eigenvalues of square matrices, and
e the SVD of any matrix,
that avoid determinant and inverse.
We have proven that:
lox||

_ ’b
< Al ]A7Y 19b]
] Al 14

b
Ranand x(A)conditional number T .
relative size of error (typically can computed relative size of residual
(cannot compute) X ) can compute)
without A™%)

Remark II1.2.6. Conditional Number based on Choice of Vector Norm.
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x(A) depends on the choice of the vector norm. For example, choose | e || as a 2-norm, we have:

K2(A) = [Al2- [A7 2.

Theorem III.2.7. Conditional Number as Fraction of Singular Value.

For any invertible A € C™*™:
x(4) = 2,

Om

where 07 and 0y, are, respectively, the largest and smallest singular value of A.

Proof. For any A € C"*™, we have |A|, = o7, that is the largest eigenvalue.

When writing SVD as:
(%] 0 0
(%) 0
A=UxV*=U ] v*
0 0 e O
Then:
1)y 0 - 0 1)y 0 - 0
. 0 1/0’2 o 0 1/0'2 s 0
ATl = wH iz lu=t =V , * = o A%
0 0 - 1/oy 0 0 - 1/oy

Note that since V=1 = V*, then V =V, so their complex conjugates are the same, now, we may invert the
order of the rows to obtain that:

1/om 0 -0
0 1/(7 -1
ATl = | i Vs,
0 0 - 1/
hence we have the largest singular value is 1/0y,. The conditional number follows as o7 - % = % O

In particular, the fraction is called the eccentricity of ellipsoid with semi-axes o1, - , 0.
Example III.2.8. Conditional Number for Almost Singular Matrices.

In MATLAB, the command for conditional number is cond (4), which is x,(A). Here, we let:
1 1
A= .
1 1+«
e When a =1, we have x(A) ~ 6.85410,

e When a = 107>, we have x;(A) ~ 4.00002 x 10,

e When a = 1072, we have xy(A) ~ 3.99949 x 102,
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Theorem III.2.9. Conditional Number of Matrix Operations.

For any matrix norm induced by a vector norm, we have:

(i) For any nonzero constant ¢ € C, we have that:

k(cA) = k(A).
(ii) x(Id) =1, and

(iii) for any invertible A, x(A) > 1.

Proof. Recall that |Id|| = 1 and |A~!| > 1/|A| for any norm.
(i) Note that (cA)™" =1/c- A7", so x(cA) = |cA| - [1/c- A7 = [c/le| - |A] - [A™1] = x(A).
(i) x(Id) = [Id]-|Id7}|=1-1=1.

(iii) x(A) = |A[-[A7Y] = |AI/A] =1, s0 x(A) > 1.

III.3 Stability

For the mathematical problem, we let it be defined as f : B — X, where B is the set of possible data and
X is the set of solutions.

Example IIL.3.1. Basic Linear Algebra Problem.

We are trying to solve that A.x = b, where A € C"*™ is invertible.
The solution is:
x=f(b) = A"Lb.

Typically (especially when the condition number x(A) is large), we can compute only an approximated
version of x, denoted X, through an algorithm (such as QR decomposition).

Definition III.3.2. Algorithm.

Here, we define an algorithm as:
f:B—-X,

in which the computed solution X = f(b) is by the actual data.

A “stable” algorithm is one which computes solutions X which are approximately equal to the exact
solution for slightly perturbed data:

f(b) ~ f(b + db).

Definition II1.3.3. Backward Stable.

Given a problem f, an algorithm f is called backward stable if for all set of data b € B, there exists a data

perturbation b, where:
Iob]_

b] O(€machine) such that f(b) = f(b + ob).
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This stability is called backward since instead of looking at the forward error, we have:

ox = f(b) = f(b),

we look backwards to see what input could have produced the computed result f(b) exactly.

This definition holds , the data perturbation required to explain the computed solution is relatively small
(relative to the problem’s data b), i.e., the algorithm is numerically robust (stable), to relatively small

perturbations.
Example III.3.4. Subtraction is Backwards Stable.

Suppose the mathematical problem is:

f:C?>C,b= <51> > by — by.

2
The algorithm is as follows:

input: b = [b_1, b_2]
output: ~x = ~f(b_1, b_2) = fp(b_1) (=) £p(b_2) = £fp(bl’ - b2?)

Then, there exists €; with |€1| < €machine Such that bj = f,(b1) = by(1 + €;). There exists e; with |ep| <
€machine Such that by = fy(by) = by(1+ €2). Moreover, there exists €3 with |€3] < €machine sSuch that
by = fp(b3) = b3(1 + €3).

Hence, we have:

(b1 —b3)(1+e3) = [b1(1+€1) —ba(1 + €2)](1 + €3) = bi(1 + €1)(1 + €3) — ba(1 + €2)(1 + €3)
= by +bi(e1 + €3+ €163) —[ba + ba(ex + €3 + €2€3) | = (by + 6by) — (b + 6by)
= f(by + 6by + by + by) = f(b + Jb).

Just to note since for the O, we are letting it — 0, not infinity, so we have:
le1 + €3 + er€3] < |e1] + |es| + le1] - [€3] < 2€machine + €machine = O (€machine)-
Hence, we have the algorithm backwards stable.

Here, we consider such operation in norm notations as well:

by
ob = = b€y + byes.
L%z] 1€4 + 02€5

Hence the square of the norm is:
8B = [b1 Pleal® + [bal?[es]* = [b11*O(eqachine) + 162 O(€qachine) = (111> + b2]?) O (e

machine machine machine ) 4
which leads to that: )
I6b|| 2
=0(e )s
Ib?

machine

so the single power norm in O(€nachine)-

This makes us recall the catastrophic cancellation, that is when we have b; ~ b,, we have:

[x—x| _ [f(b) — f(b)
IxI |f(®)]
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be large. However, the backwards stability means that there exists points in the neighborhood such that the
differences can be similar. Here, we have b; and b, close enough to have some point in the neighborhood
to be backwards stable.

Definition III.3.5. Stability.

Given a problem f, an algorithm f is stable if for all b € B, there exists a perturbation of data 5b with:
ob
b|| = O(€machine)

e |f(b) — f(b + 6b)
- +
o rop) O (Emachine)-

The stability is a weaker statement than backwards stability.

Proposition II1.3.6. Backwards Stability — Stability.

A backwards stability algorithm is stable. The converse is not necessarily true.

This relaxation is necessary, as there are algorithms that are stable but not backward stable.
Example II1.3.7. Stable but not Backward Stable Problem.

Consider the computation of the outer product between 2 vectors a,b € C"m the mathematical problem
is:
f:C"xC"—Cm"
(a,b) — A = ab*.
The algorithm is to:

input: a,b in C'm

a’ := fp(a) =: (al’, a2’, ..., am’)
b’ := fp(b) =: (b1’, b2’, ..., bm’)
~A = [~Aij]

~Aij := ai’ (x) comp_conj(bj’) := fp(ai’ * comp_conj(bj’))

Note that:

f(a,b) = A # (a+da)(b+0b) = f(a+Ja,b + ob).

not rank 1 matrix rank 1 matrix

Hence it is not backwards stable. It can be shown that the algorithm is stable, and we leave this as an
exercise to the readers.

a

It is worth-noting that our conclusion on stability is independent from the choice of vector norm.
Definition II1.3.8. Equivalent Norms.

Let X be a normed vector space, any two vector norms | e ||, and || e |z in X are equivalent if there exist
C1,Cy > 0 such that for all x € X, we have:

Cilxlp < Ixla < Cafxllg-
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Proposition IIL.3.9. All Finite Dimensional Norms are Equivalent.

Let X be a finite dimensional normed vector space, all norms are equivalent.

Example II1.3.10. || ¢ | and | e | for are Equivalent.

One can prove that:
IXloo <[]l < v/mx].

There are some consequences of the equivalence norms.

Proposition II1.3.11. Squeeze Theorem.

Suppose X is a finite dimensional normed vector space, and let | ¢ |, and | ¢ |4 be any norms in X. Let a
sequence {x;};~; < X be such that |x, |, — 0 as n — oo, then |xu|lg — 0as n — .

Proof. This is naturally by the above inequality:
1
0< xallp < & lxnlla =0,
hence, we naturally have |x[z — 0asn — . O

Another consequence is on the backward stability:

Proposition II1.3.12. Backward Stability.

Suppose we have b € X, which is a finite dimensional normed vector space, and | e |, || ® |5 are two norms

in X:
bl _ e
Hb”ﬁ machine

Then, we have:
|16b]|a

Ib]la

=0 (emachine ) o

Proof. From the definition, we have:
1 1 1

6b|lx < C2|0b] g and SC ol
0Bl < C[0b]lp and 2 < = [b]s

Therefore, we must have:
6bl _ C2 10bls _ Gy

x S ° < 7C - €. 7 ’
[bla = Ci Iblg TGy machine
thus H‘Swa/HbHﬂ = O(emachine)' O

Then, we can think of the conditional number for squared and invertible matrices, that is:
-1
K= [A]- A
Here, think of the problem of solving A.x = b, the approximation solution is X. Here, we have:

Error OX =x—X,
Residual b =b - AX.
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Remark II1.3.13. General Condition Number.

For any mathematical problem and algorithm for f : B — X as f : B — X, we can define the condition

number as: B
Hf('HJ}(—bJ;ﬁb)H

A AP

ébeB W

Le., K is the smallest number that is larger than all possible ratios.

Hence:

[f(b) = FB) _ [ob] (s

<K

If®)[ = [b]

Therefore, we note that:

Iob] is small when f is backward stable or stable,

Ib]

hence since x could be large, stability causes the left-hand-side to be large.

Again, for the same example, we could have a backwards stable, but the relative error is large due to
catastrophic cancellation.

Recall that for solving the problem A.x = b fora A € C"*", we have the QR decomposition based method,
that is:

(i) Let A = QR, which is the QR decomposition of A, where Q is orthogonal and R is upper triangular.
(Cost: ~ %mn2 — %n3).

(ii) Compute QO 'b = Q*b. (Cost: ~ 2mn).

(iii) Solve R.x = Q*.b with the upper triangular system. (Cost: ~ n?).

Remark II1.3.14. QR Decomposition Based Method is Stable.

The QR decomposition method, i.e., the above three steps are backward stable.

Theorem II1.3.15. Backward Stability of QR Decomposition.

Let A = QR be the QR decomposition of A, and let QR be the QR decomposition computed by House-
holder triangularization. This algorithm is backward stable in the same sense that the computed solution

X has the property:
[oA[ _

|(A + 6A)% — b| = min, -
1A

@ (emachine )

for some 6 A € C"*",

III.4 Stability and Gaussian Elimination

Then, we consider the Gauss Elimination.

Remark I11.4.1. LU Decomposition.
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We may use Gauss elimination to form the LU decomposition, that is for A € C"*™, we have A = Lo U,

E3 0 e O % * e *
£ % .- 0 0 % .- =
where L= | andU= |, . ,
Do ~ 0 Do .0
EIE S * o0 --- *

Here, the algorithm lies as follows to solve A.x = b.

(i) Compute A = LU. (Cost: ~ %m3).
(ii) Solve L.y = b for the lower triangular system for y. (Cost: ~ m?).
(iii) Solve U.x =y for the upper triangular system for x. (Cost: ~ m?).

Note that L.y = b implies that L(U.x) = b, so A.x = b so x solves A.x = b.
Example II1.4.2. UL is Simpler than QR.

The price is it might be instable (could be corrected). Here, we consider:

an 0 0 i by
a1 axp 0 [.|y2]| =|b
a1 az;  4s3 v3 b3
Here, we can consider the solutions trivially as:
by
]/1 =
a1
by = ann
V=—"7""
a
bz — az1y1 —azny»
Y3 = .
as3 a

In particular, we consider L,,_1 --- LoL1 A = U, where L; is the i-th set of elementary row operation, hence
for A = LU, we have:

L=(Ly—1--LoLy) ' =L7'Lst Lt
Example II1.4.3. Generic 4-by-4 Matrix with Gaussian Elimination.

Consider the steps as follows:

* * * * * * * % * * * * * * * *
% % * % Ly 0 * % * L, 0 * % Ls 0 % %
— — —
* * * * 0 * * * 0 0 * * 0 0 * *
* * % * 0 * * * 0 * * 0 0 *
A LA Lo A L3l L U
- . a b|. . . a b
More trivially for the 2-by-2 case, a matrix A = is simply by Ry < Ry + kR, that is ,
c d c+ka d+kb

where k = —c/a when a # 0 to achieve upper triangularization.
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Then, we consider:

whose inverse is then:

which is also upper triangular.

For the 3-by-3 case, let:

a b c
A=1d e f]|,
h i j
we do the row operation to obtain that:
a b c

LiA=|d+kia e+kib f+klc ’
g+k211 h+kyb i+kyc

where k1 = —d/a and k, = —g/a. Hence, we write:
[ 1
Ly = |k /
| k2
where the inverse is:
1 00
Li'=|-k 1 0
| -k 0 1
Here, we let the second table to be:
a b ¢
LiA=[0 a B
0 v ¢
Here, we use the similar process for row operation. Here we have:
a b c
Ly(L1A) = |0 o B ,
0 v+ k30€ 0+ k3,3
where k3 = — + &, and we have:
(1 0 0
Ly = 1 0},
|10 k3 1
where the inverse is:
1 0 0
Ly'=]o 1 o
0 —ks 1
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Here, the inverses are:
1 0 0 1 0 O 1 0 O
L=Li'Ly'=|~k 1 0fo|0 1 0|=|-k 1 0
—ky, 0 1 0 —ky 1 —ky —k3 1

1

There, we may observe that A = LU = Ll_le_z L7y

In the generic case, we consider the matrix:

a1 a4

a1 a2
A=

Am1  Am2

Consider the first transformation, we have:

gives the Gauss Elimination process.

Am

Aom

Amm

by = 41 foralli=2,3,---,m.
an

It is noteworthy to mention that if a1 is zero, we want to shuffle the rows. In fact, we would like to
rearrange in a manner that has the largest coefficient at the top. But anyways, we have:

1 0
621 1
-1
Lb=1. .
b1 O
For the second step, we assume that we have:
a1 a1
0 ax22
LiA=| .
0 Xm2
Hence, we consider that:
Xi2
lp = —=.
i2 X
1 0
~1
Lz = 1. .
0 ‘€m2

0

A1m
X2m

Xmm

1

Remark I11.4.4. Decomposition exactly as the product of the entries.

We have the matrix entry exactly as:

Ly 1 Loy =1dy +

(Li — Idy).

IVE

i=1

Now, we consider the Pseudo code for the code segment as:

input: A in C(m*m)
output: L in C(m*m), U in C(m*m)
=1, 2, ..

for j ., m-1:
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for j =1, 2, ..., m-1:

1[i,3] = nli,j] / ulj,]]

uli,jim] = uli,j:m] - 1[i,j] * ulj,j:m] % (%) Computationally intense
end

end

Consider the computational complexity, we have the (*) intensive, that is:
¢ It multiplies a scalar by a vector of length /.
¢ It subtracts 2 vectors of length /.

Hence, there are 2/ flops.
At the jth step, we have { = m —j+ 1.

Consider that there are less operations needed overtime, we consider the number of operations as:

ml ml m=1 m—1)mQ2m—1)+1) 2
]lea —j)=2 ;m ] = ; m(6m )~3m3.

Remark I11.4.5. Problem with LU Decomposition.

The LU Decomposition incurs the following issues:

* We may have division by zero, such as A =

1
11 , where {1 = =

01
e Stability issues: For A = 11l It is invertible, and we compute x(A) with respect to the 2-norm,

that is 02/07. Consider a diagonalizable matrix, we have o7 = |A1] and 02 = |A3].

For this case, we have the eigenvalues are 1J—r2*/§, so we have 07 = 1+‘[ and 0» = @, we have:
o
1 L0618
0’2 4

We consider the following example, then:

Example II1.4.6. Unstable for Gauss Elimination.

10720 ¢
0 0

Let’s define 6A =

= [e 81 and here we apply B as:

0
10720 1
1 1|
and so by the Gauss Elimination, we have:

lle ] where (y1 = 0o = 10°°.

l 0] and U =
1

Here, we assume that f, (1020) =10% and f p(107 20) = 1072, then we have machine representation as:

10-20 1
0 ~10%0 |~

B=A+0A=

Thus, we have:

0 1—10%0

10-20 1 ]

L= 1 and U =

LOZO 1
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Thus, we have the matrix multiplication as:
—20 -20
i< 1 0|10 1 _ |10 1 .
1020 1] 0 —10% 1 0

01
We may observe that this is very far from the initial A, since we had a large deviation with A =

1
Note that this is not a Catastrophic cancellation, but rather a roundoff error, hence it is unstable.

The solution to the problem is Partial Pivoting.
Remark I11.4.7. Partial Pivoting.

For the above example, we may exchange the rows in B, that is:

1 1 1
B=|¢ | —-c= .
11 e 1
. 1 0 _ 1 0
Thus, we have Ry < Ry — €Ry with L = . and thus L = L = . , so we have LiC =
—€ €
1
0 1—e€

Again, if we assume € = 1072, we have the floating point approximation as:

I 1 O,andsoflz 1 1+e¢ N 1 1 _c
1 € 1 e 1

€
Note that the above example is a little coincident, since the error almost cancels out.

1, which is upper triangular.

1] and thus LU =

More in general, suppose we start from A € C"*™, at jth step of Gauss Elimination, we have:
j—1 m—j+1

_* R i
0 = *

. *
00 *
B 0 x]'k

Here, we choose the xj; parts as pivot, which is the largest entry in absolute value.
¢ We switch corresponding row with jth row.
¢ Then perform Gauss Elimination, which results in:

— keep track of all the row switchings.

— with partial pivoting, stability improves.
Aside, in complete pivoting, at jth step, you choose the largest entry (in absolute value) in entire block.

¢ The pro is that we have an improvement in stability, although it is too small to justify computational
cost.

* The cons is we have to compute the values of (m — j + 1)> numbers, and we keep track of all raw
switches and column switches.
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Typically, partial pivoting is good enough.

Definition IIL.4.8. Transposition.

Suppose we want to switch the ith and jth row of a matrix, the matrix can be acted by a transposition,
denoted o;;.

a

Example III.4.9. Switching 2nd and 3rd Row.

Suppose we are switching 2nd and 3rd rows of a 3-by-3 matrix, we have:

100
;3=|(0 0 1
010 s
Proposition II1.4.10. Transposition as Matrix.
0jj can be represented as the matrix:
[1 0 0 0]
0 0 1 0
Oij = : P
0 1 0 0
@ oo @ ace @ coo 1

where the ith column & rows and the jth column & rows.

Remark III1.4.11. Postcompose with Transposition.

For any matrix A, 0;;A switches on ith and jth row, and Ac;j; switches on ith and jth column. This is also
called simple permutation.

a

Proposition I11.4.12. Transposition has Order 2.

‘71‘2]‘ = Id, or equivalently (Ti]fl = 0;j. We call such action involutary.

Technically, in one step, we can perform a generic permutation, that is permuting different rows. Here,
we may denote it as:

(nra e ).

Proposition III.4.13. Permutations can be Composed of Transposition.

Each permutation can be achieved by a sequence of tranpositions.

Example II1.4.14. Decomposing Permutation.
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Here, we consider the permutation (1 2 3), we may write it as (2 3) o (1 2). .

Proposition II1.4.15. Permutations are Orthogonal.

For any permutation of rows of the corresponding matrix ¢ is an orthogonal matrix, i.e.:

ol =¢T, oroTo =1d.

Proof. Since the columns of ¢ are the shuffled canonical basis, hence it is a orthonormal basis, and thus o is

orthonormal. O

Example II1.4.16. Gauss Elimination with Pivoting.

1
Consider B = li 1] , we want to have the 1 as the leading entry, so we have:

0 1 1 1
0197 = so that 07 »B = .
. L 0] . [ 1]

1 0
Hence, we then have L; = l 11 , so that:

—€
1 1
Lioy 7B = = U,
1012 lo 1—e
. _ 10
which leads to 07 B = LU, where L = L]~ = 1 .
€

More in general, for a m-by-m matrix A, we have:
Lm—l(Tm—l s L20’2L10'1A = U.

Recall that matrix multiplications do not necessarily commute, so the goal is to manipulate the above

equation to get PA = LU.
Example II1.4.17. Pivoting for 3-by-3 Matrix.

-2 2 -1
Consider A=| 6 —6 7 |,sowe want the second row to be the first row, hence we have:
3 -8 4
010
=11 0 01,
0 01
which gives that:
6 -6 7
nA=1-2 2 -1
3 -8 4
Then, the pivot is £p1 = —2/6 = —1/3 and ¢31 = 3/6 = 1/2, so we have:
1 00 1 00
Li=|—¢{y 1 0]|=1]11/3 1 0

03 0 1 ~12 0 1
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Then, by computation, we have:

6 -6 7
Li;kA=10 0 4/3
0 -5 1/2
Then, oy is switching the second and third row, then we have:
1 00
=10 0 1
010
Now, we have:
6 -6 7
oLictA= (0 -5 12| =U.
0 0 4/3

Note that here we have L, = Id, where we are lucky.
Here, we have:
0'2L10'1A =U.
Note that 0 and L; does not commute, so we want to define some L}, L0, then we have:
Ll A = 0 L1020001 A = ;Lo A = UL
Then Ljo»01 A = U, and we have ;301 A = (L)) ~1U.
Here, we consider L; — L} = 03L10, which is:

1 00

L/1 = (%) Ll (%) = 7[31 1 0
~—— ~——

permuting rows 2 and 3  permuting columns 2 and 3 -l 0 1

Here, we have the permutation of the columns cleaning up the permutation of the rows.
Then, we have:

1 0 O
(L)'=t 1 0
6 0 1

Thus, we will be L’laz(flA = U and PA = LU, where ¢ = 007 for permutation, L = (L’l)’l for lower
triangular matrix, and U and the upper triangular matrix.

In the general m-by-m case, we can define:
/
mel = Lm—l/
/
Ly = Om—1Lm—20m—1,

!
Ly 3= 0m—10m—2Ly_30m_—20m_1,

Ly = (Om—1--0403)La(0304 - - Ou—1),
L} = (Om—1- - 0302)L1(0203 - - Opy—1).
Now, we just compute that:

’ ’ 171
Ly 1Ly—2 - LaLiom—10m—2 - 0201 A = Liy—10m—1Lm—20m—2Lm—3- - - 03Lp02 L1071 A.
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Remark I11.4.18. Conjugation Action of Permutation is Exchanging ¢; and /;.

Consider matrix L, then the action 0; G L, it is simply exchanging the /; and /; entry and all the other are
the same.

a

Hence, we have the computational complexity being ~ %m3.

III.5 Hermitian Matrices and Quadratic Forms

Definition II1.5.1. Hermitian Matrix.

A matrix A € C"*™ is Hermitian if A* = A.
Here, we have A = [aij] such that aj; = ajj.

In particular, since for i = j, then a;; = a;;, so the diagonal entries are real.

Proposition IIL.5.2. Hermitian Matrix has Real Eigenvalues.

If A*A, then A has real eigenvalues.

Proof. Suppose that A is an eigenvalue of A, i.e., there exists x # 0 such that A.x = Ax.
Then Ax[3 = Ax*x = (Ax)*x = (A.x)*x = x*A*x = x* Ax = x*(Ax) = Ax*x = A|x|3.
Hence, we have A|x||> = A|x|?>, so A = A since x| # 0. Thus A is real. O

The eigenvectors for eigenvalue A are the nonzero solutions x to A.x = Ax, which is equivalent to A.x —

Ax = 0, which is equivalently A.x — AId .x = 0, thatis (A —AId).x = 0.

Hence, the eigenspace associated to A is:

Ey=kerA—Ald={x:(A—-Ald)x =0} cC.

Theorem III.5.3. Distinct Eigenspaces are Orthogonal.

If A* = A and A and y are distinct eigenvalues of A, then E,4 L E), ie, forallue EV and v € E,, we have
v¥u = 0.

Proof. Consider u* Av being a scalar z € C, so z* = Z, then:
(u*Av)* = u*Av.
Then, we have:
(W*Av)* = v*A*u = v* Au = v* (pu)

= u*Av = u*(Av) = Au*v = Au*v = Av¥u

Hence, Av*u = yv*u, then (A — p)v*u = 0, thus for A # y, we have v*u = 0. O

Theorem III.5.4. Spectral Theorem.

If A* = A, then A is unitary diagonalizable, i.e., there exists a unitary matrix Q € C"*" (Q~! = Q*) such
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that:
M 0 - 0
0 Ay -~ O
Q*AQ=D=| . . ,
0 0 - Ap
where Q = [vl vy - vm], where f = {vy,---,vm} is an orthonormal basis of C"™ made of eigenvectors
of A.

Definition II1.5.5. Bilinear Form.
A bilinear form is a function b : C" x C" — C of the type:
b(x,y) = x* Ay where A € C"*",
which has the following properties:
® b(x1+x2,y) = b(x1,y) + b(x2,y).
* b(x,y1+y2) = b(x,y1) + b(x, y2).
* b(kx,y) = kb(x,y), and

o b(x, ky) = kb(x, y).

Definition II1.5.6. Quadratic Form.

A quadratic form is a function g : C"" — C™ of the type:
g(x) = x* Ax where A is a matrix of the quadratic form.

Typically, we assume A* = A.

Example III.5.7. Computation of Quadratic Form.

Let A = lz b] , where g, c € R, then we have:

C
R | T R | el

— axX1X1 4 bX7xo + bx X5 + cXaxp = a|x1 > + 2R (bX1x) + c|xa)* € R.

In general, when A is Hermitian, then:

g(x) = x*Ax = (x*Ax)* = x*A*xx = x* Ax = q(x).
Hence g(x) € R when A* = A.
Definition III.5.8. Skew-Hermitian.

A matrix B € C"™*" is skew-Hermitian if B¥ = —B.
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Proposition III.5.9. Decomposition of Matrix to Hermitians.

For any A € C™*™ may be decomposed as:
A=Ap+Asg,

where Ay is hermitian and Ag is skewed-hermitian.

Proof. We construct that:
1
1
Ag = -(A—-A").
s =5l ) O
Suppose B is skew-symmetric, then:

—x*Bx = x*B*x = (x*Bx)* = x*Bx,

this we know that x*Bx € iR, i.e., purely imaginary.

Here, for a generic matrix A, we have:
Q(X) =x"Ax = X*(AH + As)x = X*AHX + X*ASX.
~—— ——
€R €iR

Definition II1.5.10. Positive Definite.

Given a Hermitian matrix A € C"*™, we call it positive definite if x* Ax > 0 for all x € (C™)*, i.e., x # 0.

In particular, we call the matrix as Hermitian Positive Definite (HPD).

Proposition IIL.5.11. Characterization of Positive Definiteness.

Suppose that A is hermitian, then:
(i) Eigenvalues of A are all real.

(ii) A is unitary diagonalizable, i.e., we can find an orthonormal basis:

B={vi,v2,-,Va}

Proof of (ii). If we consider:

Q= [Vl vy o Vm]
It is unitary (Q~! = Q*) and:

A 0O o0
Ay - 0

Q*AQ=A= o :
0 0 - Ap

Here, we rewrite it as A = QAQ¥, and we recall that for any b € C”, we have Q*.b as the vector of
coordinates of b with respect to 8, namely [b]g = (c1,- -+, cm) with property that:

c1v1+ -+ CmVvm = b.
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Hence, we have Q.[b]g = b, and thus [b]g = Q Lb = Q*b.
Then, we can rewrite the quadratic form g(x) = x*Ax in terms of the coordinates of x with respect to 8
for all x e C™, so we denote [x]g = Q*x.
Then, we consider A = QAQ*, so we have the quadratic form as:
q(x) = x*Ax = x*(QAQ")x = (x*Q)A(Q*x) = (Q*X)*A(Q"X) = [x]5A[x]s.

Then, the above equation becomes:

)\1 0 0 (o]

- - 0 /\2 0 Co
0= & @], ]
0 0 - Ap Cm

= MC1C1 4 AoGaco + -+ 4 AmCmcm = Mc1|* + Azlcal® + - - - + Awlem)?.

Since the eigenvalues are real, where [x]g = (c1, ", ¢m)- O

Theorem II1.5.12. Positive Definiteness < Positive Eigenvalues.

Let A € C"™*™ be hermitian. A is positive definite if and only if all of its eigenvalues are strictly positive.

Proof. (=>:) We choose x = v, which is the first vector of 8, we have:

x=vy=1vi +0vy +--- 4+ 0vp,

so we have:
C1
Co 0
[(xlpeta=| . | =1|.],
Cm 0

which implies that g(x) = A -|1|?. Hence Ay > 0. Since this applies for any canonical vector in C", we can
choose x = v;, and we similarly obtain that A; > 0.

(«<=:) Let x € (C™)* be arbitrary. We consider [x|g = (c1, -+, cm), at least one of the ¢;’s is nonzero,
otherwise x = 0. So at least one of terms in g(x) is strictly positive, and since all terms are nonnegative,
then g(x) > 0. O

Example IIL.5.13. Using Quadratic Form to Find Positivity.
Show that 5x% — 4xy + 2y* > 0 for all x,y € R and (x,y) # 0. Thus, we have:

109 =[x 4] [_52 —32] M |
We note that A = AT and itis real, si A = A* is hermitian. Thus:
{Am —detA=10—4=6,
M+Ay=TrA=5+2=7.
Thus, we have A; = 6 and A, = 1, so g(x) > 0 for all (x,y) # 0.

Remark II1.5.14. Positive Eigenvalues for Generic Matrices.
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For a generic matrix A with strictly positive eigenvalues, we know that:
TTA=A+A2+-+ Ay >0
Therefore a; 1 +ax+ -+ amm > 0.

However, if we add hermitian assumption, then we have the following theorem.

Theorem III.5.15. HPD — Positive Diagonal.

If A is Hermitian Positive Definite, then a;; > 0, i.e., the diagonal entries are strictly positive.

Proof. Suppose x*Ax > 0 for all x # 0, we choose x = (1,0, ---,0), so we have:
x*Ax = ay; > 0 by HPD.

Similarly, we can choose x as any canonical vector, so az; > 0. O

Example II1.5.16. Hermitian is Necessary Condition.

Welet A =

] is HPD, so we have a17 > 0 and ay, > 0.

-1 4
We need to have hermitian condition, otherwise let C = 51 , which is not hermitian. Here, we have

AMAy = 3 and Ay + Ay = 4, thatis A; = 3 and A, = 1, so it has positive eigenvalues, and the trace is
positive, but the diagonal is not strictly positive.

a

Proposition III.5.17. Positive Definite < Positive Eigenvalues for Hermitian Matrix.

Let A be Hermitian, then A is positive definite if and only if all eigenvalues are strictly positive.

Theorem II1.5.18. HPD — Full Rank Conjugation is HPD.

If A is hermitian positive definite, then for any matrix X € C"*" with m > n and full rank (dim(im X) = n),
X*AX e C"*" js also hermitian positive definite.

Proof. To show it is hermitian, since A* = A:
(X*AX)* = X*A*(X*)* = X*AX
To show it is positive definite, since X has rank #, so its columns are linearly independent. Therefore, if

x # 0, we have X.x # 0. Thus:
x*(X*AX)x = (Xx)*A(X.x) > 0,

so X*AX is HPD. O

A consequence of the theorem is that the principal submatrices of A are HPD, i.e., the matrices from A by
eliminating the same rows and columns with same indices.

Example III.5.19. Eliminating First Row and Column.
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Suppose A € C3*3 and we want to remove the first row and column. We use:

00
X=11 0f,
01

where we now have:

010
0 01

X*AX =

a1 a4z 413
] ap1 dpp a3

S = O

0
ay a

ol = l 22 231 .
a a

1 32 433

az] a3y 4as3

III.6 Cholesky Decomposition

Definition III.6.1. Cholesky Decomposition.

A Cholesky decomposition of a matrix A € C"*™ is a factorization A = R*R, where R is upper triangular
with positive entries on the main diagonal.

Particularly, we have:

= 0 0 * *

* % 0 0 = *
A- .

* % * 00 *

Theorem II1.6.2. HPD < Existence of Cholesky Decomposition.

Suppose A € C"*™, then A is hermitian positive definite if and only A has a Cholesky decomposition.
Moreover, the decomposition has to be unique, and when A is real, so is R.

Proof. («<=:) Let R*R be hermitian, then (R*R)* = R*(R*)* = R*R, then we have:
A = R*R = R*Id R which is HPD.
(=>:) We denote A as:

1 00 0] [a; w*
* EZl 0 *
A= a1 w _ €31 0 _ 1 0 an w
w K ) Idy—1 . K w/ay Idyq || 0 Ky
[ 1Lo |
. [ 1 0 a1l 0 1 W*/all
_w/a11 Idm_l 0 K1 0 Idm_1 ’

Here, we can form the matrix as:

1 0 1/\/a11 0 ap 0
W/ll11 Idm—l 0 Idm—l 0 Kl

1/«/1111 0 1 w*/all
0 Id,—1| |0 Id,_q |
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Then, we can repeat the steps, as:

0 1 RyRy.
K>

Id
A =RfRE l 2
' 0
And following that, we can have after m steps that:
A=R{R}---Rj RiRy--- Ry .

R* R

Example III.6.3. Cholesky Decomposition of Matrix.

6
Here, we have:

6
Let A = 13] . Since it is real and symmetric, it is hermitian.

MAs = det A = 16,
AM+A=TrA=17.

Hence, we have A = 16 and A, = 1, and they are both positive. Hence, we have:

A:R*R: 1 0 _ 4 6 .
12 722 6 13

2 3
Here, we have r11 —2 and rpp = 2, with R = lo 2],

Remark I11.6.4. Computational Complexity for.

The computational complexity of Cholesky decomposition is ~ %m3.

Recall that the computational complexity for LU decomposition is ) %m3 .

Example II1.6.5. Manual Computation of 3-by-3 Cholesky Decomposition.
Suppose we have a Hermitian matrix:
ain 412 M3
A= |y an ax3
a3 a3 as3
Note that we may ignore the lower part of the matrix as it has information contained in the upper half.
This is due to A being Hermitian.
The we consider the decomposition as:
m 0 0| r2 73
A=|r2 12 0 0 rp 3| =R*R
Tz 723 13| L0 0 733
Here, we have 6 unknowns for the system of equation. However, the solution is unique up to the diagonal
being positive real numbers.

2
* By r{; = a11, we have r11 = \/a1;.
L4 By r11712 = d12, SO we have r1p = 6112/1’11.
e By ay =t + r%z = |rp? + 1’%2, so we have ryp = \/axp — |r12|%.

L4 By ai13 = r11713, we have ri3 = 6113/1’11.
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* By ax3 = 712113 + 122723, 50 123 = (23 — T12713) /722

— — 2
* By az3 = 713113 + 723723 + 133, thus 133 = \/ﬂ33 — |13 — |23 %
Here, note that for 111, rop, and r33, the solution is not unique as we could have the negative values. How-

ever, given that A is Hermitian, must have them being positive, so the solution is unique.

a

We develop the algorithm based on the proof:
A = (R, ---R5RY)IA(R1Ry - - - Ryp).

¢ The complexity is ~ %m?’.

e This is backward stable, meaning that it produce matrix R (upper triangular with positive r;; > 0)
such that:
JA = A—R*R,

and it has property that:
0A
”|A = O(emachine)'
Remark II1.6.6. Il Conditioned Matrix.

R may have significant relative error if A is ill condition, i.e., )R = R — R, we will have:

= O(K(A) - Emacin)- J

Hence, the algorithm lies as follows:
(i) Compute the Cholesky: A = R*R. (~ %m3).
(ii) Solve R*y = b for y as lower triangular. (~ m?).
(iii) Solve Rx = b for xx as the upper triangular. (~ m?).

Hence the total complexity is ~ %m3.

Example III.6.7. Application of Cholesky Decomposition.
The Cholesky decomposition can be applied to the following cases:

¢ Solving Ax = b, when A is HPD, that is:

Ax=b— R* Rx =b.
~——
y

¢ Solving the least square approximation. Consider A € C"*™, where m > n, the dim(im A) = n (by
Rank-Nullity ker A = {0}). Here, we have the columns being linearly independent.
We want to solve A.x = b. Here we discuss by cases:

(i) For beim A, so A.x = b has a solution and it is unique by linearly independence of columns.
Recall that we showed ker A = ker(A*A), so ker(A*A) = {0} and so is invertible.
Thus A.x = b implies that (A*A)x = A*b, so x = (A*A)"1A*b = A*b. Thus x = ATb.
(ii) Consider b ¢ im A, we want to find x € C" that minimizes |b — Ax|2, and the solution is still:
x=ATb,

where we have y = A.x = x1A1 + -+ - + X, Ay is a vector in im A closest to b.
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Note that A is not HPD, but A*A is HPD, we may check:

— Hermitian: (A*A)* = A*A.
- ker(A*A) = ker A = {0}. Hence A*A is not singular.
— Suppose A is an eigenvalue of A*A, we have:
A*Ax = Ax, where x # 0.

Thus, we have (Ax)* Ax = Ax*x, thatis A = | Ax|?/|x|?> = 0, so ||A.x||> = A|x|?, and thus A > 0.
Thus having A*A being HPD implies that it has Cholesky decomposition, that is A*A = R*R,
and in both cases, we have x = Atb <= x = (A*A)"!A*b , and x is the unique solution to
(A*A)x = A*D.

Now, the problem is, how do we solve the equivalence without inverting the matrix, that is:

A*¥Ax = A*b < R* Rx = A*Db.
——

z )

Here we consider the algorithm with input A and b as:
(i) Compute A*A. (~ mn?).
(ii) Cholesky: A*A = R*R. (~ 3n?).

(iii) Compute A*b.
(iv) Solve R*z = A*b for z, which is upper triangular.

(v) Solve Rx = z for x, which is lower triangular.
Recall that the first two steps are with the most significant cost, then the total cost is ~ %nS + mn?.

Assuming that m = n, we have the complexity as %ng’.
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IV Numerical Computation of Eigenvalues

IV.1 Eigenspace, Reprise

For this part, we want to compute eigenvalues numerically without using the characteristic polynomial.
Definition IV.1.1. Eigenvalue.
A € C is an eigenvalue of A € C"™*™ if there exists x € C™ such that x # 0, in which A.x = Ax.
Here, we note that this it compatible with the original definitiondthat:

Ax=Ax <= Ax—Ax=0 < Ax—Aldx=0 < (A—Ald)x=0.
Hence, A — A1d must be singular, that is: A is an eigenvalue of A < det(A —AId) = 0.
Definition IV.1.2. Characteristic Polynomial.
The characteristic polynomial of A € C"*™ is:

pa(t) = det(A —t1d) = (=1)"" + p,at"" + - + prt + po,

where the eigenvalues are the roots of p4(t).

If A1, Az, --+, Ap are the p distinct roots of pa(t), we can write:

palt) = (1)t = A)" (£ = A2)" - (F = Ap)™,
where ; is the algebraic multiplicity of A;.
Definition IV.1.3. Spectrum.

The spectrum of A € C"*™ is the set of distinct eigenvalues of A, denoted:

oc(A) = {A1, A0, -+, Ap}

Definition IV.1.4. Eigenspace.
Given a matrix A € C"*™ and A is a eigenvalue of A, then the eigenspace of A is:
Ey={x:(A—Ald)x =0} = ker(A — AId),

which is the set if all eigenvalues of A associated to A and 0. In particular, we defined the dimension of
the eigenspace being the geometric multiplicity of A.

a

Theorem IV.1.5. Property of Geometric Multiplicity.

For any A; € 0(A), we have 1 < g; < n;.

Definition IV.1.6. Non-defective Matrix.

A matrix A € C"™*™ is called non-defective if for all A;, the geometric multiplicity is the same as algebraic
multiplicity of A;. It is defective if it is non-defective.

Theorem IV.1.7. Non-defective < Diagonalizable.

Let A e C™*™, A is non-defective if and only if A is diagonalizable, i.e., there exists nonsingular S € C"*™
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such that:
M 0 - 0
0 Ay -+ 0
S1AS=D = _
0 0 Am
Note that we may also rewrite the matrix as:
A=SDS™,

which is a type of eigenvalue revealing factorization.

A special case is the Hermitian matrices, that is A* = A.

Theorem IV.1.8. Hermitian — Unitarily Diagonalizable.

Let A € C"™*™ be Hermitian, then A is unitarily diagonalizable, i.e., there exists a matrix Q € C"™*'™,
unitary (Q* = Q') such that Q*AQ = D

Definition IV.1.9. Normal Matrix.

A matrix A € C"™*"™ is normal if A*A = AA*. This aligns with the definition of a normal subgroup, that
is, A¥*A(A*)"! = A,

a

Theorem IV.1.10. Normal < Unitarily Diagonalizable.

Let A e C"™ ™, then A is normal if and only if A is unitarily diagonalizable.

Remark IV.1.11. Inclusions of Matrices.

Hermitian Matrices < Normal Matrices = Orthogonally Diagonalizable Matrices.

IV.2 Schur Triangularization

Theorem IV.2.1. Schur Lemma.

For any matrix A € C"*", there exists:
* an upper triangular matrix T,
® a unitary matrix Q,

such that A = QTQ*. This is called a Schur factorization.

Proof. For m = 2. Let A € C™*™, it has at least one eigenvalue A, then there exists x # 0 such that
A.x = Ax. We normalize x as u = x/|x||. By denoting u = (4, b), we choose a vector v such that v L u, and
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v is unitary vector. (For example, we let v = (—E, ), so that v¥u = 0.)
Therefore, let Q = [u v], it has orthonormal columns, so Q is unitary.

Now, we have:

* u*Au u*Av

v¥Auv* Av

Q*AQ = A [u v] -

u
v*

which implies that:
u*(Au) = u*(Au) = Au*u = A,
v¥(Av) —v*(Au) = AvFu = 0.

A
*]=T,
0 =

For generic m, let A € C"*™ having at least one eigenvalue A, there exists x # 0 such that A.x = Ax, and

Now, we have:

Q*AQ =

which is upper triangular, so we have A = QTQ*.

we normalize it to u = x/|x|.

Now, we compute u to an orthonormal basis, that is:
,B = {u/vlr' o /Vm} o Cm

Here, we want to solve u*v = 0, where dim(imu*) = 1, dim(ker u*) = m — 1, so we can use the Gram-

Schmidt to orthogonalize m — 1 linearly independent solutions and normalize them.

Now, we define Q = [u vy - vm] = [u V], so we compute:
u* u*Au u*AV A wH
*AQ = A V|= = .
A= || Al V]= |y veav| (o B 1

Now we have:
e u¥*Au = A, and
© VE(Aw) = AVFu = A [vi*u] = 0.

By the induction hypothesis, we have B = U*RU, where R is upper triangular, and U is unitary. So
R = U*BU.

Now, we will have:

1 0*
Q= 0 U
Now, we have:
A ox
5(Q1A - -T
Q5 (QTAQ1) Q2 0 R]
Thus, we have shown that A = QTQ*. O

Such decomposition is called a Schur triangularization.

Remark IV.2.2. Eigenvalues of Upper Triangular Matrix.
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Let the upper triangular matrix T be:

1 ti2 Fim
0 t» tom

T = ’
0 0 - toum

the eigenvalues of T is t11, t22, - - -, tum, Which is exactly the eigenvalues of A, i.e., T and A have the same
spectrum.

a

Thus, we consider Schur triangularization as an eigenvalue-revealing factorization.

Theorem IV.2.3. Hermitian — Diagonal Decomposition.

If A is Hermitian, then for the Schur triangularization A = QTQ¥, T is diagonal.

Proof. From the decomposition T = Q*AQ, so T* = (Q*AQ)* = Q*A*(Q*)* = Q*AQ =T,s0 T* =T,
i.e., T is Hermitian.
But, also note that T is triangular, then:

tn 0 - 0 btz o b
. tiy tn - 0 0 t - toy
=1, . . =1 =T
B fom 0 fum 0 0 - tom
Thus, we must have all non-diagonal entries being zero, and the diagonal being real. O

A consequence of the above statement is that for Hermitian matrices, the Schur triangularization is just a
unitary diagonalization, since Q! = Q*.
IV.3 Obstructions to Finding Eigenvalues
Now, we have learned three eigenvalue revealing factorization.
* A is non-defective < A is diagonalizable, i.e., there exists nonsingular S such that A = SAS™1.

e Ais normal (A*A = AA*) < A is unitarily diagonalizable, i.e., there exists unitary Q such that

A = QAQ*.

e Any A € C"™™ has a Schur triangularization, i.e., there exists upper triangular T such that there
exists unitary Q in which A = QTQ*.

Remark IV.3.1. Traditional Way to Compute Eigenvalues.
Let a matrix A € C"™*™, we do the following steps:

(i) Compute the characteristic polynomial:

pa(t) = det(A —tId). (Cost: O(m®).)

(ii) Find the roots of the characteristic polynomial p 4 (f). (Unstable process.)
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Note that for the second step, for the roots of a degree 2 polynomial, we can use a quadratic formula,

—b++/b?—4ac
2a
formula, which are very complex. Although being very complex, we can find the roots within a finite
number of operations (i.e., +, —, x, =, {/(—)).

where Ay = . For degree 3 and 4 polynomials, there are respectively cubic formula and quartic

a

Theorem IV.3.2. Abel-Ruffini Theorem.

There is no “quintic formula.”
For any m > 5, there exists a polynomial p(t) of degree m that has a root r that cannot be represented
computed using a finite number of operation (i.e., +,—, x, =, </(—)).

This theorem is a direct consequence of Galois correspondence and the Galois correspondence group be-
ing unsolvable.

A consequence is that when m > 5, the roots of p(¢) can only (in general) be approximated with an infinite
number of operations, which is called iterative methods.

However, finding roots of polynomials with iterative methods is unstable, so to estimate eigenvalues of A,
we will avoid finding roots of characteristic polynomials.

A fact is that if A € C"™*"™ with m > 5, then all eigenvalue solvers are iterative.
Remark IV.3.3. General Scheme to Find Eigenvalues.

For a given A €]C"*"™, we will deploy iterative methods to find an approximation of Schur factorization
(eigenvalue revealing), so we find a sequence {Q;};2; of unitary matrices such that:

Q- QFQTA(QIQ2 -+~ Qu) ™5 T,
which is upper triangular, and Qj, is unitary. (T will be diagonal if A is Hermitian).

In particular, we consider the scheme as two phases, in which:

* * * * Phﬁ} 0 % % * Phﬂg 0 0 % *
® * * * 0 0 * * 0 0 0 *
A H T

Here, phase 1 turns the matrix A into Hessenberg form, that is having zeros below the first subdiagonal.
e TFor phase 1, it has finite number of steps, i.e., O(m3) flops.
e For phase 2, there needs to be finitely many steps, that is:

— There needs to be O(m) iterations to achieve convergence to T.

— Each iteration needs O(m?) flops.
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So the total is O(m)O(m?) = O(m?) flops.

Remark IV.3.4. Special Hermitian Case of Decomposition.

When A is Hermitian, then H and T are also Hermitian, so H is:

* % 0 0
% % 0

H=(0 =* = 01,
[0 0 0 * |

If we apply Phase 2 directly to A, the the number of flops is O(m?) or higher.

and T is diagonal. H has nonzero entries on the diagonal, first sub-diagonal and first super-diagonal.
Our scheme is as follows:

(i) We have:

ALY g g Aug,

where this is the conjugation action of Uj and Uj is unitary, so it is a similarity transformation.
Here, we let Uy = Q1Qz - - - Qm—2, where Q; is unitary matrix that performs a Householder reflection,
which is normally used for QR factorization, that is:

A =QR,

which is not a similarity transformation (which is different from A = Uj HU).

(a) For the first step of QR factorization, we have A € C"*™ as:

%% % * *  *x % *
* % % % 0 » *
* ok ok * ,gl_', 0 * x *
* ok %k * 0 * * *

in which the first column got transformed into zero entries except for the first row.

X2

_ - hyperplane

3
-

L4
- Ix|lex

Figure IV.1. Decomposition as a reflection in QR factorization.

Here, we define v = |x| e — x, so:

vv*

F=1Id-2 ,
viv

and we let Q; = F.
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Proposition IV.3.5. Properties of First Step in Factorization.
Here are the properties of F and Q;:

e F* = F, which is Hermitian,

o F~1 = F* which is unitary, thus

e F~! = F, which is involutory.

(b) In the second step of QR, we have the step as:

* Kk ...k *  x K e *
* ke % 0 & & - &
O**~~~*._,Q2'.:00&'&,
0+« o ) 00 & - &]
Here, we define v = |x|e1 — x, with
*
F=Td, -2,
vV

so we have:
1 o*
Q= ,
0 F
so Q7 is hermitian, unitary, and involutary.

(c) Then, we repeat such step for all k, that is having:
Id,_; 0*

which is hermitian, unitary, and involutary.

Now, we get after m — 1 steps to get Q;—1Qm—2--- Q2Q1A = R, so we have:
(Qu-1--QQDI =11 = Q7' -+ QL = Qi+ Quit.

Now, we let A = QR where Q = Qg - - - Qy—1, which is not eigenvalue revealing.
(ii) Here, we make the first attempt to compute the Hessenberg form, which is to:

* Perform first steps of QR, that is:
A QlA/

* We compute A — Q1 AQ;, which is similarity transformation, which preserves eigenvalues.
In particular, (Q1A)Q; performs on columns of Q1A the same operations that Q; operated on
the rows of A.
Here, we may not necessarily have Q;AQ; to have zeros (except for the first row) to be pre-

serves. So our work is undone.

Remark IV.3.6. Equivalent with Abel-Ruffini Theorem.

Note that this is reasonable since if we could have get the eigenvalues of a matrix within finitely
many steps, that is equivalently solving for zeros of polynomials of arbitrarily large degree, which
is a contradiction to Abel-Ruffini Theorem. .
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(iii) Thus, we start over with another attempt, here, we use the last m — 2 entries for the x in householder

reflection, where we let:

Note that the zeros are preserves.

* % | P % | [+ & & & |
* ® o * * & & &
* s 2L o0 x « #2500 & & L
* * | [0« * | 70&& &7

Then, we do the same thing with Q, with the last m — 3 entries on the second column as x in the

Householder reflection. Thus, we have:

[« & & & | [+ & © v & O 2]
* do & L) » & O Q & O - ?
0 & & & M 0 U O O | Qs Qn—20Qm—2 VIRV 7 )
0O & & & |0 0 @ Vi 0 0 ? ]

in which our desired result is in Hessenberg form, which is exactly:

A=(Q1Q2 Qu-—2)H(Qmu-2) - Q2Q2.

ty ust

Proposition IV.3.7. Hermitian —> Hessenberg is Tridiagonal.

If A is Hermitian, then H is Tridiagonal, i.e.,, having only diagonal, sub-diagonal, and super-diagonal
possibly nonzero.

Proof. Here, we have H = Uj AU, then H* = U A*U; = U AUy = H, so H is Hermitian implies that it
is upper triangular, so H is Tridiagonal. O

Here, we make the simplifying assumption that A = A¥, that is to computer the singular values of B by

computing eigenvalues of A = B*B, which is Hermitian, i.e., A* = A.

Therefore, the consequences are that:
¢ Eigenvalues are red, and

* A has unitary diagonalization, i.e., there exists unitary Q (Q* = Q') as the orthonormal eigenvec-

tors of A.

Definition IV.3.8. Rayleigh Quotient.

Let A be Hermitian, the Rayleigh quotient of A is the function r : C"\{0} — C, defined as:
x* Ax
r(x) = o

7

which is the quadratic form over |x|?.
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Proposition IV.3.9. Rayleigh Quotient of Eigenvector is its Eigenvalue.

Suppose v # 0 is an eigenvector of A associated to eigenvalue A, i.e., A.v = Av, then:
VAV v*(Av
r(v) = ——= (Av)

vy viv

= A

With this property, we can find the eigenvalue as long as we can find the eigenvectors.
Remark IV.3.10. Geometric Interpretation of Rayleigh Quotient.
Let A € C"*"™ be Hermitian, and fix any nonzero vector x € C". Consider the function f : R — R as:
fla) = [ Ax = ax]a.
We want to minimize this w.r.t «. If x is an eigenvector, and for « = A, which is the eigenvalue, we have
FA) = |Av=2Av]; =0,
which is the least value for a normed vector space. However, we want to think of x when it is not the

eigenvector.

a

Theorem IV.3.11. Minimizer for f is Rayleigh Quotient.

Let A € C"™*™ be Hermitian. Then, for any x # 0, the minimizer of f(x) = |A.x — ax|z is &« = r(x), which

is the eigenvalue of x when x is eigenvector.

Proof. Equivalently, f(a) is minimizing:
(F(@)? = [Ax —ax|} = (Ax — ax)*(Ax — ax)
= x*A* Ax — ax* Ax — ax* A*x + a®x*x
= x* A% — 2ax* Ax + a®x*x.

Then, we take the derivatives as:

2 (59)?] = ~2x e+ 2xtx =0,
which solves as:
x* Ax
= X*X = r(x),
as desired. .

We have seen that if x = v, then r(v) = A, and v is the stationary point of r(x), so that:
Vr(v) =0.
Another assumption us that A € R”*" so that for x € R, we have A* = A implying that AT = A.

Theorem IV.3.12. Gradient of Rayleigh Quotient.
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%(X) X1
. a%(x) X2 |
The gradient Vr(x) = i ,where x = | [ given by:
- (x) T
2
Vr(x) = E(Ax —r()x)e C"
Proposition IV.3.13. Formal Derivatives.
With the same construction, we have:
(i) i(x*x) = 2x, and
ﬁxi B ’
o 0 . .
(i) a—x(x Ax) = 2(Ax);, that is the i-th entry of vector A.x.
1
Proof. Recall from calculus, we have:
dTlf]_fe—f¢
dx g 8
Then, the partial derivative is:
ir(x) 0 x*Ax
ox; ©0x; x*x
%(X*Ax) SxFx — (x*Ax)%(x*x)
) (x*x)?
_2(AX)x*x — (x* Ax)2x;
B (x*x)?
2 x* Ax
= o [V‘X)f - x*x"f]
2
= iy [(Ax) — (r(x)x)l]
2
= E(Ax = r(x)x)..
Hence, we have:
2
Vr(x) = o (Ax — r(x)x),
which completes the proof. O
Note that if x = v, we have:
Vr(v) = %(Av —r(v)v) =0,

and thus v is a stationary point of r(x).

Proposition IV.3.14. Eigenvectors are Critical Points.

v is an eigenvector of A if and only if Vr(v) = 0.
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Proof. (=:) Assume that x = v, then we have:

(<) Assume that Vr(v) = 0, then Av—r(v)v = 0, so A.v—r(v)v = 0, thus A.v = r(v)v, so v is
eigenvector of A. O

Recall for a Taylor series, we have:
f(x) ~ f(x0) + f'(x0)(x — x0) + %f”(xo)(x — x0)? + higher order terms.
Forr: (R™)* — R, we have:
r(x) =r() + [Vr(xo)]T(x — x0) + %(x —x0)"H; (xp)(x — xg) + higher order terms,
where we have:
H, (x0) = | oty (x0)

Here, we choose x9 = v, which is one eigenvector of A associated to eigenvalue A, we have r(v) = A,
Vr(v) = 0. For x near v, we have:

1
r(x) ~ A+ E(X —V)TH,(v)(x —v),
ie.: .
r(x) — A ~ E(x —v)TH,(v)(x — v).
Recall that if A € C"*" and B € C"*F, and | e || is a matrix norm induced by a vector norm, then:
|AB] < Al -[B].
Another fact is that if x e C"*! (or y € C'*™) and | e |y is a matrix norm induced by a vector norm | e ||y,

we can interpret x or y as a matrix, and we will have that the |x|3; equal to the vector norm |xx|y that
induced the matrix norm.

Sketch of proof. Suppose || o ||y is the matrix norm induced by the vector 2 norm | e |2, and suppose x €
C*m x 1, we compute the matrix norm of x as:
Ixlm = sup |xufa = maxulx|z2 = |x]2.
ueC
|u|=1 [

f[fl2=1

Hence, we get that:

r(x) ~ Al ~ 5] (= VT (v)(x V)|

C1x1

= Sl V)TH () (x - v)]
e (Ll N T B (LRl
—_— —— —_—

[x—v|>  doesnotdepend onx  |x—v]|,
Therefore, we obtain that:
[r(x) = Al < Clx = v[3,

e, |r(x)— Al = O(|x— VH%)

Therefore, the Rayleigh quotient is a quadratically accurate estimate of A.
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Ix— vl

Figure IV.2. Convergence of Rayleigh quotient is quadratic.

IV4 Power Method

Here, we first introduce another assumption. Consider A with m distinct eigenvalues, we order them in
decreasing order:
A1l > |Ag| > -+ > Al

The spectral gap ratio is % (This only accounts for the first two.)

Here, we consider the power method

input: A

vec_v~0 in Cm % initial guess for eigenvector of lambda_1 and its norm is 1
while True:

vec_w = Axvec_v~ (k-1)

vec_v~(u) = vec_w / |lvec_wl|

lambda” (k) = r(vec_v~(u)) = (vec_v~ (k) TxAxvec_V~(k)) / ((vec_v~(u))*vec_v~(u))

% Termination condition

For the algorithm, we have the termination condition of:
A _ A (k-1)

k k—1
‘/\()7/\( )|<€10r W

< €).

Suppose that B = {q1,92,- - , qm} is orthonormal. Let the eigenbasis of C" for A, we can write v(0) as:
v = c1q1 + 292 + - + Cmqm-
In the first step, we have:
w=Av = 1A.q1+ Aq+ -+ crAqm = 1A q1 + Axq2 + - -+ CmAmqm,

w
v = m =dy (qMq1 + 2A2q2 + - + CAmdm) ,

AW = r(v(l)).
Then, for the second step, we have:
W = AV(O) =d (C]/\%ql + Cz/\%qz + -0+ Cm)\gnqm),

W
@) — M = dz(Cl)\%ql + 62/\%q2 + -+ Cm)Lqum),

A@ = (v,
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In the k-th step, we have:
v — di(e1Akqr + oA 5qa + -+ Al qm),
AR = ¢ (v (0,

Here, we may rewrite the vector as:

®) K A An\
v = diAl | c1q1 + 2 A—zqz + -+ )\71 dm |-

—0 as k—o0

Thus, as k is arbitrarily large, we have:
V(k) ~ (dk)\]fcl)ql.
Since ||q1], = 1 and [v(®)|, = 1, we have |bk/\’1‘cl| =1, so we have:

*) to q1 or v o —q1-

either v
Remark IV.4.1. Computation Complexity of Power Method.

The most costly operations are with:
wk) = Avk=1) and A = r(v(k))AV(k).

It would be cheaper if A is in Heisenberg or Tri-diagonal form.

Proposition IV.4.2. Rate of Convergence for Power Method.

The rate of convergence for the power method is dependent on A;/A;, namely:

k
v® — (+qq)] = O ( e ) ,

M
2k>

A2
M

Mw—M_o<

Here, we can also obtain the following, more formal, result.

Theorem IV.4.3. Eigenvectors and Eigenvalues for Manipulations in Matrices.

Let A e C"™*™ and let v be an eigenvalue of A associated with eigenvalue A.
(i) For any u € C, we have that A — y being an eigenvalue of A — uId with same eigenvector v.

(ii) If A is nonsingular, then 1/ is an eigenvalue of A~! with the same of eigenvector v.

Proof. (i) Notice that:
(A—pld)v=Av—puldv=Av—puv=_(A—pu)v.
(ii) Here, A # 0 since A is nonsingular, thus:
A.v = Av which implies that A~ A.v = A71.(Av),

thus, we have that:
V= /\Ailv,
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thus we result in A~L.v = %V, as desired. O

As an immediate consequence of the previous theorem, we have the following result.

Proposition IV.4.4. Corollary on Manipulation of Matrices.

If A is an eigenvalue of A with eigenvector, and u € C is arbitrary such that A — . Id being nonsingular,

then Alfy is an eigenvalue of (A — 1 1d)~! with the same eigenvector v.

In particular, the above corollary allows us to modify the gaps of the eigenvalues while preserving eigen-
vectors, it helps to improve the power method.

Suppose eigenvalues of A are:
|A1] > [A2] > -+ > |Ayl, and /\2: <1
Graphically, we would have: l
Ay As Az A Ay

0 I3

Figure IV.3. Eigenvalues of A on the axis with y close to Ay.

When y is closer to A; than A, we have:
A —p| < [A2 —p| < |Aj —pfforall j > 3.
Therefore, we have the inversion as:
1 1 1
A—ul 7 Aa—pl T Nl
Here, the eigenvalues of (A — u1d)~! are:
1 1 1

M—-p A—p" A=y

forall j = 3.

with the same eigenvectors (of A) as:
q1/ qZ/ Tty qm

This becomes the inverse iteration algorithm.

input: A
vec_v~0
mu
for k=1, 2, 3, ...:
vec_w = (A - mu*xId)~(-1) vec_v~(k-1) % inverse matrix here, we avoid this
vec_v~ (k) = vec_w / |lvec_wl|

lambda” (k) = r(vec_v~(k)) = (vec_v™(k))"T A vec_v~ (k)

Remark IV.4.5. Avoid doing Inverses.

Especially for the noted step, there is invert of a matrix, so we instead solve instead:
(A—puld)yw = v for w,

for example using LU decomposition.
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Suppose now that we have:

Av At An o AmAv
0 H

Figure 1V.4. Eigenvalues of A on the axis with u elsewhere.

In this case, we have:
|A1 — p| < |Am— p| < |A; — p| for all other eigenvalues A;.

Hence, we have:
1 1

1
> >
Ar—ul = [ Au—pl A —p

for all other eigenvalues A;.

Hence, the dominant eigenvalue of (A — u1d) ! is:
1
AI—-y.
Then, we apply inverse iteration algorithm, and we will get:

y(&) k=0, qi and AR k2o, AL

A k
vl — A lCIQI +oen (AIII) qm + - ] :

Proposition IV.4.6. Rate of Convergence for Inverse Iteration Algorithm.

Iteration-wise, we have:

The rate of convergence for the modified algorithm is:

WO ()= O ( A

i)
)

To make this faster, we want to update y so it is closer to Ay, i.e., we can change ) := A(), This leads to

M

©) _ Al =
AT = A O( A

Raileigh Quotient Iteration Algorithm.

input: A in C(m*m)
vec_v~(0)
mu
for k=1, 2, 3, ...:
solve (A - muxId)vec_w = vec_v~ (k-1) for vec_w
vec_v (u) = vec_w / |l|lvec_wl|
lambda” (k) = r(vec_v~(k)) " * Avec_v~ (k)
mu = lambda” (k)

Within machine precision, this algorithm is clearly faster.
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