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The aim of the course is to deal with matrices with much more entries, with computation of eigenvalues
and eigenvectors. In particular, the cost of computing the determinant is large, i.e., the characteristic poly-
nomial has high degree. Therefore, we want computability and closeness of the eigenvalues.

Numerically, we want to evaluate the deviation of the value and the actual computation.
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Remarks about this Note:

While compiling this collection of notes, I have attempted to abide to the following conventions:

• Vectors will be represented as bold cases, such as x and y.

• Matrices with m rows and n columns of entries in field F (denoted Fmˆn) will be represented with
capitalized letters, such as A, where aij represents the the entry of row i and column j.

• The field F of the R-module, unless otherwise specified, will be assumed to be F “ C, otherwise, it
would most often be F “ R.

• For matrix multiplication (which is an action) A.x, it is a linear map f : Cn Ñ Cm as y “ A.x, which
can be alternatively represented as f : x ÞÑ Ax.

• For null space and range, the notation standards were used in modern algebra, i.e., naming them as
kernels (ker) and image (im).

• sup and inf were used in generic case over max and min unless there is a clear evidence that maxi-
mum or minimum is well-defined. Readers shall only drop those notation by their own discretion.

While recording each theorem/proposition/definition/remark/..., I have tried to make a name that briefly
describes what it is about, just like the conventions in Dr. Sheldon Axler’s Linear Algebra Done Right.



N.L.A. Notes 1

I Preliminaries

I.1 Vector Spaces and Subspaces

The Numerical Linear Algebra has its foundations on linear algebra.
Note: Unless otherwise specified, the proofs of the theorems in this section is omitted, as they are assumed
backgrounds in a typical linear algebra course.

Definition I.1.1. Linearity.

A function f is linear if:
$

&

%

f px ` yq “ f pxq ` f pyq for all x, y P Cn,

f pαxq “ α f pxq for all α P C and x P Cn. {

Theorem I.1.2. Linear Function as a Matrix.

If f : Cn Ñ Cm is linear transformation, then there exists A P Cmˆn such that f pxq “ A.x for all x P Cn.

Remark I.1.3. Linear Combinations.

For A P Cnˆm, we may write:
A “ rai,js “

”

A1 A2 ¨ ¨ ¨ Am,
ı

and for x P Cn:

A.x “

”

A1 A2 ¨ ¨ ¨ Am

ı

.

»

—

—

—

—

–

x1

x2
...

xn

fi

ffi

ffi

ffi

ffi

fl

“ x1A1 ` x2A2 ` ¨ ¨ ¨ ` xnAn.

{

Definition I.1.4. Matrix Multiplication.

Let A P Clˆm and C P Cmˆn, their matrix multiplication is defined as:

rbijs “ B “ AC “ raiksrckjs,

in which the entry bij in B is:

bij “

m
ÿ

k“1

aikckj.
{

Remark I.1.5. Multiplication of Matrices as Columns.

For the above multiplication that B “ AC, if we write B as vectors we have:
”

B1 B2 ¨ ¨ ¨ Bn

ı

“ A
”

C1 C2 ¨ ¨ ¨ Cn

ı

“

”

A.C1 A.C2 ¨ ¨ ¨ A.Cn

ı

,

hence:

Bj “ A.Cj “

”

A1 A2 ¨ ¨ ¨ Am

ı

.

»

—

—

—

—

–

c1j

c2j
...

cmj

fi

ffi

ffi

ffi

ffi

fl

,

hence each column of B “ AC is a linear combination of the columns of A. {
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Definition I.1.6. Inner and Outer Product.

Let u, v P Cn, their inner product (or dot product) is:

u ¨ v “ u⊺.v “ u1v1 ` u2v2 ` ¨ ¨ ¨ ` unvn P C,

where as the outer product is:

u.v⊺ “

»

—

—

—

—

–

u1v1 u1v2 ¨ ¨ ¨ u1vn

u2v1 u2v2 ¨ ¨ ¨ u2vn
...

...
. . .

...
unv1 unv2 ¨ ¨ ¨ unvn

fi

ffi

ffi

ffi

ffi

fl

“

”

v1u v2u ¨ ¨ ¨ vnu
ı

.

{

Definition I.1.7. Range and Null Space.

For A P Cmˆn, its range (or image) is:

im A “ ty : y “ A.x for some x P Cnu “ spantA1, A2, ¨ ¨ ¨ , Anu Ă Cm.

Its null space (or kernel) is:
ker A “ tx : A.x “ 0u Ă Cn. {

Theorem I.1.8. Rank-Nullity Theorem (Fundamental Theorem of Linear Maps).

For A P Cmˆn, the dimension of the range (or rank) and the dimension of the null space (or nullity)
follows:

dimpim Aq ` dimpker Aq “ n.

Moreover, for the transpose of A, we have:

dimpim A⊺q “ dimpP Aq.

Proposition I.1.9. Properties on the Rank of A.

Assume that A P Cmˆn, the following holds:

(i) dimpim Aq ď n.

(ii) dimpim Aq ď m.

The result (ii) is a direct result of (i) and Rank-Nullity for transpose of A. Moreover, this implies that
dimpim Aq ď mintm, nu.

Definition I.1.10. Full Rank.

For A P Cmˆn, A is full rank if dimpim Aq “ mintm, nu. {

An example of a full rank matrix is

»

—

–

1 0
0 1
0 0

fi

ffi

fl

.

Definition I.1.11. Nonsingular Square Matrix.
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A m-by-m square matrix A is nonsingular if A.x “ 0 has unique solution x “ 0. {

Proposition I.1.12. Equivalent Facts for Square Matrices.

The following are equivalent:

(i) A is nonsingular,

(ii) A is invertible, i.e., there exists A´1 such that A´1 A “ AA´1 “ Id,

(iii) For all b P Cm, A.x “ b has unique solution,

(iv) Columns of A are linearly independent,

(v) dimpim Aq “ m,

(vi) im A “ Cm,

(vii) dimpker Aq “ 0,

(viii) ker A “ t0u,

(ix) det A ‰ 0,

(x) A is an isomorphism.

In particular, since A being nonsingular is the equivalent of being injective for square matrices, it is an
isomorphism, hence all (ii) to (x) are equivalent to (i).

Remark I.1.13. Coordinates in Cm.

There are many basis in Cm:

(i) The Canonical Basis:
α “ te1, e2, ¨ ¨ ¨ , enu,

where:

e1 “

»

—

—

—

—

–

1
0
...
0

fi

ffi

ffi

ffi

ffi

fl

, e2 “

»

—

—

—

—

–

0
1
...
0

fi

ffi

ffi

ffi

ffi

fl

, ¨ ¨ ¨ , e1 “

»

—

—

—

—

–

0
0
...
1

fi

ffi

ffi

ffi

ffi

fl

.

Hence, for any b P Cm, we have:

b “

»

—

—

—

—

–

b1

b2
...

bn

fi

ffi

ffi

ffi

ffi

fl

“ b1e1 ` b2e2 ` ¨ ¨ ¨ ` bmem.

(ii) Another Basis (Arbitrary):
β “ tv1, v2, ¨ ¨ ¨ , vnu.
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Here, for any b P Cm, we are looking forward to having:

b “

»

—

—

—

—

–

b1

b2
...

bn

fi

ffi

ffi

ffi

ffi

fl

“ c1v1 ` c2v2 ` ¨ ¨ ¨ ` cmvm “

”

v1 v2 ¨ ¨ ¨ vm

ı

.c,

and since the matrix is invertible, it leads to that:

c “

”

v1 v2 ¨ ¨ ¨ vm

ı´1
.b,

in which by solving for c here, we have completed the decomposition.

{

Remark I.1.14. Remarks on Complex Numbers.

For z P C “ Rpiq in which i2 “ ´1, we may represent z “ a ` ib, where a, b P R. Thus, we can visualize
the real and imaginary parts, respectively.

ℜpzq

ℑpzq

z “ a ` ib

a

b

Figure I.1. Real and Complex Plane.

Here, we have the magnitude as:
|z| “

a

a2 ` b2,

and we have the complex conjugate as:
z “ a ´ ib.

{

Example I.1.15. Matrix Operations.

Let A P Cmˆn, that is:

A “

»

—

—

–

a11 a12 ¨ ¨ ¨

a21 a22 ¨ ¨ ¨

...
...

. . .

fi

ffi

ffi

fl

,

its transpose is:

A⊺ “

»

—

—

–

a11 a21 ¨ ¨ ¨

a12 a22 ¨ ¨ ¨

...
...

. . .

fi

ffi

ffi

fl

,

its complex conjugate is:

A “

»

—

—

–

a11 a12 ¨ ¨ ¨

a21 a22 ¨ ¨ ¨

...
...

. . .

fi

ffi

ffi

fl

,
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and the Hermitian conjugate is:
A˚ “ pAq⊺.

{

In Rn, the dot product for x, y P Rm, we have:

x ¨ y “ x⊺.y “

m
ÿ

k“1

xkyk.

In particular, we can define the norm as:

}x} “
?

x⊺.x “

g

f

f

e

m
ÿ

k“1

x2
k .

In Cn, i.e., when F “ C, and the inner product for x, y P Cm, we have:

xx, yy “ x˚.y “

m
ÿ

k“1

xkyk.

Again, we have the norm as:

}x} “
a

xx, xy “

g

f

f

e

m
ÿ

k“1

xkxk “

g

f

f

e

m
ÿ

k“1

|xk|2,

since we have xkxk “ |xk|2, know as the modulus.

In particular x “ 0 if and only if }x} “ 0.

Proposition I.1.16. Distributivity of Matrix Operator.

For any A P Cmˆn and B P Cnˆp, we have:

pABq⊺ “ B⊺A⊺ and pABq˚ “ B˚A˚.

Definition I.1.17. Orthogonality.

For any x, y P Cm, x and y are orthogonal if x˚.y “ 0.
For sets S “ tv1, v2, ¨ ¨ ¨ , vnu Ă Cm is orthogonal set if the vectors are pairwise orthogonal, i.e., vi

˚.vj “ 0
for all i ‰ j. {

Theorem I.1.18. Orthogonality ùñ Linear Independence.

If S “ tv1, v2, ¨ ¨ ¨ , vnu Ă Cm is a orthogonal set of nonzero vectors, then S is linearly independent.

Proof. Here, we let λk’s be set such that:
m

ÿ

k“1

λkvk “ 0.

For all 1 ď i ď m the inner product with vi, giving us that:
m

ÿ

k“1

λkvk
˚vi “ 0˚v1 “ 0.
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Thus, by orthogonality and the nonzero vectors, we have:

λi “ 0 for all 1 ď i ď m,

which enforces S to be linearly independent.

Corollary I.1.19. Surjective + Orthogonal ùñ Basis.

Suppose that S “ tv1, v2, ¨ ¨ ¨ , vnu Ă V is a basis in which V “ spantv1, v2, ¨ ¨ ¨ , vnu, then S is a orthogonal
basis of V.

Definition I.1.20. Orthogonal Basis.

An orthogonal basis can be β “ tv1, v2, ¨ ¨ ¨ , vru Ă Cm with property that vi
˚.vj “ 0 for all i ‰ j.

In particular, we have V “ spanpβq as a subspace of Cm. {

Theorem I.1.21. Orthogonal Projection.

Given an orthogonal basis:
β “ tv1, v2, ¨ ¨ ¨ , vru Ă Cm

of V “ spanpβq and a vector b P V, we have the coordinates of b with respect to β, i.e., the unique scalars
c1, ¨ ¨ ¨ , cr such that b “

řr
k“1 ckvk, are:

ck “
vk

˚b
}vk}2 for all 1 ď k ď r.

Proof. For all 1 ď i ď m, we take the inner product of the linear combinations with vi
˚, we have:

vi
˚b “

r
ÿ

k“1

ckvi
˚.vk “ ci}vi}

2,

as desired.

Definition I.1.22. Orthonormal Basis.

A basis β “ tv1, v2, ¨ ¨ ¨ , vru Ă Cm is orthonormal if:

(i) β is orthogonal, and

(ii) each vector in β is unit, i.e., }vi} “ 1.

{

In the orthonormal basis, the orthogonal projections will, in turn, be:

b “

r
ÿ

k“1

pvk
˚.bqvi.

Definition I.1.23. Orthogonal Matrix with F “ R.

A matrix A P Rmˆm is called orthogonal if A⊺ “ A´1, i.e., A⊺A “ Idm and AA⊺ “ Idm. {

This can be similarly defined in matrices with complex entries.
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Definition I.1.24. Unitary Matrix with F “ C.

A matrix Q P Cmˆm is called unitary if Q˚ “ Q´1, i.e., Q˚Q “ Idm and QQ˚ “ Idm. {

Theorem I.1.25. Equivalences with Unitary.

For a matrix Q P Cmˆm, the following conditions are the equivalent:

(i) Q is unitary, i.e., Q˚Q “ Idm,

(ii) The columns of Q “

”

Q1 Q2 ¨ ¨ ¨ Qm

ı

are orthonormal, i.e.:

}Qi} “ 1 and Qi
˚Qj “ 0 for all i ‰ j,

(iii) For all x P Cm, we have }Q.x} “ }x}, i.e., the action f : x ÞÑ Q.x is an isometry.

Proof. (i) ùñ (ii): Suppose that Q˚Q “ Idm, then we have:
»

—

—

—

—

–

Q1
˚

Q2
˚

...
Qm

˚

fi

ffi

ffi

ffi

ffi

fl

¨

”

Q1 Q2 ¨ ¨ ¨ Qm

ı

“

»

—

—

—

—

–

Q1
˚Q1 Q1

˚Q2 ¨ ¨ ¨ Q1
˚Qm

Q2
˚Q1 Q2

˚Q2 ¨ ¨ ¨ Q2
˚Qm

...
...

. . .
...

Qm
˚Q1 Qm

˚Q2 ¨ ¨ ¨ Qm
˚Qm

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

1 0 ¨ ¨ ¨ 0
0 1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

fl

,

which follows along with (ii).
(i) ùñ (iii): Still, suppose that Q˚Q “ Idm, then for all x P Cm, we have:

}Q.x}2 “ pQ.xq˚pQ.xq “ x˚Q˚Qx “ x˚pQ˚Qqx “ x˚ Idm x “ x ˚ x “ }x}2,

as desired.

Suppose that we want to solve that Q.x “ b, where Q is unitary. If we denote:

Q “

”

Q1 Q2 ¨ ¨ ¨ Qm

ı

,

we have that:
x1Q1 ` x2Q2 ` ¨ ¨ ¨ ` xmQm “ b,

so we have:
x “ Q˚Q.x “ Q˚.b.

I.2 Normed Vector Space

Definition I.2.1. Euclidean Length.

Let x P Cm, the Euclidean length of x is:

}x} “
?

x ˚ .x “

g

f

f

e

m
ÿ

k“1

|xk|2

{

Definition I.2.2. Norm.

A norm is a function } ‚ } : Cn Ñ R with the following properties for all x, y P Cm and α P C:

(i) Positivity: }x} ě 0,
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(ii) Definiteness: x “ 0 ðñ }x} “ 0,

(iii) Triangle Inequality: }x ` y} ď }x} ` }y}, and

(iv) Homogeneity: }αx} “ |α|}x}. {

Example I.2.3. Examples of Norms.

The 1-norm is }x}1
řm

k“1 |xk|.
The p-norm (where 1 ď p ă 8) is }x}p “

`
řm

k“1 |xk|p˘1{p.
The 8-norm is }x}8 “ max1ďkďm |xi|. {

For a fixed norm, we have unit sphere:
S “ tx : }x} “ 1u,

and the unit ball as:
B “ tx : }x} ď 1u.

Example I.2.4. 2-norm (Euclidean Norm) in R2.

The unite sphere of 2-norm would satisfy that }x}2 “ 1, or equivalently, }x}2 “ 1, hence equivalent to
x2

1 ` x2
2 “ 1 since we are in the real field. Thus it is the unit circle.

x1

x2

S 1

Figure I.2. Unit Sphere in 2-norm. {

Example I.2.5. 1-norm in R2.

The unite sphere of 1-norm would satisfy that }x}1 “ 1, or equivalently, |x1| ` |x2| “ 1 since we are in the
real field. Thus it is the diamonds.

x1

x2

S 1

Figure I.3. Unit Sphere in 1-norm. {

Example I.2.6. 8-norm in R2.

The unite sphere of 8-norm would satisfy that }x}8 “ 1, or equivalently, maxt|x1|, |x2|u “ 1 since we are
in the real field. Thus it is the diamonds.

x1

x2

S 1

Figure I.4. Unit Sphere in 8-norm.
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{

Remark I.2.7. Note on Invalid p-norms.

When 0 ă p ă 1, } ‚ }p is no longer a norm as it violates triangle inequality. {

Example I.2.8. Calculation on Norms.

Let x “

«

2
1

ff

P C2, we have the norms as:

}x}1 “ |2| ` |1| “ 3,

}x}2 “

b

|2|2 ` |1|2 “
?

5,

}x}8 “ maxt|2|, |1|u “ 2. {

Proposition I.2.9. Monotonicity of Norms.

For any x P Cn, }x}1 ě }x}2 ě }x}8.

Remark I.2.10. Stretch of a Norm.

Let A P Cmˆn, consider the function f : Cn Ñ Cm such that x ÞÑ A.x. The stretch of xneq0 caused by
multiplication by A is:

}A.x}˚

}x}˚
,

where the norms (} ‚ }˚) are identical. {

Definition I.2.11. Matrix Norms.

Let A P Cmˆn, the matrix norm induced by a vector norm is:

}A}Mmˆn :“ sup
xPCn
x‰0

}A.x}˚

}x}˚
.

{

Since we can restrict the search on the unit circle, which is compact, we can use max instead of the sup.

Proof. Let x P Cn be nonzero and arbitrary, we want to show that the stretch of x and u “ x{}x}, that is
x “ }x}u, hence we have:

}A.xx}

}x}
“

›

›A.p}x}uq
›

›

}x}
“

}xA.u}

}x}
“ }}A.u} “

}A.u}

}u}
,

which implies that they are equivalent.

Theorem I.2.12. Equivalence of Matrix Norm.

Let A P Cmˆn, the matrix norm can be computed as:

}A}Mmˆn “ max
xPCn

}x}˚“1

}A.x}˚.

Example I.2.13. Computing Matrix Norm.
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Let A “

«

1 2
0 2

ff

, we may compute its matrix norm induced by the vector norms for norm } ‚ }1, as:

}A}1 “ max
xPCn

}x}“1

}A.u}1,

where for all u “

”

u1 u2

ı⊺
, we have A.u “ u1A1 ` u2A2. Since }u}1 “ 1, we have |u1| ` |u2| “ 1.

Consider A.e1 “ p1, 0q and A.e2 “ p2, 2q, we may demonstrate the transformation as:

x1

x2

S

p1, 0q

p2, 2q

ApSq

Figure I.5. Transformation of Unit Sphere in 1-norm with Matrix A.

Notice that the maximum of the 1-norm after transformation A is, in fact, }A.p0, 1q}1 “ }p2, 2q}1 “ |2| `

|2| “ 4. Hence, we have }A} “ 4. {

Note that the same computation can be done with 2-norms or other norms, however, the computation will
be more lengthy and complicated. For example, }A}2 « 2.9308 and }A}8 “ 3.

Theorem I.2.14. 1-norm of Matrix is Maximum of Norm of Vectors.

For any A P Cmˆn, where A “

”

A1 A2 ¨ ¨ ¨ An

ı

. The 1-norm of A is given by:

}A}1 “ max
1ďjďn

}Aj}1 “ max
1ďjďn

˜

m
ÿ

k“1

|akj|

¸

.

Observe that this conclusion aligns with the above example, where }A1} “ 1 and }A2} “ 4, so }A}1 “ 4.

Proof. Suppose A P Cmˆn, A “

”

A1 A2 ¨ ¨ ¨ An,
ı

, and u “

”

u1 u2 ¨ ¨ ¨ un

ı⊺
such that }u}1 “ 1,

hence we can represent:
A.u “ u1A1 ` u2A2 ` ¨ ¨ ¨ ` unAn.

When we take the norm for both sides, we have:

}A.u} “ }u1A1 ` u2A2 ` ¨ ¨ ¨ ` unAn}.

Then, by triangle inequality and properties of norm, we can have:

}A.u} ď }u1A1} ` }u2A2} ` ¨ ¨ ¨ ` }unAn}

“ |u1|}A1} ` |u2|}A2} ` ¨ ¨ ¨ ` |un|}An}

ď max
1ďjďn

}Aj}.

Hence, for all u, we have:
}A.u} ď max

1ďjďn
}Aj}1.
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Note that the above equality holds when u “ ej˚ where j˚ is the largest where }A.Aj˚ } is the largest of
}A1}, ¨ ¨ ¨ , }An}. Hence, the maximum over all the unit vectors of A.u is equal to the maximum of the
magnitude of the columns, hence the equality holds trivially.

Theorem I.2.15. 8-norm of Matrix.

For any A P Cmˆn, where A “

”

R1 R2 ¨ ¨ ¨ Rm

ı⊺
. The 8-norm of A is given by:

}A}8 “ max
1ďkďm

}Rk
˚}1.

Example I.2.16. Calculation of Matrix Norm.

Let A “

«

1 2
0 2

ff

, note that:

}A1} “ |1| ` |0| “ 1,

}A2} “ |0| ` |2| “ 2,

}R1
˚} “ |1| ` |2| “ 3,

}R2
˚} “ |0| ` |2| “ 2.

Hence, }A}1 “ 4 and }A}8 “ 3. {

Theorem I.2.17. Cauchy-Schwarz Inequality.

For any x, y P Cn, we have:
|x˚y| ď }x}2 ¨ }y}2,

and the equality holds if and only if they are scalar multiples of each other, i.e., parallel.

Recall that in R2 or R3, and any x, y in the space, we have:

x ¨ y “ x⊺y “ }x}}y} cos θ.

Hence, in such case:

´1 ď
x⊺y

}x}}y}
ď 1.

Theorem I.2.18. Hölder’s Inequality.

For any p and q such that:
1
p

`
1
q

“ 1,

which is called harmonic conjugates, then:

|x˚y| ď }x}p}y}q.
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Proposition I.2.19. Matrix Norm for Outer Product.

For any x P Cm, y P Cn, and the matrix A “ xy˚ P Cmˆn. We have:

}A}2 “ }x}}y}.

Proof. Note that by the equivalent definition of norms:

}A} “ max
}u}“1
uPCn

}A.u}.

Note that by associativity:

}A.u} “ }pxy˚qu} “ }xpy˚uq} “ }py˚uqx} “ |y˚u|}x},

and by Cauchy-Schwarz, we have:

}A.u} “ |y˚u|}x} ď }y}}u}}x},

with equality when u is parallel to y, thus:

}A} “ max
}u}“1
uPCn

}A.u} “ }x}}y}}u} “ }x}}y}.

Theorem I.2.20. Inequality for Matrix and Vector Norm.

For any vector norm and induced matrix norm, and for all A P Cmˆn and x P Cn, we have:

}A.x} ď }A}M}x}.

Proof. By definition:

}A} “ max
xPCm

}x}‰0

}A.x}

}x}
,

hence for eneric x P Cm, we have:

}A} ě
}A.x}

}x}
,

hence implying that }A.x} ď }A}}x}.

Corollary I.2.21. Inequality for Matrix Multiplication.

For any matrix norm induced by vector norm, and for all A P Cmˆn and B P Cnˆp, then:

}AB} ď }A}}B}

Proof. Note that:
}AB} “ max

}u}“1
uPCp

}AB.u}.

For the inequality:
}AB.u} ď }A}}B.u} ď }A}}B}}u}

Taking when the equality holds (by Cauchy-Schwarz), the equality holds.
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Remark I.2.22. Recalling Axioms of Normed Vector Space.

For all A, B P Cmˆn, for all α P C, the following must hold:

(i) Positivity and definiteness: }A} ě 0 and }A} “ 0 if and only if A “ 0,

(ii) Triangular inequality: }A ` B} ď }A} ` }B}, and

(iii) Homogeneity: }αA} “ |α|}A}.
{

Definition I.2.23. Forbenius norm.

Let A P Cmˆn, its Forbenius norm is defined to be:

}A}F “

¨

˝

m
ÿ

i“1

m
ÿ

j“1

|a2
i,j|

˛

‚

1{2

.
{

Theorem I.2.24. Equivalent Definition of Forbenius Norm.

Let A P Cmˆn, its Forbenius norm is:
}A}F “

a

TrpA˚Aq.

Proof. It is easy to find that the diagonals of A˚ A are Ai
˚Ai, and since the trace is the sum of the squares,

then:

TrpA˚ Aq “

n
ÿ

i“1

}Ai}
2 “

n
ÿ

i“1

|ai,1|2 ` ¨ ¨ ¨ `

n
ÿ

i“1

|ai,m|2 “

m
ÿ

j“1

n
ÿ

i“1

|ai,j|
2,

and the sums can be switched since it is finite sum.

Example I.2.25. Isometry.

The following matrices are isometric:

(i) Rotation matrices,

(ii) Reflection matrices, and

(iii) Permutation of coordinates.
{

Proposition I.2.26. Invariant of Unitary Matrix.

If Q P Cmˆn is unitary, and P P Cnˆm, then for all A P Cmˆn, we have:

(i) Left unit: }QA}2 “ }A}2 and }QA}F “ }A}F.

(ii) Right unit: }AP}2 “ }A}2 and }AP}F “ }A}F.

Proof. (i) By definition:

}QA}2 “ max
uPCn

}u}2“1

}QA.u}2 “ max
uPCn

}u}2“1

}Q.pA.uq}2 “ max
uPCn

}u}2“1

}A.u}2 “ }A}2.
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For Forbenius norm, we have:

}QA}F “

b

Tr
`

pQAq˚pQAq
˘

“
a

TrpA˚Q˚QAq “
a

TrpA˚ Aq “ }A}F.

(ii) For the right unitary:
}AP}2 “ max

uPCn

}u}2“1

}AP.u}2 “ max
uPCn

}u}2“1

}A.v}2,

where v P Cm and }v}2 “ }Pu}2 “ 1. Note that the map is valid since P is isometry, hence it is
invertible, thus S Ñ S is invertible, hence, we have the above to be }A}2.
For Forbenius norm, we have:

}AP}F “

b

Tr
`

pAPq˚pAPq
˘

“
a

TrpP˚ A˚ APq “
a

TrpPP˚ A˚ Aq “
a

TrpA˚ Aq “ }A}F.

I.3 Eigenspace

Definition I.3.1. Eigenvalue.

Let A P Cmˆm be a square matrix, x is an eigenvector of A with associate eigenvalue λ P C such that:

x ‰ 0 and A.x “ λx.

{

Example I.3.2. Finding Eigenvalue and Eigenvector.

Let A “

«

2 0
0 1

ff

, we may notice that for x “

«

1
0

ff

, we have:

A.x “ 2x.

Else, for the rotation matrix A “

«

cos π{4 ´ sin π{4
sin π{4 cos π{4

ff

, and note that there is no real eigenvalues, the

complex eigenvalues are:
λ “ e˘iπ{4. {

Theorem I.3.3. Singular ðñ 0 is Eigenvalue.

Let A be a m-by-m matrix, A is singular if and only if 0 is an eigenvalue.

Proof. A is singular ðñ There exists x ‰ 0 such that A.x “ 0 ðñ A.x “ 0x ðñ λ “ 0 is eigenvalue.

Definition I.3.4. Characteristic Polynomial.

The characteristic polynomial of a matrix A P Cmˆm is:

detpA ´ λ Idq “ 0. {

Hence, we may define the polynomial that:

detpAq “
ÿ

σPSn

sgnpσq

n
ź

i“1

ai,σpiq,

where σ is the permutation, Sm is the n-th cyclic group, and sgn is the sign function of the permutation,
i.e., even or odd.
The degree of the characteristic polynomial is the dimension of the square matrix, and by the fundamental
theorem of algebra, since C is algebraically closed, we are guaranteed with full set of complex eigenvalues.



N.L.A. Notes 15

Proposition I.3.5. Roots of Characteristic Polynomial are Eigenvalues.

The roots of the characteristic polynomial are the eigenvalues with respective multiplicity. If an eigenvalue
has multiplicity 1, then it is a simple eigenvalue.

Remark I.3.6. Diagonalized Matrices.

When A is diagonal, the eigenvalues are the entries on the diagonal. {

Theorem I.3.7. Determinant and Eigenvalues.

det A is the product of the eigenvalues counted with multiplicity.

Theorem I.3.8. Complex Conjugates in Real Field.

Suppose A P Rm,m has only real entries, then the coefficients in pA are also real. If λ “ a ` ib is an
eigenvalues, then:

(i) λ “ a ´ ib is also an eigenvalue, and

(ii) λ has the same multiplicity with λ.

Proof. Note that:

pApλq “

n
ÿ

k“1

pkλk “ 0,

n
ÿ

k“1

pkλk “ 0.

Hence λ is also a root.

If A is real and symmetric, then we have:

A⊺ “ A and A˚ “ A,

then we have only real eigenvalues.

Definition I.3.9. Eigenspace.

The eigenspace associated with eigenvalue λi is:

kerpA ´ λi Idq “ tx : pA ´ λi Idq.x “ 0u.

Every vector in this subspace is a eigenvector of A with eigenvalue λi. {

Definition I.3.10. Geometric Multiplicity.

The geometric multiplicity of an eigenvalue λi is defined as:

dimpeigenspace of λiq “ dim
`

kerpA ´ λi Idq
˘

“ # of Linearly Independent Eigenvectors of λi. {
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Proposition I.3.11. Monotonicity of Multiplicity.

For each matrix A P Cnˆn with an eigenvalue λ, we have:

1 ď Geometric Multiplicitypλq ď Algebraic Multiplicitypλq.

The second equality holds when A is diagonal.

Example I.3.12. Example of Strict Inequality.

Let A “

»

—

–

5 1 0
0 5 0
0 0 5

fi

ffi

fl

, note that 5 is an eigenvalue, we may observe that its algebraic multiplicity is 3.

Consider A ´ 5 Id “

»

—

–

0 1 0
0 0 0
0 0 0

fi

ffi

fl

:“ B, and note that:

ker B “ tpx1, 0, x3q : x1, x3 P Cu.

Hence, the geometric multiplicity, we have 2, which is strictly less than the algebraic multiplicity. {

Definition I.3.13. Defective Eigenvalue and Non-Defective Matrix.

If Geometric Multiplicitypλq ă Algebric Multiplicitypλq, then λi is a defective eigenvalue.
A P Cmˆm is non-defective if it has m independent eigenvectors, which is equivalently Geometric Multiplicitypλq ă

Algebric Multiplicitypλq for all eigenvalues of A. {

Proposition I.3.14. Distinct Eigenvalues ùñ LI Eigenvectors.

Suppose A P Cmˆm is a matrix with eigenvectors tx1, ¨ ¨ ¨ , xku whose corresponding eigenvalues as
tλ1, ¨ ¨ ¨ , λku. If all eigenvalues are distinct, then the eigenvectors are linearly independent.
If k “ m, then all eigenvectors of A are linearly independent.

The above case does not account for invertible matrix, as zero can be an eigenvalue.

Definition I.3.15. Similar Matrices.

Suppose A, B P Cmˆm, they are similar if A “ SBS´1 for some invertible matrix S. {

Proposition I.3.16. Consequences of Similar Matrices.

Suppose A, B P Cmˆm are similar, then:

(i) det A “ det B,

(ii) pApλq “ pBpλq, and

(iii) The set of all eigenvalues of A and B are identical.

Definition I.3.17. Diagonalizable.
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A P Cmˆm is diagonal if it is similar to a diagonal matrix D P Cmˆm, i.e., there exists invertible matrix
S P Cmˆm such that A “ SDS´1. {

Theorem I.3.18. Diagonalizable ðñ Non-defective.

Suppose A P Cmˆm. A is diagonalizable if and only if A has m linearly independent eigenvectors, i.e., A
is non-defective.

Proof. Note that A “ SDS´1 is equivalent to AS “ SD, hence equivalent to:
”

AS1 AS2 ¨ ¨ ¨ ASm

ı

“

”

d1,1S1 d2,2S2 ¨ ¨ ¨ dm,mSm

ı

.

Hence, we equivalently have A.Si “ di,iSi, so Si is a set of eigenvector of A with eigenvalues di,i. Since S
is invertible, all columns of S are linearly independent.

Corollary I.3.19. Distinct Eigenvalues ùñ Diagonalizable.

If A P Cmˆm has m distinct eigenvalues, then A is diagonalizable.

This corollary is an immediate consequence of Diagonalizable ðñ Non-defective.

The Complex Spectral Theorem can be generalized to the real Spectral Theorem.

Proposition I.3.20. Kernel of A and A˚ A are Same.

For any A P Cmˆn, we have:
ker A “ kerpA˚ Aq.

Proof. We first show that ker A Ă kerpA˚ Aq. Suppose x P ker A, then A.x “ 0, so A˚ A.x “ 0, hence
x P kerpA˚ Aq.
For the other inclusion, we suppose x P kerpA˚ Aq “ 0, then x˚ A˚ Ax “ x˚.0. By collecting the terms, we
have pA.xq˚pA.xq “ 0, which implies that }A.x}2 “ 0, and by the axiom of normed vector space, we have
A.x “ 0, which implies that x P ker A.

I.4 Diagonalization and Singular Value Decomposition

Remark I.4.1. Matrices as Stretches.

Let A P Cnˆm be a matrix with complex entries. The map T : Cn Ñ Cm which for any x P Cn, having
x ÞÑ A.x, deforms a unit circle S “ tx : }x}2 “ 1u into an ellipse. {

Definition I.4.2. Singular Values of Matrix.

Let A P Cnˆm be a matrix with complex entries. We let v1 be the vector such that:

}Av1} “ max
uPCn

}u}2“1

}Au}2,
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and we let u1 be the unit vector of v1, and the singular value σ1 satisfies that:

σ1 “ }A.v1}.

There also exists v2 P C2 such that v2 K v1 and A.v2 K A.v1, and we define the other singular value σ2:

σ2 “ }A.v2}. {

Proposition I.4.3. Properties of Full Rank 2-by-2 Matrices.

Let A be a 2-by-2 matrix with full rank, there exists v1, v2 P R2 with the following properties:

(i) β “ tv1, v2u is an orthonormal basis of R2.

(ii) If we define A.v1 “ σ1u1 and A.v2 “ σ2u2, we have σ1 ě σ2 ą 0 and A.v1 K A.xv2.

In particular, we can rewrite it as:
”

A.v1 A.v2

ı

“

”

σ1u1 σ2u2

ı

,

which results in:

A
”

v1 v2

ı

loooomoooon

V

“

”

u1 u2

ı

loooomoooon

U

«

σ1 0
0 σ2

ff

loooomoooon

Σ

.

Since U and V are unitary, we have:
A “ UΣV˚.

In general, for matrix A P Cmˆn with dimpim Aq “ r, we can write:

A “ U ˝ Σ ˝ V.

P P P P

Cmˆn Cmˆm Cmˆn Cnˆn

Proposition I.4.4. Properties of ‚˚‚ for Matrices.

For any matrix A P Cmˆn, with dimpim Aq “ r, we have:

(i) A˚ A is n-by-n matrix and Hermitian (self-adjoint), i.e., pA˚ Aq˚ “ A˚ A,

(ii) dim
`

dimpA˚ Aq
˘

“ r,

(iii) A˚ A has r nonzero eigenvalues λ1 ě λ2 ě ¨ ¨ ¨ ě λr ą 0, while λr`1 “ λr`2 “ ¨ ¨ ¨ “ λn “ 0.

(iv) A˚ A and AA˚ have the same nonzero eigenvalues.

Proof. (i) Trivial.

(ii) Concerning the rank-nullity theorem, we have:

dim
`

impA˚ Aq
˘

“ n ´ dim
`

kerpA˚ Aq
˘

“ n ´ dimpker Aq “ dimpim Aq.

(iii) Consider the eigenspace for λ “ 0, we have:

E0 “ kerpA ´ 0 ¨ Idq “ ker A.
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Then, we have the dimension of E0 as n ´ r, so A has r nonzero eigenvalues. Suppose λ ‰ 0 is an
eigenvalue of A˚ A, so there exists x ‰ 0 such that A˚ A.x “ λx, then we have x˚ A˚ A.x “ λx˚.x, so
we have }A.x}2 “ λ}x}2, so:

λ “
}A.x}2

}x}2 ą 0.

(iv) Suppose that λ ‰ 0 is an eigenvalue of A˚ A, then there exists x ‰ 0 such that A˚ A.x “ λx, so:

AA˚ A.x “ λA.x,

hence the eigenvalue of AA˚ λ and the eigenvector is A.x (since x is eigenvector and λ ‰ 0, A.x ‰ 0,
otherwise it is a contradiction).

Proposition I.4.5. Single Value Decomposition.

Suppose A P Cmˆn such that dimpim Aq “ r ď mintm, nu in which A : Cn Ñ Cm, then there exists:

(i) an orthonormal basis tv1 ¨ ¨ ¨ , vr, vr`1, ¨ ¨ ¨ , vn
loooooomoooooon

basis for ker A

u of Cn,

(ii) another orthonormal basis t u1 ¨ ¨ ¨ , ur
loooomoooon

basis for im A

, ur`1, ¨ ¨ ¨ , umu of Cm, and

(iii) r singular values, with σ1 ě σ2 ě ¨ ¨ ¨ ě σr ą 0,

such that:

(i) U˚U “ UU˚ “ Id,

(ii) V˚V “ VV˚ “ Id, and

(iii) Σ “

»

—

—

—

—

–

σ1 0 0 0

0
. . . 0 0

0 0 σr 0
0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

.

Remark I.4.6. Single Value for Full Rank.

Suppose A is square and full rank, it is r ˆ r and ker A “ t0u, im A “ Cr. Moreover, the have the bases
β “ tv1, v2, ¨ ¨ ¨ , vru and γ “ tu1, u2, ¨ ¨ ¨ , uru, while the Σ matrix is:

Σ “

»

—

—

—

—

–

σ1 0 ¨ ¨ ¨ 0
0 σ2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ σr

fi

ffi

ffi

ffi

ffi

fl

is square, diagonal, and full rank. {

Theorem I.4.7. Spectral Theorem.

Suppose B P Cnˆn is Hermitian (i.e., B˚ “ B), then B has n real eigenvalues and it is orthogonally
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diagonalizable, i.e., B has n orthonormal eigenvectors β “ tv1, v2, ¨ ¨ ¨ , vnu, such that, if we define:

S :“
”

v1 ¨ ¨ ¨ vn,
ı

we have:

S˚ AS “ D “

»

—

—

—

—

–

λ1 0 ¨ ¨ ¨ 0
0 λ2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ λn

fi

ffi

ffi

ffi

ffi

fl

.

Hence A “ SDS˚.

Remark I.4.8. Remark on Real Spectral Theorem.

For the case above, we want to construct unitary U P Cmˆm, V P Cmˆm, and Σ P Cmˆn that is diag-
onalizable such that A “ UΣV˚. The sketch of the proof would be solving for U, Σ, V, where we first
compute:

A˚A “ pUΣV˚q˚pUΣV˚q “ VΣ˚U˚UΣV˚,

hence implying that:
A˚ A “ VpΣ˚ΣqV˚,

which implies that:
V “

”

v1 ¨ ¨ ¨ vn,
ı

which gives:

Σ˚Σ “

»

—

—

—

—

–

σ2
1 0 0 0

0
. . . 0 0

0 0 σ2
r 0

0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

Hence, the singular values are σi “
a

λi with 1 ď i ď r. {

For the process, we diagonalize A˚ A with respect to orthonormal basis
mathb f viu and take vi’s to form columns of V and compute σi

a

λi to form Σ.
Then, we choose ui’s via:

ui “
A.vi

σi
for i “ 1, 2, ¨ ¨ ¨ , r.

For the remaining ur`1, ¨ ¨ ¨ , um are chosen to be orthonormal to u1, ¨ ¨ ¨ , um, using Graham Schmidt pro-
cess.

Example I.4.9. Finding SVD.

Let A “

»

—

–

1 ´1
´1 1
´4 4

fi

ffi

fl

, we note that m “ 3, n “ 2, and r “ 1 since there is only one linearly independent

column.

(i) First, we find A˚ A, that is:

A˚ A “

«

18 ´18
´18 18

ff

,
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and we note that eigenvalues as:

A˚ A.

«

1
1

ff

“

«

0
0

ff

and A˚ A.

«

1
´1

ff

“ 36

«

1
´1

ff

.

(ii) Now, since we have the eigenvalues as 36 and 0, whose eigenvectors are v1 “ 1{
?

2

«

1
´1

ff

and

v2 “ 1{
?

2

«

1
1

ff

, then the first singular value is σ1 “ 6, then we have:

u1 “
Av1

σ1
“

1
3
?

2

»

—

–

1
´1
´4

fi

ffi

fl

(iii) Then, we look for u2 K u3, in which we want:

1
3

?
2

”

y1 y2 y3

ı

»

—

–

1
´1
´4

fi

ffi

fl

“ 0,

which returns to:
y1 “ y2 ` 4y3

As of right now, we have:

y “

»

—

–

y2 ` 4y3

y2

y3

fi

ffi

fl

“ y2

»

—

–

1
1
0

fi

ffi

fl

` y3

»

—

–

4
0
1

fi

ffi

fl

.

Note that we want them to be orthogonal, that is:
»

—

–

1
1
0

fi

ffi

fl

and

»

—

–

2
´2
1

fi

ffi

fl

.

Technically, we should use Graham Schmidt to find an orthonormal basis, but this can be observed
easily.

{

Proposition I.4.10. Block Matrix Multiplication.

Suppose A P Cmˆn and B P Cnˆp, we can break:

m “

α
ÿ

i“1

mi,

n “

β
ÿ

i“1

ni,

p “

γ
ÿ

i“1

pi.



N.L.A. Notes 22

In particular, we can write:

AB “

»

—

—

–

A1,1 ¨ ¨ ¨ A1,β
...

. . .
...

Aα,1 ¨ ¨ ¨ Aα,β

fi

ffi

ffi

fl

»

—

—

–

B1,1 ¨ ¨ ¨ B1,γ
...

. . .
...

Bβ,1 ¨ ¨ ¨ Bβ,γ

fi

ffi

ffi

fl

,

where computation is distributive as if they are scalar entries.

There is an alternative way to compute γ “ tu1, ¨ ¨ ¨ , ur, ur`1, ¨ ¨ ¨ , umu, hence:

A “ UΣV˚ ðñ AV “ UΣV˚V “ UΣ.

The right hand side can be simplified into:

UΣ “

”

u1 u2 ¨ ¨ ¨ um

ı

»

—

—

—

—

–

σ1 0 0 0

0
. . . 0 0

0 0 σr 0
0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

“

”

σ1u1 σ2u2 ¨ ¨ ¨ σmum

ı

.

For the left hand side, we have:

AV “

”

Av1 Av2 ¨ ¨ ¨ Avr Avr`1 ¨ ¨ ¨ Avn

ı

.

Hence, for the first r columns, we have:

ui “
A.vi

σi
for i “ 1, 2, ¨ ¨ ¨ , r,

where as for the last vectors, they are the kernel of the map, and must be set to be an orthonormal set that
is also orthogonal to prior entries.

Theorem I.4.11. Properties about Matrix Norms.

For any m ˆ n matrix A, we have:

(i) }A}2 “ σ1, i.e., the largest singular value (as σi’s are positive and ordered from large to small), and

(ii) }A}F “

b

σ2
1 ` σ2

2 ` ¨ ¨ ¨ ` σ2
r .

Recall that } ‚ }2 and } ‚ }F are invariant by multiplication by unitary matrices.

Proof. (i) Note that:

}A}2 “ }UΣV˚}2 “ }UΣ}2 “ }Σ}2

“ max
uPCn

}u}2“1

}Σ.u}2 “ max
uPCn

}u}2“1

b

}u1}2σ2
1 ` |u2|σ2

2 ` ¨ ¨ ¨ ` |ur|2σ2
r “

b

|1|2σ2
1 “ σ1.

(ii) For Forbenius norm, we have:

}A}F “ }UΣV˚}F “ }UΣ}F “ }Σ}F

“

b

|σ1|2 ` |σ2|2 ` ¨ ¨ ¨ ` |σr|2 “

b

σ2
1 ` σ2

2 ` ¨ ¨ ¨ ` σ2
r .
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Proposition I.4.12. Hermitian ùñ Orthogonally Diagonalizable.

Suppose A is Hermitian, then A is orthogonally diagonalizable.
Moreover, the singular values of A are σi “ |λi|, where λi’s are the ordered (by absolute value) of eigenval-
ues of A.

Proof. Let A “ SDS˚, in particular:

A “

”

v1 v2 ¨ ¨ ¨ vn

ı

looooooooooomooooooooooon

orthonormal set of eigenvectors of A

»

—

—

—

—

–

λ1 0 ¨ ¨ ¨ 0
0 λ2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ λn

fi

ffi

ffi

ffi

ffi

fl

loooooooooooomoooooooooooon

Not necessarily SVD, as eigenvalues can be non-positive

»

—

—

—

—

–

v1
˚

v2
˚

...
vn

˚

fi

ffi

ffi

ffi

ffi

fl

“

”

sgnpλ1qv1 sgnpλ2qv2 ¨ ¨ ¨ sgnpλnqvn

ı

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

U

»

—

—

—

—

–

|λ1| 0 ¨ ¨ ¨ 0
0 |λ2| ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ |λn|

fi

ffi

ffi

ffi

ffi

fl

looooooooooooooomooooooooooooooon

Σ

»

—

—

—

—

–

v1
˚

v2
˚

...
vn

˚

fi

ffi

ffi

ffi

ffi

fl

loomoon

V

,

where the sign function is defined to be:

sgnpxq “

$

&

%

1 if x ě 0,

´1 if x ă 0.

Now, as we consider the SVD for A P Cmˆn, where dimpim Aq “ r, we have:

A “

„ r columns
hkkkkkikkkkkj

u1 u2 ¨ ¨ ¨ ur

m´r columns
hkkkkkkikkkkkkj

ur`1 ¨ ¨ ¨ um

ȷ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

rΣ
hkkkkkkikkkkkkj

σ1 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ σr

0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0
0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0

0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

–

v1
˚

...
vr

˚

,

/

/

.

/

/

-

r rows

vr`1
˚

...
vn

˚

,

/

/

.

/

/

-

n ´ r rows

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Computationally, we find that:

(i) v1, ¨ ¨ ¨ , vr, vr`1, ¨ ¨ ¨ , vn are orthonormal eigenvectors of A˚ A with respective eigenvalues, and

(ii) u1, ¨ ¨ ¨ , ur, ur`1, ¨ ¨ ¨ , um are orthonormal eigenvectors of AA˚ with respective eigenvalues.

Recall the block computation, we have:

A “

”

Ũ U2

ı

«

Σ̃ 0
0 0

ff «

Ṽ˚

V˚
2

ff

“

”

ŨΣ̃ ` U20 Ũ0 ` U20
ı

«

Ṽ˚

V˚
2

ff

“ ŨΣ̃Ṽ˚.

Definition I.4.13. Reduced Singular Value Decomposition.

With the construction above, with A P Cmˆn being Hermitian, we have reduced Singular Value Decompo-
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sition, that is:

A “ Ũ ˝ Σ̃ ˝ Ṽ.

P P P P

Cmˆn Cmˆr Crˆr Crˆn
{

Note that with reduced SVD, we have:

A “

”

σ1u1 σ2u2 ¨ ¨ ¨ σrur

ı

“ σ1u1v˚
1 ` σ2u2v˚

2 ` ¨ ¨ ¨ ` σrurv˚
r ,

which is called the rank-one decomposition of A. Hence A is the sum of rank-one matrices with weights
σ1 ě σ2 ě ¨ ¨ ¨ ě σr ą 0.

Remark I.4.14. Approximating a Matrix.

By choosing a p ď r, we have the rank-p approximation of A such thatL
xAp “ σ1u1v1 ` ¨ ¨ ¨ ` σpupv˚

p,

where we have dimpim xApq “ p. {

Example I.4.15. Using SVD to Compress Image(s).

Suppose we use a 400-by-400 matrix to represent a gray-scale image, i.e., A P r0, 255s400ˆ400, that is:

A “

»

—

—

—

—

–

A1,1 A1,2 ¨ ¨ ¨ A1,400

A2,1 A2,2 ¨ ¨ ¨ A2,400
...

...
. . .

...
A400,1 A400,2 ¨ ¨ ¨ A400,400

fi

ffi

ffi

ffi

ffi

fl

,

where each entry represents the gray-scale in that pixel, where 0 represents black and 255 represents
white, and the grays are within p0, 255q, while becoming lighter as the number increases.
Consider the reduced SVD, we may write A into:

A “ σ1u1v˚
1 ` σ2u2v˚

2 ` ¨ ¨ ¨ ` σru400v˚
400,

in which we only consider the first p terms, we are able to reduce the rank in order to store less data for
the image. In this way, for rank p, we only need to store p1 ` 400 ` 400q ˆ p values rather than everything.

Original Picture:  rank = 400

200 400

100

200

300

400

Compressed Picture:  rank = 1

200 400

100

200

300

400

Compressed Picture:  rank = 10

200 400

100

200

300

400

Compressed Picture:  rank = 20

200 400

100

200

300

400

Compressed Picture:  rank = 40

200 400

100

200

300

400

Figure I.6. Compressing an image of full rank 400 into lower ranks.
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With the example image above, we note that when rank is 10, the image is roughly recognizable, where
as at rank 40, the image is clear enough. {

I.5 Projection

Definition I.5.1. Idempotent.

For matrix P P Cmˆm is idempotent ot projector if P2 “ P. {

Hence, for all x P Cm, we have P.x “ P2.x, i.e., P.x “ PpP.xq.

Definition I.5.2. Orthogonal Projector on Vector.

For a fixed nonzero v P Cm, we define that orthogonal projector onto v as:

Pv “
1

}v}2 vv˚ “
vv˚

v˚v
. {

Geometrically, we may represent the projector as:

v

x x ´ Pvx

x ´ Pvx

0

Figure I.7. Geometric feature of the Orthogonal Projector.

Theorem I.5.3. Geometric Properties with Orthogonal Projection.

For all x P Cm, we have:

(i) Pvx P spantvu, i.e., y ∥ v, and

(ii) x ´ Pvx K v.

Proof. (i) For the projector, we have:

Pvx “
1

}v}2 vv˚x “
v˚x
}v}2 v “ kv “ spantvu.

(ii) For the inner product:

v˚ px ´ Pvxq “ v˚x ´ v˚

ˆ

1
}v}2 vv˚x

˙

“ v˚x ´
1

}v}2 v˚vv˚x “ 0.

Proposition I.5.4. Orthogonal Projector is Idempotent.

Let Pv be the orthogonal projector onto v, P2
v “ Pv.
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Proof. We may deduce that:

P2
v “

ˆ

1
}v}2 vv˚

˙ ˆ

1
}v}2

˙

vv˚ “
1

}v}4 vv˚vv˚

“
x˚v
}v}4 vv˚ “

1
}v}2 vv˚ “ Pv.

Recall that if β “ tv1, ¨ ¨ ¨ , vru is an orthogonal basis of a subspace V Ă Cm, then for all x P V, we can
write:

x “ c1v1 ` c2v2 ` ¨ ¨ ¨ ` crvr,

where each ci “
v˚

i x
}vi}

2 for all i “ 1, 2, ¨ ¨ ¨ , r.

Only when we have a orthogonal basis, we have the following sum:

x “
v˚

1 x
}v1}2 v1 `

v˚
2 x

}v2}2 v2 ` ¨ ¨ ¨ `
v˚

r x
}vr}2 vr “ Pv1 x ` Pv2 x ` ¨ ¨ ¨ ` Pvr x.

However, on non orthogonal basis, this might not be true.

Let tv1, v2u be an orthogonal basis and let tw1, w2u be a non-orthogonal basis in R2, we can present the
following projections of x P R2.

Pv1 x

Pv2 x x “ Pv1 x ` Pv2 x

v1

v2

Pw1 x

Pw2 x Pw1 x ` Pw2 x

w1

w2 x

Figure I.8. Projection with orthogonal basis (left) and non-orthogonal basis (right).

Proposition I.5.5. Complementary Projector is Project.

If P P Cmˆm is a projector, then Id ´P is also a projector.

Proof. Note that:

pId ´Pq2 “ pId ´PqpId ´Pq “ Id2 ´P ´ P ` P2 “ Id2 ´P ´ P ` P “ Id2 ´P.

Remark I.5.6. Kernel and Image of Complementary Projector.

Consider a orthogonal projector on a line v ‰ 0, and for v P Cm, with Pv “ vv˚{}v}2, so we have:

pId ´Pqx “ x ´ Pvx.

Recall the kernel and image of the projector:

impPvq “ spantvu,

kerpPvq “ tw : v˚w “ 0u “ pspantvuqK.

However, for the complementary projector, we have:

impId ´Pvq “ tw : v˚w “ 0u “ kerpPvq,

kerpId ´Pvq “ spantvu “ impPvq.
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{

For any Idempotent matrices P2 “ P, we first find ker P such that:

w “ x ´ P.x,

We find that:
P.w “ P.x ´ P2.x “ P.x ´ P.x “ 0.

Hence, w P ker P.
Also, we have w ´ pId ´Pq.x P impId ´Pq.

Theorem I.5.7. Idempotent ùñ Image and Kernel Relation.

If P “ P2, then:
impId ´Pq “ ker P.

Moreover:
im P “ kerpId ´Pq.

Proof. (i) (impId ´Pq Ď ker P:) We let w P impId ´Pq be generic, then there exists x such that:

w “ pId ´Pq.x “ x ´ P.x,

hence:
P.w “ P.x ´ P2.x “ P.x ´ P.x “ 0.

Therefore, w P ker P.
(impId ´Pq Ě ker P:) Let w P ker P be generic, i.e., P.w “ 0, then we have:

pId ´Pq.w “ w ´ P.w,

which results in w “ pId ´Pq.w, so w P impId ´Pq, as desired.

(ii) Let Q “ Id ´P, by the previous part, we have:

impId ´Qq “ ker Q,

hence, by Id ´Q “ Id ´ Id `P “ P, hence:

im P “ kerpId ´Qq.

Proposition I.5.8. Idempotent ùñ Intersection of Image and Kernel is Trivial.

Let P “ P2 be idempotent:
im P X ker P “ t0u.

Proof. We let w P im P X ker P be trivial, then:
$

&

%

w P im P “ kerpId ´Pq,

w P ker P.
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This implies that:
$

&

%

pId ´Pq.w “ 0,

P.w “ 0,

which implies that w ´ P.w “ 0, so w “ 0.

im P

x

y

ker P

0
w

Figure I.9. Kernel and image of P as idempotent.

Note that suppose dimpim Pq “ r, by rank-nullity, we have dimpker Pq “ m ´ r, hence all dimensions are
captured by the image and the kernel, that can be represented by direct sum that:

im P ‘ ker P “ Cm.

Thus, any x P Cm can be uniquely decomposed into:

x “ y ` w,

where y P im P and w P ker P.

To compute the y and w above, we have:

y P im P “ kerpId ´Pq,

hence resulting in:
pId ´Pq.y “ 0,

hence y “ P.y, and by acting P on x, we have:

P.x “ P.y ` P.w “ y,

hence resulting in:
$

&

%

y “ P.x,

w “ x ´ y.

Remark I.5.9. Eigenvalues and Diagonalizability.

Assume P “ P2 is idempotent:

(i) For all x P ker P, we have P.x “ 0, hence P.x “ 0.x.

(ii) For all x P im P “ kerpId ´Pq, we have pId ´Pq.x “ 0, so x “ P.x hence P.x “ 1.x.

(iii) Hence, for λ “ 0, the eigenvalue has geometric multiplicity of r, and the eigenvector has geometric
multiplicity of m ´ r.

In conclusion, idempotent implies diagonalizability. {
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Proposition I.5.10. Gram-Schmidt Process.

Let tv1, v2, ¨ ¨ ¨ , vpu be a basis of a subspace V Ă Cm, the Gram-Schmidt Process allows us to construct an
orthogonal basis tu1, u2, ¨ ¨ ¨ , upu such that spantv1, v2, ¨ ¨ ¨ , vpu “ spantu1, u2, ¨ ¨ ¨ , upu.

Proof. The construction of the Gram-Schmidt is as follows:

(i) Let u1 “ v1.

(ii) We construct u2 that is orthogonal to v1, let:

u2 “ v2 ´ component of v2 that is parallel to u1 “ v2 ´
u˚

1 v2

}u1}2 u1.

Note that readers can verify that spantu1, u2u “ spantv1, v2u.

(iii) For u3m we think of it as:

u3 “ v3 ´
u˚

1 v3

}u1}2 u1 ´
u˚

2 v3

}u2}2 u2.

This can be illustrated in R3 here, as follows:

spantu1, u2u

v3 projected to u1

v3 projected to u2

u1

u2

u3

v3

Figure I.10. Subtracting the orthogonal projections gives the orthogonal component.

(k) At step k, we have:

uk “ vk ´

k´1
ÿ

j“1

u˚
j vk

}uj}
2 uj.

Hence, we have completed the construction for finitely dimensional basis.

Remark I.5.11. 3rd Step of Gram Schmidt.

Consider the built:
Q2 “

”

q1 q2

ı

Here, the projector on spantq1, q2u has:
T2 “ Q2Q2˚,

which, by block matrix multiplication, leads to:

T2A3 “ Q2Q˚
2 A3 “ pq˚

1 A3qq1 ` pq˚
2 A3qq2,
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Hence, we have:
u3 “ A3 ´ T2A3 “ pId “ T2qA3,

so we can define:
P3 “ Id ´T2, so u3 “ P3A3, hence q3 “

}u3}

u3
.

{

Theorem I.5.12. For Idempotent, Hermitian ðñ im P K ker P.

Suppose P “ P2 is idempotent:
P˚ “ P ðñ ker P K im P.

Proof. (ùñ:) Note that for any linear map P, ker P K impP˚q, hence P “ P˚ implies ker P K im P.
(ðù:) We choose:

β “ tq1, q2, ¨ ¨ ¨ , qru,

γ “ tqr`1, qr`1, ¨ ¨ ¨ , qmu,

as the orthonormal basis of im P and ker P, respectively. From assumption that ker P K im P, then β K γ,
so we have:

P.q1 “ q1, P.q2 “ q2, ¨ ¨ ¨ , P.qr “ qr, P.qr`1 “ 0, ¨ ¨ ¨ , P.qm “ 0.

hence, our matrix can be represented as:
”

P.q1 P.q2 ¨ ¨ ¨ P.qr P.qr`1 ¨ ¨ ¨ P.qm

ı

“

”

q1 ¨ ¨ ¨ qr 0 ¨ ¨ ¨ 0
ı

Hence, we have:

Q˚PQ “

»

—

—

—

—

—

—

—

—

—

—

–

q˚
1
...

q˚
r

q˚
r`1
...

q˚
m

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

”

q1 ¨ ¨ ¨ qr 0 ¨ ¨ ¨ 0
ı

“

»

—

—

—

—

—

—

—

—

—

—

–

1 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
...

. . .
...

...
. . .

...
0 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0
0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0
...

. . .
...

...
. . .

...
0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

in which the top r ˆ r rows are non-trivial. Thus:

Q˚PQ “ D,

hence P “ QDQ˚, so P˚ “ pQDQ˚q˚ “ pQ˚q˚D˚Q˚ “ QDQ˚ “ P.

In fact, we may simplify the above prove by noticing orthogonality. Since the eigenvalues are non-negative,
we have P “ QDQ˚ being the SVD of P where U “ Q, Σ “ D and V “ Q.
If we are considering the parts of the nonzero entries of the matrices, we have P “ Q̃Σ̃Q̃˚ “ Q̃ Id Q̃˚ “ Q̃Q̃˚.
Note that:

Q̃ “

”

q1 ¨ ¨ ¨ q2

ı

is the orthonormal basis of the range, hence inducing a rank-one decomposition, that is:

P “ q1q˚
1 ` q2q˚

2 ` ¨ ¨ ¨ ` qrq˚
r .

Recall that doe the projection, we have:

Pqi “
qiq˚

i
}qi}

2 “ qiq˚
i .
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Again, we would ask the question. What if the basis we have for im P is not orthonormal?

V “ im P

A1

A2

v3

y “ P.x

Figure I.11. Projections when the basis is not orthogonal.

In such case, we have:
V “ spantA1, A2, ¨ ¨ ¨ , Aru,

which are linearly independent but not necessarily orthonormal. Hence, we want to find an m ˆ n matrix
P with the property that for all x P Cm:

y “ P.x P V⊣\⌈w “ x ´ y K V.

Proposition I.5.13. Matrix with full rank has Hermitian compose itself Invertible.

For A being a m ˆ r matrix with dimpim Aq “ r, A˚ A is invertible.

Definition I.5.14. Pseudo Inverse of a Matrix.

Suppose A is m ˆ r and dimpim Aq “ r, we want to solve that:

A.x “ b with b P im A.

Hence, for A˚ Ax “ A˚b since A˚ A is square and invertible, then x “ pA˚ Aq´1 A˚b, and we have:

A` “ pA˚ Aq´1 A˚

as the pseudo-inverse of A. {

Theorem I.5.15. Pseudo Inverse Conditions.

For a matrix P P Cmˆm that satisfies for all x P Cm that:

(i) y “ P.x P V, and

(ii) w “ x ´ y K V,

is P “ ApA˚ Aq´1 A˚ for A being the matrix composed of the linearly independent vectors.

Proof. By (i), for any x P Cm, we want y “ P.x P V, i.e.:

y “ P.x “ c1A1 ` c2A2 ` ¨ ¨ ¨ ` crAr “

”

A1 ¨ ¨ ¨ Ar

ı

loooooooomoooooooon

A

»

—

—

–

c1
...

cr

fi

ffi

ffi

fl

loomoon

c

“ A.c.
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By (ii), we have:

x ´ P.x K A1 ùñ A1
˚px ´ P.xq “ 0

...
...

...

x ´ P.x K Ar ùñ Ar
˚px ´ P.xq “ 0

Hence, we can get:
»

—

—

–

A˚
1

...
A˚

r

fi

ffi

ffi

fl

.px ´ P.xq “ 0.

Hence, A˚px ´ P.xq “ 0, then A˚px ´ A.cq “ 0, xp A˚.x “ A˚Ac, which leads to c “ pA˚ Aq´1 A˚.x, so:

P.x “ A.c “ ApA˚ Aq´1 A˚x for all x.

Remark I.5.16. Special Cases with Projector.

If tA1, ¨ ¨ ¨ , Aru are orthonormal, then A˚ A “ r Id and P “ AA˚.
If V “ spantvu, so A “

”

v
ı

, then:

P “ vpv˚vq´1v˚ “
vv˚

}v}2 ,

which the orthogonal projection on a line. {

I.6 QR Decomposition

Proposition I.6.1. Gram Schmidt for Normalization.

Let β “ tA1, A2, ¨ ¨ ¨ , Anu be a basis, the Gram-Schmidt process, gives γ “ tq1, q2, ¨ ¨ ¨ , qnu, so we have:

u1 “ A1 ÝÑ q1 “
u1

}u1}

u2 “ A2 ´
u˚

1 A2

}u1}
u1 ÝÑ q2 “

u2

}u2}

u3 “ A3 ´
u˚

1 A3

}u1}
u1 ´

u˚
2 A3

}u2}
u2 ÝÑ q3 “

u3

}u3}
.

For this part, our goal is to have given a matrix A P Cmˆn, we want to factor it as A “ QR, where
Q P Cmˆm is unitary and R P Cmˆn is upper triangular, i.e.:

”

A1 ¨ ¨ ¨ An

ı

looooooooomooooooooon

”

q1 ¨ ¨ ¨ qn qn`1 ¨ ¨ ¨ 1n

ı

loooooooooooooooooooooomoooooooooooooooooooooon

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

˚ ˚ ¨ ¨ ¨ ˚

0 ˚ ¨ ¨ ¨ ˚

...
...

. . .
...

0 0 ¨ ¨ ¨ ˚

0 0 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

A “ Q ˝ R.

P P P

Cmˆn Cmˆm Cmˆn
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Remark I.6.2. Reprise to Gram Schmidt.

We can first use Gram Schmidt to make a basis orthogonal, and normality is trivial as normalizing in the
induced normed vector space is straightforward. {

Since with orthonormal basis, we have v P spanpβq as for all Ai P span β that:

Ai “

n
ÿ

j“1

pq˚
j Ajqqj “

i
ÿ

j“1

pq˚
j Ajqqj ` 0 ` ¨ ¨ ¨ ` 0 “ pq˚

1 A1qq1 ` pq˚
2 A2qq2 ` ¨ ¨ ¨ ` pq˚

i Aiqqi.

Using the block multiplication, we have:

A “

”

A1 ¨ ¨ ¨ An

ı

“

”

q1 ¨ ¨ ¨ qn

ı

»

—

—

—

—

—

—

—

—

—

–

q˚
1 A1 q˚

2 A2 q˚
3 A3 ¨ ¨ ¨ q˚

nAn

0 q˚
2 A2 q˚

3 A3 ¨ ¨ ¨ q˚
nAn

0 0 q˚
3 A3 ¨ ¨ ¨ q˚

nAn

0 0 0 ¨ ¨ ¨ q˚
nAn

...
...

...
. . .

...
0 0 0 ¨ ¨ ¨ q˚

nAn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Here, we may write this as the pseudo code that:

input: A_1, ..., A_n

output: q_1, ..., q_n

for j = 1, ..., n:

u_j := A_j

for i = 1, ..., j - 1: % There is nothing for j = 1

r_ij := q_i^* A_j

u_j := u_j - r_ij q_j

% The above line has risk of Catastrophic Cancellation when subtracting similar number.

% There may be large rounding of error.

end

q_j := u_j / ||u_j|| % Marked Step

r_jj := a_j^* A_j

Remark I.6.3. Case when rank is less.

Let A has rank r ă n, we should be pick arbitrary unit vectors orthogonal to the other basis at the marked
step to keep going with Gram Schmidt. {

We get β “ tq1, ¨ ¨ ¨ , qnu as a orthonormal set:

• when A is full rank, im A “ spanpβq, and

• in any case im A Ă spanpβq.

Hence we have:
A “ Q̃R̃ “

”

q1 ¨ ¨ ¨ qqn
ı

R̃.

• We want to find tqn`1, ¨ ¨ ¨ , 1nu as orthonormal set orthogonal to β, with

• R̃ having m ´ n zero rows.
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In particular, the (classical) Gram Schmidt will introduce large rounding error compounding up. Here,
we can introduce the modified Gram Schmidt for computing purposes.

Proposition I.6.4. Modified Gram Schmidt.

Given tA1, A2, ¨ ¨ ¨ , Anu, columns of A “

”

A1 A2 ¨ ¨ ¨ An

ı

(i) Initialize u1 “ A1 and q1 “ u1{}u1}.

(ii) Have u2
p1q “ A2, with:

u2 “ u2
p2q “ Pq1 u2

p1q “ pId ´q1q1
˚qu2

p1q “ u2
p1q ´ q1pq˚

1 up1q
2 q “ u2

p1q ´ pq˚
1 up1q

2 qq1.

(j) For the j-th step, we have:

up1q
j “ Aj,

up2q
j “ up1q

j ´ pq˚
1 up1q

j qq1,

...

uj “ upjq
j “ upj´1q

j´1 ´ pq˚
j´1upj´1q

j qqj´1.

for i = 1, ..., n: % first loop to initialize all u_i’s

u_i := A_i

for i = 1, ..., n: % calculating each step

r_ii := ||u_i||

q_i := u_i / ||u_i||

for j = i + 1, ..., n:

r_ij := q_i^* u_j

u_j := u_j - r_ij * q_i

Definition I.6.5. Computational Complexity.

The complexity is measured by FLOPs: each operation is considered to operate with a unit time. {

Example I.6.6. Complexity of Inner Product.

Recall r_ ij := q_iˆ*u_j is an inner product. In general, we consider x˚y for any x, y P Cm, hence there
will be m multiplications and m subtractions, hence it has 2m. {

Hence, if we consider the second iterated loop with j with the above pseudo-code, we have the total
number of operations being:

n
ÿ

i“1

n
ÿ

j“i`1

4m “ 4m
n

ÿ

i“1

n
ÿ

j“i`1

1 “ 4m ¨
n2 ´ n

2
„ 2mn2.

If A P Cmˆm is Hermitian, i.e., A˚ “ A, then we have the orthogonal diagonalization that Q˚ AQ “ D,
where Q is unitary. However, we want to have the decomposition for the more general A, that is:
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Definition I.6.7. Householder Triangularization.

If A P Cmˆn in which m ě n, and sometimes we require dimpim AqA “ n, then we have orthogonal
triangularization that:

Q˚ A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

˚ ˚ ¨ ¨ ¨ ˚

0 ˚ ¨ ¨ ¨ ˚

...
...

. . .
...

0 0 ¨ ¨ ¨ ˚

0 0 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ R,

where Q P Cmˆm is unitary. (This is equivalent with A “ QQ˚A “ Q, which is just QR decomposition). {

The idea is that let:
Q˚ “ QnQn´1 ¨ ¨ ¨ Q2Q1,

with each Qk being unitary, we have:

Q “ pQ˚q˚ “ Q˚
1 Q˚

2 ¨ ¨ ¨ Q˚
n .

Example I.6.8. A 5 ˆ 3 Matrix with Householder Triangularization.

Let A be a 5 by 3 that:

A “

»

—

—

—

—

—

—

–

˚ ˚ ˚

˚ ˚ ˚

˚ ˚ ˚

˚ ˚ ˚

˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

so by 3 steps of each Q1, Q2, and Q3 to obtain that:

A “

»

—

—

—

—

—

—

–

˚ ˚ ˚

˚ ˚ ˚

˚ ˚ ˚

˚ ˚ ˚

˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Q1
ÞÝÝÑ

»

—

—

—

—

—

—

–

˚ ˚ ˚

0 ˚ ˚

0 ˚ ˚

0 ˚ ˚

0 ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Q2
ÞÝÝÑ

»

—

—

—

—

—

—

–

˚ ˚ ˚

0 ˚ ˚

0 0 ˚

0 0 ˚

0 0 ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Q3
ÞÝÝÑ

»

—

—

—

—

—

—

–

˚ ˚ ˚

0 ˚ ˚

0 0 ˚

0 0 0
0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where Q1 changes entirely the first column, Q2 changes all except the first row for the second column,
and Q3 changes all except the first two rows for the third column. {

Recall that unitary (Q˚ “ Q´1) ðñ }Q.x} “ }x} for all x, which is isometry. Hence, the structure of Qn is:

Qk “

«

Id 0
0 F,

ff

so we have:
«

Id 0
0 F

ff

¨

«

T B
0 X

ff

“

«

T B
0 FX

ff

.

Here, we want Qk to be unitary, that is having orthonormal columns. So we need columns of F to be
orthonormal, so equivalently, F must be an isometry on Cm´pk´1q.
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Here, we take x “

»

—

—

–

˚

...
˚

fi

ffi

ffi

fl

P Cm´pk´1q, so we have F.x “

»

—

—

–

}x}

...
0

fi

ffi

ffi

fl

, so we have:

x1

x2

x3

x

w

v
}x}e1

Figure I.12. Illustration of Householder reflection.

Hence, we have that F.x ´ x “ }x}e1 ´ x, hence, we have:

w “ orthogonal projection of x onto v “ Pvx “
vv˚

}v}2 x,

so we have that v “ ´2w. Therefore, we have:

F.x “ x ´ 2w “ Id .x ´ 2
vv˚

}v}2 x,

hence we have:
F “ Id ´2

vv˚

}v}2 .

Theorem I.6.9. Properties of Householder Reflection.

For the F being a Householder Reflection, we have the following properties:

(i) F is unitary,

(ii) F is Hermitian,

(iii) F´1 “ F or F2 “ Id.

Remember that we have Qk “

«

Id 0
0 F

ff

, we have:

(i) Qk is unitary,

(ii) Qk Hermitian, and

(iii) Qk is involuntary.

Remark I.6.10. Computational Complexity for Householder Triangularization.
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We could haver defined:
F.x “ ´}x}ei,

we choose F.x that is farthest away from x, and the trick is choose F.x “ ´sgnpx1q}x}e1. {

So we have computational cost is „ 2mn2 ´ 2
3 n3.

Example I.6.11. Householder QR Algorithm.

For the algorithm, we do:

for k = 1 ... n:

x = A_k:m,k

v_k = sgn(x_i)||x||e_1 + x

v_k = v_k / ||v_k||

A_k:m,k:n = A_k:m,k:n - 2v_k(v_k^* A_k:m,k:n)

In particular, we have:
Apkq “ Qk Apk´1q “ QkQk´1 ¨ ¨ ¨ Q1 A,

and:
Apnq “ R “ QnQn´1 ¨ ¨ ¨ Q1 A.

We want to solve that A.x “ b, which is equivalently QR.x “ b, that is R.x “ Q˚.b.
To calculate Q˚b, we use:

for k = 1 ... n:

b_k:m = b_k:m - 2v_kv_k^*b_k:m

And to compute Q.u, we use:

for k = n ... 1:

u_k:m = u_k:m’ - 2v_kv_k^*u_k:m.

In particular Aa : b, c : d meaning to obtain the ath to bth row and cth column to dth column of A. {

Remark I.6.12. Operation Count for Householder QR Decomposition.

Operation count is dominated by innermost for loop, that is the last line in Householder algorithm.
Note that A_k:m,j has length l “ m ´ pk ´ 1q, lets do operator count in terms of l, that is:

• A_k:m,j´2v_k(v_k̂*A_k:m,j).

• Dot Product: l multiplications and l ´ 1 additions.

• scalar multiplication: l multiplications.

• subtraction: l subtractions.

Hence, there are a total of 4l ´ 1 flops. This meas that we do approximately 4 flops for every entry operated
on.
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Then to count the total number of entries. For the kth step, we have:
n

ÿ

k“1

`

m ´ pk ´ 1q
˘`

n ´ pk ´ 1q
˘

“

n
ÿ

k“1

`

mn ` p´m ´ nqpk ´ 1q ` pk ´ 1q2˘

“ mn2
p ´ m ´ nq

n
ÿ

k“1

pk ´ 1q `

n
ÿ

k“1

pk ´ 1q2

“ mn2 ` p´m ´ nq
1
2

npn ` 1q `
1
2

npn ` 1qqp2n ` 1q

« mn2 ´
1
2

mn2 ´
1
2

n3 `
1
3

n3 “
1
2

mn2 ´
1
6

n3.

By multiplying 4, we have 2mn2 ´ 2
3 n3. (Recall that this was 2mn2 for Gram-Schmidt process.) {
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II Applications with Computer Programming

II.1 MATLAB Preliminaries

The MATLAB programs can be helpful in conducting computations, and its embedded arrays allow linear
algebra computations.

x = (-128:128)’/128; % Create a column from -128 to 128 (inclusively) and normalize

A = [x.^0 x.^1 x.^2 x.^3]; % Create Matrix with each column being from -1 to 1 with 257 steps.

[Q,R] = qr(A,0); % QR factorization

scale = Q(257,:); % Calculate the scale

Q = Q*diag(1./scale); % Modify Q via diagonal matrix

plot(x,Q); % Plot x against Q.

Figure II.1. MATLAB plot on the above code snippet.

Example II.1.1. Computation Error of Gram Schmidt.

First, we have the matrix as:

A ´

«

0.70000 0.70711
0.70001 0.70711

ff

.

By keeping 5 digits, we have:

Q “

«

0.70710 1.0000
0.80811 0.0000

ff

,

which is not very accurate. {

Of course, we may implement the (traditional) Gram Schmidt algorithm through MATLAB function. This
function on MATLAB takes in a matrix A and returns the factorization of Q and R.
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function [Q,R] = clgs(A)

n = length(A);

R = zeros(n);

Q = zeros(n);

V = zeros(n);

for j = 1:n

V(:,j) = A(:,j);

for i = 1:j-1

R(i,j) = Q(:,i)’*A(:,j);

V(:,j) = V(:,j) - R(i,j)*Q(:,i);

end

R(j,j) = norm(V(:,j),2);

Q(:,j) = V(:,j)./R(j,j);

end

end

II.2 Representation of Numbers

Consider the base 10 representation of 273, we have:

p273q10 “ 2 ˆ 102 ` 7 ˆ 101 ` 3 ˆ 100.

Definition II.2.1. Base 2 Representation.

In base 2 representation, all numbers are represented by 0’s and 1’s. {

For example, consider 100101 in binary, we have:

p100101q2 “ 1 ˆ 25 ` 0 ˆ 24 ` 0 ˆ 23 ` 1 ˆ 22 ` 0 ˆ 21 ` 1 ˆ 20 “ 32 ` 4 ` 1 “ 37.

Example II.2.2. Converting Base 10 to Base 2.

Consider p156q10 and we want to make it base 2, we have:

156 “ 78 ˆ 2 ` 0,

78 “ 39 ˆ 2 ` 0,

39 “ 19 ˆ 2 ` 1,

19 “ 9 ˆ 2 ` 1,

9 “ 4 ˆ 2 ` 1,

4 “ 2 ˆ 2 ` 0,

2 “ 1 ˆ 2 ` 0,

1 “ 0 ˆ 2 ` 1.

Hence, we have p156q10 “ p10011100q2. {

Then, we consider the representation of floating point number. Without loss of generality, we represent
numbers in r0, 1q.
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Consider the base 10 number, we have:

p0.345q10 “ 3 ˆ 10´1 ` 4 ˆ 10´2 ` 5 ˆ 10´3.

For base 2 number, we consider:

p0.1101q2 “ 1 ˆ 2´1 ` 1 ˆ 2´2 ` 1 ˆ 2´4 “ 0.5 ` 0.25 ` 0.625 “ p0.8125q10.

Example II.2.3. Converting Base 10 Floating to Base 2.

Here, we consider converting base 10 floating points to base 2 floating points, namely p0.1q10:

0.1 0.
0.1 ˆ 2 “ 0.2 ă 1 0.0
0.2 ˆ 2 “ 0.4 ă 1 0.00
0.4 ˆ 2 “ 0.8 ă 1 0.000
0.8 ˆ 2 “ 1.6 ě 1 0.0001
0.6 ˆ 2 “ 1.2 ě 1 0.00011
0.2 ˆ 2 “ 0.4 ă 1 0.000110
...

...

Notice that there is a repeating pattern, so we have:

p0.1q10 “ p0.0001100110011 ¨ ¨ ¨ q2 “ p0.00011q2.

This is a repeating decimals. If we were to reconvert, we have:
ˆ

1
2

˙4
`

ˆ

1
2

˙5
`

ˆ

1
2

˙8
`

ˆ

1
2

˙9
` ¨ ¨ ¨ “

«

ˆ

1
2

˙4
`

ˆ

1
2

˙5
ff «

1 `

ˆ

1
2

˙4
`

ˆ

1
2

˙8
` ¨ ¨ ¨

ff

“

ˆ

1
2

˙4 „

1 `
1
2

ȷ

1
1 ´ p1{2q4 “

3
2

ˆ
1
16

ˆ
1

15{16
“

1
10

.
{

The above example can account for some issues with the floating point inaccuracies in the representation
of numbers.

Definition II.2.4. IEEE Floating Point Representation.

For single precision, there are 32 bits, which is 4 bytes.

1 sign bit #e 8 exponent bits #f 23 mantissa bits

For double precision, there are 64 bits, which is 8 bytes.

1 sign bit #e 11 exponent bits #f 52 mantissa bits {

Here we have the bits being stored in the continue memory locations. For converting to a base 10 number,
we have:

N “ p´1qsp1 ` f q2e´127.

Here, 127 is the bias for single precision, note that 1 ` f P r1.2q.

Let f “ p0.m1 ¨ ¨ ¨ m23q2, we have it as:

m1

ˆ

1
2

˙1
` ¨ ¨ ¨ ` m23

ˆ

1
2

˙23
.

• For e “ 127, we just have ˘p1.m1 ¨ ¨ ¨ m23q2,
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• For e “ 128, we just have ˘p1m1m2. ¨ ¨ ¨ m23q2, which has one less precision, that is 2´22, and it is in
r2, 4q,

• For e “ 129, we just have ˘p1m1m2m3. ¨ ¨ ¨ m23q2, which has two less precision, and it is in r4, 8q.

For the smaller numbers, we have:

• For e “ 126, we have p0.1m1 ¨ ¨ ¨ m23q2, so the precision is one more, that is 2´24, the size of interval is
r1{2, 1q.

• For e “ 127, we have p0.1m1 ¨ ¨ ¨ m23q2, so the precision is two more, , the size of interval is r1{4, 1{2q.

Example II.2.5. Converting Base 10 to FP.

Consider converting from base 10 to FP, we have:

p15q10 “ p1111q2, p0.1q10 “ p0.01111q2,

thus we have:
p15.1q10 “ 1111.00011 “ 1.11100011 ˆ 23

Hence the exponent is 127 ` 3 “ 130, and the mantissa being 11100011, up to the correct number of digits:

1 sign bit #e 8 exponent bits #f 23 mantissa bits

0 10000010 11100011001100110011001

In this case, we truncated all the digits afterwards, causing imprecisions. {

In particular, the catastrophic cancellation since we are not considering the digits afterwards.

Even with double precisions points, the we still have the base as:

p´1qsp1 ` f q 2e´1023
loomoon

bias

,

Definition II.2.6. Machine Representable Number.

A Machine representable number (MRN) is a number that can be represented exactly fppxq “ x. {

Let f “ p0.m1m2 ¨ ¨ ¨ m52q2, and we have the following case:

• For e “ 1023, we have the values being in r1, 2q, with the coefficient of p1{2q52 » 2.220 ˆ 10´16.

• For e “ 1024, we have the values being in r2, 4q, with the coefficient of p1{2q51 » 4.441 ˆ 10´16.

• For e “ 1025, we have the values being in r4, 8q, with the coefficient of p1{2q50 » 8.882 ˆ 10´16.

• For e “ 1077, we have the values being in r252, 253q, with the coefficient of p1{2q0 “ 1.

For any generic e, we have the following:

• Interval: r2e´1023, 2e´1022q,

• Width of interval: 2e´1022 ´ 2e´1023 “ 2e´1023,

• Step size: 2´52`e´1023 “ 2e´1075, and
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• Number of MRNs: 2´52.

Example II.2.7. Largest and Smallest (Positive) MRN.

The largest MRN is 111...1
looomooon

52 ones

000...0
looomooon

972 zeros

» 10304. Here, the step size is 101024´52.

The smallest MRN is 0. 000...0
looomooon

1022 zeros

1 000...0
looomooon

52 ones

“ 2´1023 » 2.470 ˆ 10´324. (This is evaluated to zero on com-

puters).
The next smallest (real smallest) is 2´1023 ` 2´p1023`52q. {

For each fixed e, it represents an interval, which got larger when e grows larger, with the numbers inside
being uniformly distributed along each interval:

“ “̆ “̆ ˘

Remark II.2.8. Zero, Infinity, and NaN in Machine Representation.

For floating numbers, 0, ˘8, and NaN (not a number) cannot be represented conventionally, but they are
distributed with a special slot.

• For 0, we have:

1 sign bit #e 11 exponent bits #f 52 mantissa bits

0 or 1 000...0 000...0

• For 8, we have:

1 sign bit #e 11 exponent bits #f 52 mantissa bits

0 or 1 111...1 000...0

For the ´8, it makes the sign bit as negative.

• For NaN, we have:

1 sign bit #e 11 exponent bits #f 52 mantissa bits

0 or 1 111...1 111...1
{

Definition II.2.9. Machine Epsilon.

The machine epsilon, denoted ϵmachine, is the distance between 1 and the next larger MRN. {

Example II.2.10. Machine Epsilon for 1.

For the double precision floating point, we represent the number 1 as:

1 sign bit #e 11 exponent bits #f 52 mantissa bits

0 01111111111 000...0



N.L.A. Notes 44

where the exponent is 1023 in base 10.
Therefore, the next MRN is:

1 sign bit #e 11 exponent bits #f 52 mantissa bits

0 01111111111 000...01

which is exactly 1 ` 2´52, or the step size for e “ 1023 is always 2´52. Therefore:

ϵmachine “ 2´52.

{

Remark II.2.11. Absolute and Relative Error.

Let x be a positive real number, we have:

• Let fppxq be the floating point representation of x.

• We assume that we are in double precision.

From x, you first determine e, and then we find the number on the interval (for simplicity, we just represent
4 points on the number line):

“ ˘Ó

Ò

x

fppxq

Suppose we have just truncation, we have:

• The absolute error is |x ´ fppxq| ď 2´52`e´1024, which is the step size.

• The relative error is
|x ´ fppxq|

|fppxq|
ď

2´52`e´1024

|p´1qsp1 ` f q2e´1024|
= 2´52

1` f ď ϵmachine.

The key conclusion is that the relative error is bounded above by the machine epsilon.
Alternatively, if we consider the numerator of the relative error as x, we have:

|x ´ fppxq

|x|
“

|x ´ fppxq|

|fppxq|
¨

|fppxq|

|x|
ď ϵmachine.

Then, we consider the rounding off, so we have:

“ ˘Ó

Ò

x

fppxq

Now, the absolute error is halved, and relative error is bounded by ϵmachine{2. {

Here, we shall be concerned on how we can trust the computer.

For double precisions floating point, we have:

ϵmachine “ 2´52 » 2.22045 ˆ 10´16.
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So we can keep about 15 to 16 digits accurate

Example II.2.12. MATLAB Illustration on Numbers.

Below is a code segment of the illustration on MATLAB

>> 1.23456789012345678901234567890

ans = 1.23456789012346

>> ans + 100000000

ans = 1.000000012345679e+008

>> ans - 100000000

ans = 1.234567890553165

Note that for the second operation, the operation truncates the digits after the first 9, and when the same
number is subtracted, it results in some junk digits.
More specifically, look at the following code snippet:

>> 1.2345678901234567890 + 10000000 - 10000000

ans = 1.234567890553165

>> 1.2345678901234567890 + (10000000 - 10000000)

ans = 1.234567890123456

Here, we can observe that associativity does not hold over computer level computations. {

This is caused by the similarity of significant digits, so only the first 15-th digits are exact, and from 16-th
digits afterwards, they may be affected by round-off.

This is an example of the Catastrophic Cancellation, which occurs when computing x ´ y, where x ą y but
x » y.
There, x ´ y can result in fewer significant digits than x and/or y.

Example II.2.13. Trick to Eliminate Subtraction.

When we compute:

y “

?
x2 ` 4 ´ x

2
for x very large, and x ą 0.

For x “ 1010.5, MATLAB returns y “ 0. However, we can have:

y “

?
x2 ` 4 ´ x

2
¨

?
x2 ` 4 ` x

?
x2 ` 4 ` x

“
x2 ` 4 ´ x2

2p
?

x2 ` 4 ` xq
“

2
?

x2 ` 4 ` x
,

and without subtractions inside, we have the output approximately as 3.162278 ˆ 10´11. {

Remark II.2.14. Real Number and Floating Point.

Let x P R, and fppxq be the floating point representation of x, which is a MRN, and it is defined as:

ϵmachine “ p´1qsp1 ` f q2e´1023.
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The machine epsilon is determined as the absolute value of the difference between 1 and the next larger
MRP, that is 2´52 for double precision floating point number.
The relative error in floating point approximating is:

|x ´ fppxq|

|x|
.

Whereas for truncation, we redefine:

ϵmachine “
1

2p1 ´ 2´52q
2´52.

Thus, in both cases, we have:
|x ´ fppxq|

|x|
ď ϵmachine.

{

Below, we introduce a “axiom” of floating point representations, but it turns out to be direct from the
previous remark.

Proposition II.2.15. Property of Floating Point Representation.

For all x P R, there exists ε (positive or negative) with |ε| ď ϵmachine such that:

fppxq “ xp1 ` εq.

I.e., the relative distance between x and fppxq is always smaller than ϵmachine.

Proof. Without loss of generality, we let x ą 0, since x ă 0 is a similar case. We have:

´ϵmachinex ď fppxq ´ x ď ϵmachinex,

x ´ ϵmachinex ď fppxq ď x ` ϵmachinex,

xp1 ´ ϵmachineq ď fppxq ď xp1 ` ϵmachineq,

1 ´ ϵmachine ď
fppxq

x
ď 1 ` ϵmachine.

Therefore, there exists ε with |ε| ď ϵmachine such that:
fppxq

x
“ 1 ` ε,

so we have fppxq “ xp1 ` εq, as desired.

Then, we think about the floating point arithmetic.

Remark II.2.16. Notation for Arithmetics.

Here, we have R denote the real numbers, and F denote the machine representable numbers in floating
point with double precision. We think of fp : R Ñ F .
The four main arithmetic operations on R are `, ´, ˆ, and ˜.
The four main arithmetic operations on F are ‘, a, b, and

Ã

. {

Here, let ˚ be the generic operator, since we have F Ă R, we defined the maps in F naturally pre-
composing the inclusion ι : F ãÑ R and post-compose with the fp. Therefore, for any x1, y1 P F Ă R, we
defined the operation as:

x1 f y1 “ fp
`

ιpx1q ˚ ιpy1q
˘

“ fppx1 ˚ y1q.
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Here, by the property of floating point representation, we have:

x1 f y1 “ fppx1 ˚ y1q “ px1 ˚ y1q ¨ p1 ` εq,

where |ε| ď ϵmachine.

Definition II.2.17. Big O Notation.

Given two functions of real-valued inputs, aptq and bptq ą 0, we have aptq “ O
`

bptq
˘

as t Ñ 0 when there
exists C ą 0 such that |aptq| ď C ¨ bptq in a neighborhood of t “ 0, i.e., there exists some δ ą 0 such that the
statement holds for all |t| ă δ. {

Here, we can have an example with some function.

Example II.2.18. Sine Function in Big O.

sin t “ Op|t|q as t Ñ 0, since we have | sin t| ď |t| in Bδp0q for some δ ą 0. {

Remark II.2.19. Floating Point with Machine Epsilon.

If x1 “ fppxq, then:
|x ´ x1|

|x|
ă 1 ¨ ϵmachine,

thus, we have:
|x ´ x1|

|x|
“ Opϵmachineq.

We say that the relative error is of the order of ϵmachine. {
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III Computational Methods

III.1 Least Square Approximations

Consider A P Cmˆn with A “

”

A1 A2 ¨ ¨ ¨ An

ı

.

Remark III.1.1. Equivalence Conditions to Trivial Kernel.

For the above A, we have ker A “ t0u ðñ A1, ¨ ¨ ¨ , An are linearly independent ðñ dimpim Aq “ n.
In such case, we have m ě n, that is, it must be square or having more rows. {

Remark III.1.2. Existence and Uniqueness of Solutions to Linear Equation.

From linear algebra, with A.x “ b for matrix A and vectors x, b, we have:

(i) If b P im A, then there exists (at least) a solution to the linear equation.

(ii) If ker A “ t0u, the uniqueness is guaranteed.

If b R im A, then for all x, we have A.x ‰ b. {

Our goal is to choose x P Cn so that A.x » b, i.e., A.x is as close to b as possible.

This leads to the least square problem: Given a matrix A P Cmˆn and a vector b P Cm, we find x that
minimizes the residue:

ϵ “ }b ´ A.x}2

We are having the following assumptions:

(i) m ě n, and

(ii) dimpim Aq “ n ðñ ker A “ t0u.

Recall that we have ker A “ kerpA˚ Aq, so ker A “ t0u implies that A˚ A is invertible.

For the first case, we consider b P im A, so we have A.x “ b being consistent but overdetermined, i.e.,
there are more equations than variables. The following is a illustration when n “ 2:

A1

A2

b

x1A1

x2A2

Figure III.1. Overdetermined equation in n “ 2 plane for image.

Here, we then have A.x “ b implying that A˚ A.x “ A˚.b, in which A˚ A is invertible, hence x “

pA˚ Aq´1 A˚.b, in which we have:
A` “ pA˚ Aq´1 A˚ P Cn ˆ m,

which is the pseudo-inverse of A.



N.L.A. Notes 49

Proposition III.1.3. Properties of Pseudo-inverse.

For a pseudo-inverse of A, denoted A`, the following properties hold:

(i) A` A “ pA˚ Aq´1 A˚ A “ Idn,

(ii) AA` “ ApA˚ Aq´1 A˚ “ P.

Then, we shall consider the other case, i.e., if b R im A, then the minimizer of infxPCn }b ´ A.x}2 is still
x ´ A`.b, where x is the vector of coordinates of y with respect to A1, ¨ ¨ ¨ , An.

• For a generic x P Cn, we have z “ A.x P im A, and

• For any z P im A “ spantA1, ¨ ¨ ¨ , Anu, there exists x P Cn such that z “ A.x.

Remember that we want to minimize infxPCn }b ´ A.x}2, which is equivalent to minimizing infzPim A }b ´

z}2, which can be considered as follows:

im A

x1

x2

x3

b

P.b

Figure III.2. The projection onto the image span.

Proposition III.1.4. Minimizer of the Approximation Problem.

Let A P Cmˆn with m ě n, we have dimpim Aq “ n. We fix b P Cm arbitrarily. The minimizer of the
problem is:

inf
zPim A

}b ´ z}2

is z “ y, where y “ P.b “ AA`.b.
Equivalently, the minimizer of infxPCn }b ´ A.x}2 is x “ A`b.

Such situation can be applied onto linear regression in statistics.

Example III.1.5. Linear Regression Example.

Let data points in R2 be:
tpx1, y1q, ¨ ¨ ¨ , pxm, ymqu,

so the linear model can be considered as:

y “ β0 ` β1x ` β2x2 “

”

1 x x2
ı

.

»

—

–

β0

β1

β2

fi

ffi

fl

.
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When β0, β1, β2 are fixed, for each xi, the i-th prediction is:

ŷi “ β0 ` β1xi ` β2x2
i ,

and the i-th residue is:
ϵi “ yi ´ ŷi “ yi ´ pβ0 ` β1xi ` β2x2

i q,

so the sum of the square errors is:

SSEpβ0, β1, β2q “

n
ÿ

i“1

e2
i “

n
ÿ

i“1

”

yi ´ pβ0 ` β1xi ` β2x2
i q

ı2
.

Here, we use the trick by:

A “

»

—

—

–

1 x1 x2
1

...
...

...
1 xm x2

m

fi

ffi

ffi

fl

,

β “

»

—

–

β0

β1

β2

fi

ffi

fl

, b “

»

—

—

–

y1
...

ym

fi

ffi

ffi

fl

.

Here, we have:

b ´ A.β “

»

—

—

–

y1 ´ pβ0 ` β1x1 ` beta2x2
2q

...
ym ´ pβ0 ` β1xm ` beta2x2

mq

fi

ffi

ffi

fl

.

Therefore, we have:

}b ´ A.β}2 “

n
ÿ

i“1

”

yi ´ pβ0 ` β1xi ` β2x2
i q

ı2
“ SSEpβ0, β1, β2q,

so we are minimizing β̂ “ A`.b. {

Theorem III.1.6. Projections Minimize the Least Square Problem.

Let A P Cmˆn, with m ě n have dimpim Aq “ n (full rank). Let b P Rm ne arbitrary, the minimizer of the
problem is:

min
zPim A

}b ´ z}2,

is z “ y, where:
y “ Pb “ AA`b “ ApA˚ Aq´1 A˚b.

Equivalently, the minimizer of the problem minxPCn }b ´ A.x}2 is x “ A`.b.

The full rank condition is helpful when trying to solve A.x “ b, when b R im A, so for all x, A.x ‰ b.

Remark III.1.7. Computational Costs for Matrix Operations.

The computational cost to compute A` is:

• CpA˚ Aq „ 2mn2,

• C
`

pA˚ Aq´1˘

„ 8
3 n2, and

• C
`

pA˚ Aq´1 A˚
˘

„ 2mn2.
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Hence, the total computation cost for the projection for least square problem is 4mn2 ` 8
3 n3. {

Note that there are other ways to compute x “ A`.b by:

(i) Cholesky factorization,

(ii) QR factorization, and

(iii) SVD.

In particular, we have the QR factorization as:

A “ Q ˝ R,

P P P

Cmˆn Cmˆm Cmˆn

where R has the top n rows being upper triangular.

Moreover, we may use the reduced QR decomposition that A “ Q̃R̃ where we reduce to the n columns
for Q and R. However, we have:

Q̃˚Q̃ “

»

—

—

–

q˚
1
...

q˚
n

fi

ffi

ffi

fl

”

q˚
1 ¨ ¨ ¨ q˚

n

ı

“ Id .

Also, we have spantq1, ¨ ¨ ¨ , qnu “ spantA1, ¨ ¨ ¨ , Anu, so P “ Q̃pQ̃˚Q̃q´1Q̃˚ “ Q̃Q̃˚.

We let y be the orthogonal projection of b onto im A, that is:

y “ Pb “ Q̃Q̃˚b,

and let x be the coordinates of y with respect to tA1, ¨ ¨ ¨ , Anu, so:

y “

n
ÿ

i“1

xiAi “ A.x.

Therefore, we have A.x “ Q̃Q̃˚b, that is Q̃R̃x “ Q̃Q̃˚b, by post-compose Q̃˚, we can get R̃.x “ Q̃˚b,
which is easy to compute.

Remark III.1.8. Algorithm and Cost of the Minimization Process.

The inputs are A and b, and the output is x, where x “ A`.b, we do the following:

(i) compute the reduced QR decomposition of A (with the householder triangularization, its complexity
is 2mn2 ´ 2

3 n3),

(ii) compute c “ Q̃˚b (there are n dot products in Cm, so a total of about 2mn), and then

(iii) solve R̃.x “ Q̃˚.b for x (for this part, note that the number of FLOP each block substitution is
1 ` 3 ` 5 ` ¨ ¨ ¨ , that is n2).

Therefore, the computational cost is „ 2mn2 ´ 2
3 n3. {
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III.2 Conditioning and Condition Number

Definition III.2.1. Ill Conditioned.

A problem is “ill conditioned‘ when a small variation of data causes large variation of solution. {

Example III.2.2. Ill Conditioned Problem.

Consider A.x “ b, it is either:

(i) A P Cmˆm is invertible, then x “ A´1.b, or

(ii) A P Cmˆn, dimpim Aq “ n, and b P im A, so x “ A`.b.

Suppose we compute a solution x̃ (not quite correct), and the error is:

e “ δx “ x ´ x̃,

which is the difference between the real and computed solution to A.x “ b. In reality, this cannot be
computed since we do not have access to the real solution (that is why we are computing it.)
Hence, the goal is to find an upper bound for relative size of error, i.e.:

}δx}

}x}
.

What we can compute is the residue:

r “ δb “ b ´ A.x̃ “ A.x ´ A.x̃ “ Apx ´ x̃q “ Aδx.

Therefore, we have δx “ A´1δb, hence its norm is:

}δx} “ }A´1δb} ď }A´1} ¨ }δb}.

Then, since we have b “ A.x, we have:

}b} “ }A.x} ď }A} ¨ }x},

Therefore, we may obtain the upper bound of the residual as:
}δx}

}x}
loomoon

relative size of error

ď }A} ¨ }A´1}
looooomooooon

conditional number of the matrix A

¨
}δb}

}b}
loomoon

relativesizeo f residual

.

{

Definition III.2.3. Condition Number of Matrix.

Let A be an invertible matrix, we have the condition number of A as:

κpAq “ }A} ¨ }A´1}.

{

The large condition number means ill-conditioned, and small condition number means well conditioned.
If A´1 is hard to compute, then one eigenvalue is » 0, which implies large κpAq.

When } ‚ } “ } ‚ }2, we have:
κpAq “

σ1

σm
.

Here are some motivation of the condition number of a square, invertible matrix A:

κpAq “ }A} ¨ }A´1}
looooomooooon

norm induced by vector norm

.
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For example, when having the 2 ˆ 2 case, we ant to solve that A.x “ b, and the solution is x “ A´1.b,
where as the inverse is:

A “

«

a b
c d

ff

ùñ A´1 “
1

ad ´ bc

«

d ´b
´c a

ff

looooomooooon

adjpAq

.

Note that when A is close to singularity, that is, det A is close to zero, then we have catastrophic can-
cellation, which happens when subtracting 2 numbers very close to each other. This is a large round-off
error.
In the m ˆ m case, we de the inverse as:

„

A
ˇ

ˇ

ˇ

ˇ

Idn

ȷ

RREF
ÝÝÝÑ

„

Idn

ˇ

ˇ

ˇ

ˇ

A´1
ȷ

The gist is that when A is close to singularity, A´1 cannot be computed accurately, so x “ A´1b cannot
be computed accurately.

Let x̃ be the estimate of the solution x, we can compute the residual as:

δb “ b ´ A.x̃ “ A.x ´ A.x̃ “ A.p x ´ x̃
loomoon

δx error

q.

Remark III.2.4. Computation of δx.

Here, we have δx “ A´1δb, since we cannot compute δx accurately. {

The general rule for numerical linear algebra is to avoid computing det A and A´1, because they are:

(i) computationally intensive, and

(ii) computationally inaccurate when A is close to singularity.

Example III.2.5. Pseudo Inverse Case.

If A P Cmˆn such that m ě n, with full rank and b P Cm, then the minimizer of }b ´ A.x}2 is:

x “ A`.b “ pA˚ Aq´1 A˚.b.

We avoided inverting A˚ A by computing x via QR decomposition by solving R̃.x “ Q̃˚.b. {

Later we will see techniques to compute:

• the eigenvalues of square matrices, and

• the SVD of any matrix,

that avoid determinant and inverse.

We have proven that:
}δx}

}x}
loomoon

relative size of error
(cannot compute)

ď }A} ¨ }A´1}
looooomooooon

κpAqconditional number
(typically can computed

without A´1)

¨
}δb}

}b}
loomoon

relative size of residual
(can compute)

.

Remark III.2.6. Conditional Number based on Choice of Vector Norm.
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κpAq depends on the choice of the vector norm. For example, choose } ‚ }2 as a 2-norm, we have:

κ2pAq “ }A}2 ¨ }A´1}2.

{

Theorem III.2.7. Conditional Number as Fraction of Singular Value.

For any invertible A P Cmˆm:
κpAq “

σ1

σm
,

where σ1 and σm are, respectively, the largest and smallest singular value of A.

Proof. For any A P Cmˆm, we have }A}2 “ σ1, that is the largest eigenvalue.
When writing SVD as:

A “ UΣV˚ “ U

»

—

—

—

—

–

σ1 0 ¨ ¨ ¨ 0
0 σ2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ σm

fi

ffi

ffi

ffi

ffi

fl

V˚.

Then:

A´1 “ pV˚q´1Σ´1U´1 “ V

»

—

—

—

—

–

1{σ1 0 ¨ ¨ ¨ 0
0 1{σ2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1{σm

fi

ffi

ffi

ffi

ffi

fl

pUq˚ “ U1

»

—

—

—

—

–

1{σ1 0 ¨ ¨ ¨ 0
0 1{σ2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1{σm

fi

ffi

ffi

ffi

ffi

fl

V˚
1 .

Note that since V´1 “ V˚, then V “ V, so their complex conjugates are the same, now, we may invert the
order of the rows to obtain that:

A´1 “ U2

»

—

—

—

—

–

1{σm 0 ¨ ¨ ¨ 0
0 1{σm´1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1{σ1

fi

ffi

ffi

ffi

ffi

fl

V˚
2 ,

hence we have the largest singular value is 1{σm. The conditional number follows as σ1 ¨ 1
σm

“
σ1
σm

.

In particular, the fraction is called the eccentricity of ellipsoid with semi-axes σ1, ¨ ¨ ¨ , σm.

Example III.2.8. Conditional Number for Almost Singular Matrices.

In MATLAB, the command for conditional number is cond(A), which is κ2pAq. Here, we let:

A “

«

1 1
1 1 ` α

ff

.

• When α “ 1, we have κ2pAq « 6.85410,

• When α “ 10´5, we have κ2pAq « 4.00002 ˆ 105,

• When α “ 10´12, we have κ2pAq « 3.99949 ˆ 1012.
{
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Theorem III.2.9. Conditional Number of Matrix Operations.

For any matrix norm induced by a vector norm, we have:

(i) For any nonzero constant c P C, we have that:

κpcAq “ κpAq.

(ii) κpIdq “ 1, and

(iii) for any invertible A, κpAq ě 1.

Proof. Recall that } Id } “ 1 and }A´1} ě 1{}A} for any norm.

(i) Note that pcAq´1 “ 1{c ¨ A´1, so κpcAq “ }cA} ¨ }1{c ¨ A´1} “ |c|{|c| ¨ }A} ¨ }A´1} “ κpAq.

(ii) κpIdq “ } Id } ¨ } Id´1 } “ 1 ¨ 1 “ 1.

(iii) κpAq “ }A} ¨ }A´1} ě }A}{}A} “ 1, so κpAq ě 1.

III.3 Stability

For the mathematical problem, we let it be defined as f : B Ñ X, where B is the set of possible data and
X is the set of solutions.

Example III.3.1. Basic Linear Algebra Problem.

We are trying to solve that A.x “ b, where A P Cmˆm is invertible.
The solution is:

x “ f pbq “ A´1.b.

{

Typically (especially when the condition number κpAq is large), we can compute only an approximated
version of x, denoted x̃, through an algorithm (such as QR decomposition).

Definition III.3.2. Algorithm.

Here, we define an algorithm as:
f̃ : B Ñ X,

in which the computed solution x̃ “ f̃ pbq is by the actual data. {

A “stable” algorithm is one which computes solutions x̃ which are approximately equal to the exact
solution for slightly perturbed data:

f̃ pbq » f pb ` δbq.

Definition III.3.3. Backward Stable.

Given a problem f , an algorithm f̃ is called backward stable if for all set of data b P B, there exists a data
perturbation δb, where:

}δb}

}b}
“ Opϵmachineq such that f̃ pbq “ f pb ` δbq.
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{

This stability is called backward since instead of looking at the forward error, we have:

δx “ f̃ pbq ´ f pbq,

we look backwards to see what input could have produced the computed result f̃ pbq exactly.

This definition holds , the data perturbation required to explain the computed solution is relatively small
(relative to the problem’s data b), i.e., the algorithm is numerically robust (stable), to relatively small
perturbations.

Example III.3.4. Subtraction is Backwards Stable.

Suppose the mathematical problem is:

f : C2 Ñ C, b “

˜

b1

b2

¸

ÞÑ b1 ´ b2.

The algorithm is as follows:

input: b = [b_1, b_2]

output: ~x = ~f(b_1, b_2) = fp(b_1) (-) fp(b_2) = fp(b1’ - b2’)

Then, there exists ϵ1 with |ϵ1| ď ϵmachine such that b1
1 “ fppb1q “ b1p1 ` ϵ1q. There exists ϵ2 with |ϵ2| ď

ϵmachine such that b1
2 “ fppb2q “ b2p1 ` ϵ2q. Moreover, there exists ϵ3 with |ϵ3| ď ϵmachine such that

b1
3 “ fppb3q “ b3p1 ` ϵ3q.

Hence, we have:

pb1
1 ´ b1

2qp1 ` ϵ3q “
“

b1p1 ` ϵ1q ´ b2p1 ` ϵ2q
‰

p1 ` ϵ3q “ b1p1 ` ϵ1qp1 ` ϵ3q ´ b2p1 ` ϵ2qp1 ` ϵ3q

“ b1 ` b1pϵ1 ` ϵ3 ` ϵ1ϵ3q
loooooooooomoooooooooon

δb1

´
“

b2 ` b2pϵ2 ` ϵ3 ` ϵ2ϵ3q
loooooooooomoooooooooon

δb2

‰

“ pb1 ` δb1q ´ pb2 ` δb2q

“ f pb1 ` δb1 ` b2 ` δb2q “ f pb ` δbq.

Just to note since for the O, we are letting it Ñ 0, not infinity, so we have:

|ϵ1 ` ϵ3 ` ϵ1ϵ3| ď |ϵ1| ` |ϵ3| ` |ϵ1| ¨ |ϵ3| ď 2ϵmachine ` ϵ2
machine “ Opϵmachineq.

Hence, we have the algorithm backwards stable. {

Here, we consider such operation in norm notations as well:

δb “

«

δb1

δb2

ff

“ b1ϵ4 ` b2ϵ5.

Hence the square of the norm is:

}δb}2 “ |b1|2|ϵ4|2 ` |b2|2|ϵ5|2 “ |b1|2Opϵ2
machineq ` |b2|2Opϵ2

machineq “
`

|b1|2 ` |b2|2
˘

Opϵ2
machineq,

which leads to that:
}δb}2

}b}2 “ Opϵ2
machineq,

so the single power norm in Opϵmachineq.

This makes us recall the catastrophic cancellation, that is when we have b1 » b2, we have:

}x̃ ´ x}

}x}
“

} f̃ pbq ´ f pbq

} f pbq}
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be large. However, the backwards stability means that there exists points in the neighborhood such that the
differences can be similar. Here, we have b1 and b2 close enough to have some point in the neighborhood
to be backwards stable.

Definition III.3.5. Stability.

Given a problem f , an algorithm f̃ is stable if for all b P B, there exists a perturbation of data δb with:
}δb}

}b}
“ Opϵmachineq,

such that:
} f̃ pbq ´ f pb ` δbq

} f pb ` δbq}
“ Opϵmachineq.

{

The stability is a weaker statement than backwards stability.

Proposition III.3.6. Backwards Stability ùñ Stability.

A backwards stability algorithm is stable. The converse is not necessarily true.

This relaxation is necessary, as there are algorithms that are stable but not backward stable.

Example III.3.7. Stable but not Backward Stable Problem.

Consider the computation of the outer product between 2 vectors a, b P Cmm the mathematical problem
is:

f : Cm ˆ Cm Ñ Cmˆm,

pa, bq ÞÑ A “ ab˚.

The algorithm is to:

input: a,b in C^m

a’ := fp(a) =: (a1’, a2’, ..., am’)

b’ := fp(b) =: (b1’, b2’, ..., bm’)

~A := [~Aij]

~Aij := ai’ (x) comp_conj(bj’) := fp(ai’ * comp_conj(bj’))

Note that:
f̃ pa, bq “ Ã

loomoon

not rank 1 matrix

‰ pa ` δaqpb ` δbq
looooooooomooooooooon

rank 1 matrix

“ f pa ` δa, b ` δbq.

Hence it is not backwards stable. It can be shown that the algorithm is stable, and we leave this as an
exercise to the readers. {

It is worth-noting that our conclusion on stability is independent from the choice of vector norm.

Definition III.3.8. Equivalent Norms.

Let X be a normed vector space, any two vector norms } ‚ }α and } ‚ }β in X are equivalent if there exist
C1, C2 ą 0 such that for all x P X, we have:

C1}x}β ď }x}α ď C2}x}β.

{
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Proposition III.3.9. All Finite Dimensional Norms are Equivalent.

Let X be a finite dimensional normed vector space, all norms are equivalent.

Example III.3.10. } ‚ }2 and } ‚ }8 for are Equivalent.

One can prove that:
}x}8 ď }x}1 ď

?
m}x}. {

There are some consequences of the equivalence norms.

Proposition III.3.11. Squeeze Theorem.

Suppose X is a finite dimensional normed vector space, and let } ‚ }α and } ‚ }β be any norms in X. Let a
sequence txnu8

n“1 Ă X be such that }xn}α Ñ 0 as n Ñ 8, then }xn}β Ñ 0 as n Ñ 8.

Proof. This is naturally by the above inequality:

0 ď }xn}β ď
1

C1
}xn}α Ñ 0,

hence, we naturally have }x}β Ñ 0 as n Ñ 8.

Another consequence is on the backward stability:

Proposition III.3.12. Backward Stability.

Suppose we have b P X, which is a finite dimensional normed vector space, and } ‚ }α, } ‚ }β are two norms
in X:

}δb}β

}b}β
“ Opϵmachineq.

Then, we have:
}δb}α

}b}α
“ Opϵmachineq.

Proof. From the definition, we have:

}δb}α ď C2}δb}β and
1

}b}α
ď

1
C1

¨
1

}b}β
.

Therefore, we must have:
}δb}α

}b}α
ď

C2

C1
¨

}δb}β

}b}β
ď

C2

C1
C ¨ ϵmachine,

thus }δb}α{}b}α “ Opϵmachineq.

Then, we can think of the conditional number for squared and invertible matrices, that is:

κ “ }A} ¨ }A´1}.

Here, think of the problem of solving A.x “ b, the approximation solution is x̃. Here, we have:

Error δx “ x ´ x̃,
Residual δb “ b ´ A.x̃.
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Remark III.3.13. General Condition Number.

For any mathematical problem and algorithm for f : B Ñ X as f̃ : B Ñ X, we can define the condition
number as:

κ “ sup
δbPB

} f pbq´ f̃ pbq}

} f pbq}

}δb}

}b}

.

I.e., K is the smallest number that is larger than all possible ratios. {

Hence:
} f pbq ´ f̃ pbq}

} f pbq}
ď κ

}δb}

}b}
for all δb.

Therefore, we note that:
}δb}

}b}
is small when f̃ is backward stable or stable,

hence since κ could be large, stability causes the left-hand-side to be large.

Again, for the same example, we could have a backwards stable, but the relative error is large due to
catastrophic cancellation.
Recall that for solving the problem A.x “ b for a A P Cmˆn, we have the QR decomposition based method,
that is:

(i) Let A “ QR, which is the QR decomposition of A, where Q is orthogonal and R is upper triangular.
(Cost: „ 2

3 mn2 ´ 2
3 n3).

(ii) Compute Q´1.b “ Q˚.b. (Cost: „ 2mn).

(iii) Solve R.x “ Q˚.b with the upper triangular system. (Cost: „ n2).

Remark III.3.14. QR Decomposition Based Method is Stable.

The QR decomposition method, i.e., the above three steps are backward stable. {

Theorem III.3.15. Backward Stability of QR Decomposition.

Let A “ QR be the QR decomposition of A, and let Q̃R̃ be the QR decomposition computed by House-
holder triangularization. This algorithm is backward stable in the same sense that the computed solution
x̃ has the property:

}pA ` δAqx̃ ´ b} “ min,
}δA}

}A}
“ Opϵmachineq

for some δA P Cmˆn.

III.4 Stability and Gaussian Elimination

Then, we consider the Gauss Elimination.

Remark III.4.1. LU Decomposition.
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We may use Gauss elimination to form the LU decomposition, that is for A P Cmˆm, we have A “ L ˝ U,

where L “

»

—

—

—

—

–

˚ 0 ¨ ¨ ¨ 0
˚ ˚ ¨ ¨ ¨ 0
...

...
. . . 0

˚ ˚ ¨ ¨ ¨ ˚

fi

ffi

ffi

ffi

ffi

fl

and U “

»

—

—

—

—

–

˚ ˚ ¨ ¨ ¨ ˚

0 ˚ ¨ ¨ ¨ ˚

...
...

. . . 0
0 0 ¨ ¨ ¨ ˚

fi

ffi

ffi

ffi

ffi

fl

. {

Here, the algorithm lies as follows to solve A.x “ b.

(i) Compute A “ LU. (Cost: „ 2
3 m3).

(ii) Solve L.y “ b for the lower triangular system for y. (Cost: „ m2).

(iii) Solve U.x “ y for the upper triangular system for x. (Cost: „ m2).

Note that L.y “ b implies that LpU.xq “ b, so A.x “ b so x solves A.x “ b.

Example III.4.2. UL is Simpler than QR.

The price is it might be instable (could be corrected). Here, we consider:
»

—

–

a11 0 0
a21 a22 0
a31 a32 a33

fi

ffi

fl

.

»

—

–

y1

y2

y3

fi

ffi

fl

“

»

—

–

b1

b2

b3

fi

ffi

fl

.

Here, we can consider the solutions trivially as:

y1 “
b1

a11
,

y2 “
b2 “ a21y1

a22
,

y3 “
b3 ´ a31y1 ´ a32y2

a33
.

{

In particular, we consider Lm´1 ¨ ¨ ¨ L2L1 A “ U, where Li is the i-th set of elementary row operation, hence
for A “ LU, we have:

L “ pLm´1 ¨ ¨ ¨ L2L1q´1 “ L´1
1 L´1

2 ¨ ¨ ¨ L´1
m´1.

Example III.4.3. Generic 4-by-4 Matrix with Gaussian Elimination.

Consider the steps as follows:

»

—

—

—

—

–

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

˚ ˚ ˚ ˚

0 ˚ ˚ ˚

0 ˚ ˚ ˚

0 ˚ ˚ ˚

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

˚ ˚ ˚ ˚

0 ˚ ˚ ˚

0 0 ˚ ˚

0 0 ˚ ˚

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

˚ ˚ ˚ ˚

0 ˚ ˚ ˚

0 0 ˚ ˚

0 0 0 ˚

fi

ffi

ffi

ffi

ffi

fl

.

A L1 A L2L1 A L3L2L1U

L1 L2 L3

{

More trivially for the 2-by-2 case, a matrix A “

«

a b
c d

ff

is simply by R2 Ð R2 ` kR1, that is

«

a b
c ` ka d ` kb

ff

,

where k “ ´c{a when a ‰ 0 to achieve upper triangularization.
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Then, we consider:

L1 “

˜

1 0
k 1

¸

,

whose inverse is then:

L´1
1 “

«

1 0
´k 1

ff

,

which is also upper triangular.

For the 3-by-3 case, let:

A “

»

—

–

a b c
d e f
h i j

fi

ffi

fl

,

we do the row operation to obtain that:

L1 A “

»

—

–

a b c
d ` k1a e ` k1b f ` k1c
g ` k2a h ` k2b i ` k2c

fi

ffi

fl

,

where k1 “ ´d{a and k2 “ ´g{a. Hence, we write:

L1 “

»

—

–

1 0 0
k1 1 0
k2 0 1

fi

ffi

fl

,

where the inverse is:

L´1
1 “

»

—

–

1 0 0
´k1 1 0
´k2 0 1

fi

ffi

fl

.

Here, we let the second table to be:

L1 A “

»

—

–

a b c
0 α β

0 γ δ

fi

ffi

fl

.

Here, we use the similar process for row operation. Here we have:

L2pL1 Aq “

»

—

–

a b c
0 α β

0 γ ` k3α δ ` k3β

fi

ffi

fl

,

where k3 “ ´γ ` α, and we have:

L2 “

»

—

–

1 0 0
0 1 0
0 k3 1

fi

ffi

fl

,

where the inverse is:

L´1
2 “

»

—

–

1 0 0
0 1 0
0 ´k3 1

fi

ffi

fl

.



N.L.A. Notes 62

Here, the inverses are:

L “ L´1
1 L´1

2 “

»

—

–

1 0 0
´k1 1 0
´k2 0 1

fi

ffi

fl

˝

»

—

–

1 0 0
0 1 0
0 ´k3 1

fi

ffi

fl

“

»

—

–

1 0 0
´k1 1 0
´k2 ´k3 1

fi

ffi

fl

.

There, we may observe that A “ LU “ L´1
1 L´2

2 ¨ ¨ ¨ L´1
m´1 gives the Gauss Elimination process.

In the generic case, we consider the matrix:

A “

»

—

—

—

—

–

a11 a12 ¨ ¨ ¨ a1m

a21 a22 ¨ ¨ ¨ a2m
...

...
. . .

...
am1 am2 ¨ ¨ ¨ amm

fi

ffi

ffi

ffi

ffi

fl

.

Consider the first transformation, we have:

ℓi1 “
ai1
a11

for all i “ 2, 3, ¨ ¨ ¨ , m.

It is noteworthy to mention that if a11 is zero, we want to shuffle the rows. In fact, we would like to
rearrange in a manner that has the largest coefficient at the top. But anyways, we have:

L´1
1 “

»

—

—

—

—

–

1 0 ¨ ¨ ¨ 0
ℓ21 1 ¨ ¨ ¨ 0
...

...
. . .

...
ℓm1 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

fl

.

For the second step, we assume that we have:

L1 A “

»

—

—

—

—

–

a11 a12 ¨ ¨ ¨ a1m

0 ax22 ¨ ¨ ¨ x2m
...

...
. . .

...
0 xm2 ¨ ¨ ¨ xmm

fi

ffi

ffi

ffi

ffi

fl

.

Hence, we consider that:

ℓi2 “
xi2
x22

.

L´1
2 “

»

—

—

—

—

–

1 0 ¨ ¨ ¨ 0
0 ℓ22 ¨ ¨ ¨ 0
...

...
. . .

...
0 ℓm2 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

fl

.

Remark III.4.4. Decomposition exactly as the product of the entries.

We have the matrix entry exactly as:

Lm´1 ¨ ¨ ¨ L2L1 “ Idm `

m
ÿ

i“1

pLi ´ Idmq.
{

Now, we consider the Pseudo code for the code segment as:

input: A in C(m*m)

output: L in C(m*m), U in C(m*m)

for j = 1, 2, ..., m-1:
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for j = 1, 2, ..., m-1:

l[i,j] = n[i,j] / u[j,j]

u[i,j:m] = u[i,j:m] - l[i,j] * u[j,j:m] % (*) Computationally intense

end

end

Consider the computational complexity, we have the (*) intensive, that is:

• It multiplies a scalar by a vector of length ℓ.

• It subtracts 2 vectors of length ℓ.

Hence, there are 2ℓ flops.
At the jth step, we have ℓ “ m ´ j ` 1.

Consider that there are less operations needed overtime, we consider the number of operations as:
m´1
ÿ

j“1

2ℓpm ´ jq “ 2
m´1
ÿ

j“1

pm ´ jq2 “ 2
m´1
ÿ

j“1

j2 “ 2 ¨
pm ´ 1qm

`

2pm ´ 1q ` 1
˘

6
„

2
3

m3.

Remark III.4.5. Problem with LU Decomposition.

The LU Decomposition incurs the following issues:

• We may have division by zero, such as A “

«

0 1
1 1

ff

, where ℓ21 “
1
0

.

• Stability issues: For A “

«

0 1
1 1

ff

. It is invertible, and we compute κpAq with respect to the 2-norm,

that is σ2{σ1. Consider a diagonalizable matrix, we have σ1 “ |λ1| and σ2 “ |λ2|.
For this case, we have the eigenvalues are 1˘

?
5

2 , so we have σ1 “ 1`
?

5
2 and σ2 “

?
5´1
2 , we have:

σ1

σ2
» 2.618.

{

We consider the following example, then:

Example III.4.6. Unstable for Gauss Elimination.

Let’s define δA “

«

10´20 0
0 0

ff

“

«

ϵ 0
0 0

ff

and here we apply B as:

B “ A ` δA “

«

10´20 1
1 1

ff

,

and so by the Gauss Elimination, we have:

L “

«

1 0
ℓ21 1

ff

where ℓ21 “
1

10´20 “ 1020.

Thus, we have:

L “

«

1 0
1020 1

ff

and U “

«

10´20 1
0 1 ´ 1020

ff

.

Here, we assume that fpp1020q “ 1020 and fpp10´20q “ 10´20, then we have machine representation as:

L̃ “

«

1 0
1020 1

ff

and Ũ “

«

10´20 1
0 ´1020

ff

.
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Thus, we have the matrix multiplication as:

L̃Ũ “

«

1 0
1020 1

ff «

10´20 1
0 ´1020

ff

“

«

10´20 1
1 0

ff

.

We may observe that this is very far from the initial A, since we had a large deviation with A “

«

0 1
1 1

ff

.

Note that this is not a Catastrophic cancellation, but rather a roundoff error, hence it is unstable. {

The solution to the problem is Partial Pivoting.

Remark III.4.7. Partial Pivoting.

For the above example, we may exchange the rows in B, that is:

B “

«

ϵ 1
1 1

ff

ÝÑ C “

«

1 1
ϵ 1

ff

.

Thus, we have R2 Ð R2 ´ ϵR1 with L1 “

«

1 0
´ϵ 1

ff

and thus L “ L´1
1 “

«

1 0
ϵ1

ff

, so we have L1C “

«

1 1
0 1 ´ ϵ

ff

, which is upper triangular.

Again, if we assume ϵ “ 10´20, we have the floating point approximation as:

L̃ “

«

1 0
ϵ 1

ff

, and so Ũ “

«

1 1
0 1

ff

and thus L̃Ũ “

«

1 1 ` ϵ

ϵ 1

ff

»

«

1 1
ϵ 1

ff

“ C.

Note that the above example is a little coincident, since the error almost cancels out. {

More in general, suppose we start from A P Cmˆm, at jth step of Gauss Elimination, we have:
j´1

hkkkkkkkikkkkkkkj

m´j`1
hkkikkj

»

—

—

—

—

—

—

—

–

˚ ˚ ¨ ¨ ¨ ˚

0 ˚ ¨ ¨ ¨ ˚

...
...

. . .
...

0 0 ¨ ¨ ¨ ˚

˚

0 xjk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Here, we choose the xjk parts as pivot, which is the largest entry in absolute value.

• We switch corresponding row with jth row.

• Then perform Gauss Elimination, which results in:

– keep track of all the row switchings.

– with partial pivoting, stability improves.

Aside, in complete pivoting, at jth step, you choose the largest entry (in absolute value) in entire block.

• The pro is that we have an improvement in stability, although it is too small to justify computational
cost.

• The cons is we have to compute the values of pm ´ j ` 1q2 numbers, and we keep track of all raw
switches and column switches.
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Typically, partial pivoting is good enough.

Definition III.4.8. Transposition.

Suppose we want to switch the ith and jth row of a matrix, the matrix can be acted by a transposition,
denoted σij. {

Example III.4.9. Switching 2nd and 3rd Row.

Suppose we are switching 2nd and 3rd rows of a 3-by-3 matrix, we have:

σ2 3 “

»

—

–

1 0 0
0 0 1
0 1 0

fi

ffi

fl

.
{

Proposition III.4.10. Transposition as Matrix.

σij can be represented as the matrix:

σij “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0
...

. . .
...

. . .
...

. . .
...

0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 1 ¨ ¨ ¨ 0
...

. . .
...

. . .
...

. . .
...

0 ¨ ¨ ¨ 1 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0
...

. . .
...

. . .
...

. . .
...

0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where the ith column & rows and the jth column & rows.

Remark III.4.11. Postcompose with Transposition.

For any matrix A, σij A switches on ith and jth row, and Aσij switches on ith and jth column. This is also
called simple permutation. {

Proposition III.4.12. Transposition has Order 2.

σ2
ij “ Id, or equivalently σ´1

ij “ σij. We call such action involutary.

Technically, in one step, we can perform a generic permutation, that is permuting different rows. Here,
we may denote it as:

pr1 r2 ¨ ¨ ¨ rnq.

Proposition III.4.13. Permutations can be Composed of Transposition.

Each permutation can be achieved by a sequence of tranpositions.

Example III.4.14. Decomposing Permutation.
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Here, we consider the permutation p1 2 3q, we may write it as p2 3q ˝ p1 2q. {

Proposition III.4.15. Permutations are Orthogonal.

For any permutation of rows of the corresponding matrix σ is an orthogonal matrix, i.e.:

σ´1 “ σ⊺, or σ⊺σ “ Id .

Proof. Since the columns of σ are the shuffled canonical basis, hence it is a orthonormal basis, and thus σ is
orthonormal.

Example III.4.16. Gauss Elimination with Pivoting.

Consider B “

«

ϵ 1
1 1

ff

, we want to have the 1 as the leading entry, so we have:

σ1 2 “

«

0 1
1 0

ff

so that σ1 2B “

«

1 1
ϵ 1

ff

.

Hence, we then have L1 “

«

1 0
´ϵ 1

ff

, so that:

L1σ1 2B “

«

1 1
0 1 ´ ϵ

ff

“ U,

which leads to σ1 2B “ LU, where L “ L´1
1 “

«

1 0
ϵ 1

ff

. {

More in general, for a m-by-m matrix A, we have:

Lm´1σm´1 ¨ ¨ ¨ L2σ2L1σ1 A “ U.

Recall that matrix multiplications do not necessarily commute, so the goal is to manipulate the above
equation to get PA “ LU.

Example III.4.17. Pivoting for 3-by-3 Matrix.

Consider A “

»

—

–

´2 2 ´1
6 ´6 7
3 ´8 4

fi

ffi

fl

, so we want the second row to be the first row, hence we have:

σ1 “

»

—

–

0 1 0
1 0 0
0 0 1

fi

ffi

fl

,

which gives that:

σ1 A “

»

—

–

6 ´6 7
´2 2 ´1
3 ´8 4

fi

ffi

fl

Then, the pivot is ℓ21 “ ´2{6 “ ´1{3 and ℓ31 “ 3{6 “ 1{2, so we have:

L1 “

»

—

–

1 0 0
´ℓ21 1 0
´ℓ31 0 1

fi

ffi

fl

“

»

—

–

1 0 0
1{3 1 0

´1{2 0 1

fi

ffi

fl

.
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Then, by computation, we have:

L1σ1 A “

»

—

–

6 ´6 7
0 0 4{3
0 ´5 1{2

fi

ffi

fl

Then, σ2 is switching the second and third row, then we have:

σ2 “

»

—

–

1 0 0
0 0 1
0 1 0

fi

ffi

fl

.

Now, we have:

σ2L1σ1 A “

»

—

–

6 ´6 7
0 ´5 1{2
0 0 4{3

fi

ffi

fl

“ U.

Note that here we have L2 “ Id, where we are lucky. {

Here, we have:
σ2L1σ1 A “ U.

Note that σ2 and L1 does not commute, so we want to define some L1
1σ2L1σ2, then we have:

L1
1σ2σ1 A “ σ2L1σ2σ2σ1 A “ σ2L1σ1 A “ U.

Then L1
1σ2σ1 A “ U, and we have σ2σ1 A “ pL1

1q´1U.
Here, we consider L1 ÞÑ L1

1 “ σ2L1σ2, which is:

L1
1 “ σ2

loomoon

permuting rows 2 and 3

L1 σ2
loomoon

permuting columns 2 and 3

“

»

—

–

1 0 0
´ℓ31 1 0
´ℓ21 0 1

fi

ffi

fl

.

Here, we have the permutation of the columns cleaning up the permutation of the rows.
Then, we have:

pL1
1q´1 “

»

—

–

1 0 0
ℓ31 1 0
ℓ21 0 1

fi

ffi

fl

.

Thus, we will be L1
1σ2σ1 A “ U and PA “ LU, where σ “ σ2σ1 for permutation, L “ pL1

1q´1 for lower
triangular matrix, and U and the upper triangular matrix.

In the general m-by-m case, we can define:

L1
m´1 “ Lm´1,

L1
m´2 “ σm´1Lm´2σm´1,

L1
m´3 “ σm´1σm´2Lm´3σm´2σm´1,

...

L1
2 “ pσm´1 ¨ ¨ ¨ σ4σ3qL2pσ3σ4 ¨ ¨ ¨ σm´1q,

L1
1 “ pσm´1 ¨ ¨ ¨ σ3σ2qL1pσ2σ3 ¨ ¨ ¨ σm´1q.

Now, we just compute that:

L1
m´1L1

m´2 ¨ ¨ ¨ L1
2L1

1σm´1σm´2 ¨ ¨ ¨ σ2σ1 A “ Lm´1σm´1Lm´2σm´2Lm´3 ¨ ¨ ¨ σ3L2σ2L1σ1 A.
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Remark III.4.18. Conjugation Action of Permutation is Exchanging ℓi and ℓj.

Consider matrix L, then the action σi ü L, it is simply exchanging the ℓi and ℓj entry and all the other are
the same. {

Hence, we have the computational complexity being „ 2
3 m3.

III.5 Hermitian Matrices and Quadratic Forms

Definition III.5.1. Hermitian Matrix.

A matrix A P Cmˆm is Hermitian if A˚ “ A. {

Here, we have A “

”

aij

ı

such that aji “ aij.
In particular, since for i “ j, then aii “ aii, so the diagonal entries are real.

Proposition III.5.2. Hermitian Matrix has Real Eigenvalues.

If A˚ A, then A has real eigenvalues.

Proof. Suppose that λ is an eigenvalue of A, i.e., there exists x ‰ 0 such that A.x “ λx.
Then λ}x}2

2 “ λx˚x “ pλxq˚x “ pA.xq˚x “ x˚ A˚x “ x˚ Ax “ x˚pλxq “ λx˚x “ λ}x}2
2.

Hence, we have λ}x}2 “ λ}x}2, so λ “ λ since }x} ‰ 0. Thus λ is real.

The eigenvectors for eigenvalue λ are the nonzero solutions x to A.x “ λx, which is equivalent to A.x ´

λx “ 0, which is equivalently A.x ´ λ Id .x “ 0, that is pA ´ λ Idq.x “ 0.
Hence, the eigenspace associated to λ is:

Eλ “ ker A ´ λ Id “ tx : pA ´ λ Idqx “ 0u Ă C.

Theorem III.5.3. Distinct Eigenspaces are Orthogonal.

If A˚ “ A and λ and µ are distinct eigenvalues of A, then Eµ K Eλ, i.e., for all u P Eµ and v P Eλ, we have
v˚u “ 0.

Proof. Consider u˚ Av being a scalar z P C, so z˚ “ z, then:

pu˚ A.vq˚ “ u˚ Av.

Then, we have:

pu˚ Avq˚ “ v˚A˚u “ v˚ Au “ v˚pµuq

“ u˚ Av “ u˚pλvq “ λu˚v “ λu˚v “ λv˚u.

Hence, λv˚u “ µv˚u, then pλ ´ µqv˚u “ 0, thus for λ ‰ µ, we have v˚u “ 0.

Theorem III.5.4. Spectral Theorem.

If A˚ “ A, then A is unitary diagonalizable, i.e., there exists a unitary matrix Q P Cmˆn (Q´1 “ Q˚) such
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that:

Q˚ AQ “ D “

»

—

—

—

—

–

λ1 0 ¨ ¨ ¨ 0
0 λ2 ¨ ¨ ¨ 0
...

...
. . . ¨ ¨ ¨

0 0 ¨ ¨ ¨ λm

fi

ffi

ffi

ffi

ffi

fl

,

where Q “

”

v1 v2 ¨ ¨ ¨ vm

ı

, where β “ tv1, ¨ ¨ ¨ , vmu is an orthonormal basis of Cm made of eigenvectors
of A.

Definition III.5.5. Bilinear Form.

A bilinear form is a function b : Cm ˆ Cm Ñ C of the type:

bpx, yq “ x˚ Ay where A P Cmˆn,

which has the following properties:

• bpx1 ` x2, yq “ bpx1, yq ` bpx2, yq.

• bpx, y1 ` y2q “ bpx, y1q ` bpx, y2q.

• bpkx, yq “ kbpx, yq, and

• bpx, kyq “ kbpx, yq.
{

Definition III.5.6. Quadratic Form.

A quadratic form is a function q : Cm Ñ Cm of the type:

qpxq “ x˚ Ax where A is a matrix of the quadratic form.

Typically, we assume A˚ “ A. {

Example III.5.7. Computation of Quadratic Form.

Let A “

«

a b
b c

ff

, where a, c P R, then we have:

qpxq “

”

x1 x2

ı

«

a b
b c

ff «

x1

x2

ff

“

”

x1 x2

ı

«

ax1 ` bx2

bx1 ` cx2

ff

“ ax1x1 ` bx1x2 ` bx1x2 ` cx2x2 “ a|x1|2 ` 2ℜpbx1x2q ` c|x2|2 P R.

{

In general, when A is Hermitian, then:

qpxq “ x˚ Ax “ px˚ Axq˚ “ x˚ A˚xx “ x˚ Ax “ qpxq.

Hence qpxq P R when A˚ “ A.

Definition III.5.8. Skew-Hermitian.

A matrix B P Cmˆm is skew-Hermitian if B˚ “ ´B. {
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Proposition III.5.9. Decomposition of Matrix to Hermitians.

For any A P Cmˆm may be decomposed as:

A “ AH ` AS,

where AH is hermitian and AS is skewed-hermitian.

Proof. We construct that:

AH “
1
2

pA ` A˚q,

AS “
1
2

pA ´ A˚q.

Suppose B is skew-symmetric, then:

´x˚Bx “ x˚B˚x “ px˚Bxq˚ “ x˚Bx,

this we know that x˚Bx P iR, i.e., purely imaginary.

Here, for a generic matrix A, we have:

qpxq “ x˚ Ax “ x˚pAH ` ASqx “ x˚ AHx
loomoon

PR

` x˚ ASx
loomoon

PiR

.

Definition III.5.10. Positive Definite.

Given a Hermitian matrix A P Cmˆm, we call it positive definite if x˚ Ax ą 0 for all x P pCmq
ˆ, i.e., x ‰ 0.

In particular, we call the matrix as Hermitian Positive Definite (HPD). {

Proposition III.5.11. Characterization of Positive Definiteness.

Suppose that A is hermitian, then:

(i) Eigenvalues of A are all real.

(ii) A is unitary diagonalizable, i.e., we can find an orthonormal basis:

β “ tv1, v2, ¨ ¨ ¨ , vnu

Proof of (ii). If we consider:
Q “

”

v1 v2 ¨ ¨ ¨ vm

ı

It is unitary (Q´1 “ Q˚) and:

Q˚ AQ “ Λ “

»

—

—

—

—

–

λ1 0 ¨ ¨ ¨ 0
0 λ2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ λm

fi

ffi

ffi

ffi

ffi

fl

.

Here, we rewrite it as A “ QΛQ˚, and we recall that for any b P Cm, we have Q˚.b as the vector of
coordinates of b with respect to β, namely rbsβ “ pc1, ¨ ¨ ¨ , cmq with property that:

c1v1 ` ¨ ¨ ¨ ` cmvm “ b.
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Hence, we have Q.rbsβ “ b, and thus rbsβ “ Q´1.b “ Q˚.b.
Then, we can rewrite the quadratic form qpxq “ x˚ Ax in terms of the coordinates of x with respect to β

for all x P Cm, so we denote rxsβ “ Q˚x.
Then, we consider A “ QΛQ˚, so we have the quadratic form as:

qpxq “ x˚ Ax “ x˚pQΛQ˚qx “ px˚QqΛpQ˚xq “ pQ˚xq˚ΛpQ˚xq “ rxs˚
βΛrxsβ.

Then, the above equation becomes:

qpxq “

”

c1 c2 ¨ ¨ ¨ cm

ı

»

—

—

—

—

–

λ1 0 ¨ ¨ ¨ 0
0 λ2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ λm

fi

ffi

ffi

ffi

ffi

fl

.

»

—

—

—

—

–

c1

c2
...

cm

fi

ffi

ffi

ffi

ffi

fl

“ λ1c1c1 ` λ2c2c2 ` ¨ ¨ ¨ ` λmcmcm “ λ1|c1|2 ` λ2|c2|2 ` ¨ ¨ ¨ ` λm|cm|2.

Since the eigenvalues are real, where rxsβ “ pc1, ¨ ¨ ¨ , cmq.

Theorem III.5.12. Positive Definiteness ðñ Positive Eigenvalues.

Let A P Cmˆm be hermitian. A is positive definite if and only if all of its eigenvalues are strictly positive.

Proof. (ùñ:) We choose x “ v1, which is the first vector of β, we have:

x “ v1 “ 1v1 ` 0v2 ` ¨ ¨ ¨ ` 0vm,

so we have:

rxsbeta “

»

—

—

—

—

–

c1

c2
...

cm

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

1
0
...
0

fi

ffi

ffi

ffi

ffi

fl

,

which implies that qpxq “ λ1 ¨ |1|2. Hence λ1 ą 0. Since this applies for any canonical vector in Cm, we can
choose x “ vi, and we similarly obtain that λi ą 0.
(ðù:) Let x P pCmqˆ be arbitrary. We consider rxsβ “ pc1, ¨ ¨ ¨ , cmq, at least one of the ci’s is nonzero,
otherwise x “ 0. So at least one of terms in qpxq is strictly positive, and since all terms are nonnegative,
then qpxq ą 0.

Example III.5.13. Using Quadratic Form to Find Positivity.

Show that 5x2 ´ 4xy ` 2y2 ą 0 for all x, y P R and px, yq ‰ 0. Thus, we have:

qpxq “

”

x y
ı

«

5 ´2
´2 3

ff «

x
y

ff

.

We note that A “ A⊺ and it is real, si A “ A˚ is hermitian. Thus:
$

&

%

λ1λ2 “ det A “ 10 ´ 4 “ 6,

λ1 ` λ2 “ Tr A “ 5 ` 2 “ 7.

Thus, we have λ1 “ 6 and λ2 “ 1, so qpxq ą 0 for all px, yq ‰ 0. {

Remark III.5.14. Positive Eigenvalues for Generic Matrices.
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For a generic matrix A with strictly positive eigenvalues, we know that:

Tr A “ λ1 ` λ2 ` ¨ ¨ ¨ ` λm ą 0.

Therefore a1 1 ` a2 2 ` ¨ ¨ ¨ ` am m ą 0. {

However, if we add hermitian assumption, then we have the following theorem.

Theorem III.5.15. HPD ùñ Positive Diagonal.

If A is Hermitian Positive Definite, then aii ą 0, i.e., the diagonal entries are strictly positive.

Proof. Suppose x˚ Ax ą 0 for all x ‰ 0, we choose x “ p1, 0, ¨ ¨ ¨ , 0q, so we have:

x˚ Ax “ a11 ą 0 by HPD.

Similarly, we can choose x as any canonical vector, so a22 ą 0.

Example III.5.16. Hermitian is Necessary Condition.

We let A “

«

5 ´2
´2 2

ff

is HPD, so we have a11 ą 0 and a22 ą 0.

We need to have hermitian condition, otherwise let C “

«

´1 4
´2 5

ff

, which is not hermitian. Here, we have

λ1λ2 “ 3 and λ1 ` λ2 “ 4, that is λ1 “ 3 and λ2 “ 1, so it has positive eigenvalues, and the trace is
positive, but the diagonal is not strictly positive. {

Proposition III.5.17. Positive Definite ðñ Positive Eigenvalues for Hermitian Matrix.

Let A be Hermitian, then A is positive definite if and only if all eigenvalues are strictly positive.

Theorem III.5.18. HPD ùñ Full Rank Conjugation is HPD.

If A is hermitian positive definite, then for any matrix X P Cmˆn with m ě n and full rank (dimpim Xq “ n),
X˚ AX P Cnˆn is also hermitian positive definite.

Proof. To show it is hermitian, since A˚ “ A:

pX˚ AXq˚ “ X˚ A˚pX˚q˚ “ X˚ AX

To show it is positive definite, since X has rank n, so its columns are linearly independent. Therefore, if
x ‰ 0, we have X.x ‰ 0. Thus:

x˚pX˚ AXqx “ pX.xq˚ ApX.xq ą 0,

so X˚ AX is HPD.

A consequence of the theorem is that the principal submatrices of A are HPD, i.e., the matrices from A by
eliminating the same rows and columns with same indices.

Example III.5.19. Eliminating First Row and Column.
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Suppose A P C3ˆ3 and we want to remove the first row and column. We use:

X “

»

—

–

0 0
1 0
0 1

fi

ffi

fl

,

where we now have:

X˚ AX “

«

0 1 0
0 0 1

ff

»

—

–

a11 a12 a13

a21 a22 a23

a31 a32 a33

fi

ffi

fl

»

—

–

0 0
1 0
0 1

fi

ffi

fl

“

«

a22 a23

a32 a33

ff

.

{

III.6 Cholesky Decomposition

Definition III.6.1. Cholesky Decomposition.

A Cholesky decomposition of a matrix A P Cmˆm is a factorization A “ R˚R, where R is upper triangular
with positive entries on the main diagonal.
Particularly, we have:

A “

»

—

—

—

—

–

˚ 0 ¨ ¨ ¨ 0
˚ ˚ ¨ ¨ ¨ 0
...

...
. . .

...
˚ ˚ ¨ ¨ ¨ ˚

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

˚ ˚ ¨ ¨ ¨ ˚

0 ˚ ¨ ¨ ¨ ˚

...
...

. . .
...

0 0 ¨ ¨ ¨ ˚

fi

ffi

ffi

ffi

ffi

fl

{

Theorem III.6.2. HPD ðñ Existence of Cholesky Decomposition.

Suppose A P Cmˆm, then A is hermitian positive definite if and only A has a Cholesky decomposition.
Moreover, the decomposition has to be unique, and when A is real, so is R.

Proof. (ðù:) Let R˚R be hermitian, then pR˚Rq˚ “ R˚pR˚q˚ “ R˚R, then we have:

A “ R˚R “ R˚ Id R which is HPD.

(ùñ:) We denote A as:

A “

«

a11 w˚

w K

ff

“

»

—

—

—

—

—

—

—

–

1 0 0 ¨ ¨ ¨ 0
ℓ21

ℓ31
...

ℓm1

Idm´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

a11 w˚

0
0
...
0

K1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

«

1 0
w{a11 Idm´1

ff «

a11 w˚

0 K1

ff

“

«

1 0
w{a11 Idm´1

ff «

a11 0
0 K1

ff «

1 w˚{a11

0 Idm´1

ff

.

Here, we can form the matrix as:
«

1 0
w{a11 Idm´1

ff «

1{
?

a11 0
0 Idm´1

ff «

a11 0
0 K1

ff «

1{
?

a11 0
0 Idm´1

ff «

1 w˚{a11

0 Idm´1

ff

.
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Then, we can repeat the steps, as:

A “ R˚
! R˚

2

«

Id2 0
0 K2

ff

R2R1.

And following that, we can have after m steps that:

A “ R˚
1 R˚

2 ¨ ¨ ¨ R˚
m

loooooomoooooon

R˚

R1R2 ¨ ¨ ¨ Rm
loooooomoooooon

R

.

Example III.6.3. Cholesky Decomposition of Matrix.

Let A “

«

4 6
6 13

ff

. Since it is real and symmetric, it is hermitian.

Here, we have:
$

&

%

λ1λ2 “ det A “ 16,

λ1 ` λ2 “ Tr A “ 17.

Hence, we have λ1 “ 16 and λ2 “ 1, and they are both positive. Hence, we have:

A “ R˚R “

«

r11 0
r12 r22

ff

“

«

4 6
6 13

ff

.

Here, we have r11 ´ 2 and r22 “ 2, with R “

«

2 3
0 2

ff

. {

Remark III.6.4. Computational Complexity for.

The computational complexity of Cholesky decomposition is „ 1
3 m3.

Recall that the computational complexity for LU decomposition is
ř 2

3 m3. {

Example III.6.5. Manual Computation of 3-by-3 Cholesky Decomposition.

Suppose we have a Hermitian matrix:

A “

»

—

–

a11 a12 a13

a12 a22 a23

a13 a23 a33

fi

ffi

fl

.

Note that we may ignore the lower part of the matrix as it has information contained in the upper half.
This is due to A being Hermitian.
The we consider the decomposition as:

A “

»

—

–

r11 0 0
r12 r22 0
r13 r23 r33

fi

ffi

fl

»

—

–

r11 r12 r13

0 r22 r23

0 0 r33

fi

ffi

fl

“ R˚R.

Here, we have 6 unknowns for the system of equation. However, the solution is unique up to the diagonal
being positive real numbers.

• By r2
11 “ a11, we have r11 “

?
a11.

• By r11r12 “ a12, so we have r12 “ a12{r11.

• By a22 “ r12r12 ` r2
22 “ |r12|2 ` r2

22, so we have r22 “
a

a22 ´ |r12|2.

• By a13 “ r11r13, we have r13 “ a13{r11.
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• By a23 “ r12r13 ` r22r23, so r23 “ pa23 ´ r12r13q{r22.

• By a33 “ r13r13 ` r23r23 ` r2
33, thus r33 “

a

a33 ´ |r13|2 ´ |r23|2.

Here, note that for r11, r22, and r33, the solution is not unique as we could have the negative values. How-
ever, given that A is Hermitian, must have them being positive, so the solution is unique. {

We develop the algorithm based on the proof:

A “ pR˚
m ¨ ¨ ¨ R˚

2 R˚
1 q IdpR1R2 ¨ ¨ ¨ Rmq.

• The complexity is „ 1
3 m3.

• This is backward stable, meaning that it produce matrix R̃ (upper triangular with positive rii ą 0)
such that:

δA “ A ´ R̃˚R̃,

and it has property that:
}δA}

}A}
“ Opϵmachineq.

Remark III.6.6. Ill Conditioned Matrix.

R̃ may have significant relative error if A is ill condition, i.e., δR “ R ´ R̃, we will have:
}δR}

}R}
“ O

`

κpAq ¨ ϵmachine
˘

. {

Hence, the algorithm lies as follows:

(i) Compute the Cholesky: A “ R˚R. („ 1
3 m3).

(ii) Solve R˚y “ b for y as lower triangular. („ m2).

(iii) Solve Rx “ b for xx as the upper triangular. („ m2).

Hence the total complexity is „ 1
3 m3.

Example III.6.7. Application of Cholesky Decomposition.

The Cholesky decomposition can be applied to the following cases:

• Solving Ax “ b, when A is HPD, that is:

Ax “ b ÝÑ R˚ Rx
loomoon

y

“ b.

• Solving the least square approximation. Consider A P Cmˆm, where m ě n, the dimpim Aq “ n (by
Rank-Nullity ker A “ t0u). Here, we have the columns being linearly independent.
We want to solve A.x “ b. Here we discuss by cases:

(i) For b P im A, so A.x “ b has a solution and it is unique by linearly independence of columns.
Recall that we showed ker A “ kerpA˚ Aq, so kerpA˚ Aq “ t0u and so is invertible.
Thus A.x “ b implies that pA˚ Aqx “ A˚b, so x “ pA˚ Aq´1 A˚b “ A`b. Thus x “ A`b.

(ii) Consider b R im A, we want to find x P Cn that minimizes }b ´ Ax}2, and the solution is still:

x “ A`b,

where we have y “ A.x “ x1A1 ` ¨ ¨ ¨ ` xnAn is a vector in im A closest to b.
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Note that A is not HPD, but A˚ A is HPD, we may check:

– Hermitian: pA˚ Aq˚ “ A˚ A.

– kerpA˚Aq “ ker A “ t0u. Hence A˚ A is not singular.

– Suppose λ is an eigenvalue of A˚A, we have:

A˚ Ax “ λx, where x ‰ 0.

Thus, we have pAxq˚ Ax “ λx˚x, that is λ “ }Ax}2{}x}2 ě 0, so }A.x}2 “ λ}x}2, and thus λ ą 0.

Thus having A˚A being HPD implies that it has Cholesky decomposition, that is A˚ A “ R˚R,
and in both cases, we have x “ A`b ðñ x “ pA˚ Aq´1 A˚b , and x is the unique solution to
pA˚ Aqx “ A˚b.
Now, the problem is, how do we solve the equivalence without inverting the matrix, that is:

A˚A.x “ A˚b ðñ R˚ R.x
loomoon

z

“ A˚b.
{

Here we consider the algorithm with input A and b as:

(i) Compute A˚ A. („ mn2).

(ii) Cholesky: A˚ A “ R˚R. („ 1
3 n2).

(iii) Compute A˚b.

(iv) Solve R˚z “ A˚b for z, which is upper triangular.

(v) Solve Rx “ z for x, which is lower triangular.

Recall that the first two steps are with the most significant cost, then the total cost is „ 1
3 n3 ` mn2.

Assuming that m “ n, we have the complexity as 4
3 n3.
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IV Numerical Computation of Eigenvalues

IV.1 Eigenspace, Reprise

For this part, we want to compute eigenvalues numerically without using the characteristic polynomial.

Definition IV.1.1. Eigenvalue.

λ P C is an eigenvalue of A P Cmˆm if there exists x P Cm such that x ‰ 0, in which A.x “ λx. {

Here, we note that this it compatible with the original definitionăthat:

A.x “ λx ðñ A.x ´ λx “ 0 ðñ A.x ´ λ Id .x “ 0 ðñ pA ´ λ Idqx “ 0.

Hence, A ´ λ Id must be singular, that is: λ is an eigenvalue of A ðñ detpA ´ λ Idq “ 0.

Definition IV.1.2. Characteristic Polynomial.

The characteristic polynomial of A P Cmˆm is:

pAptq “ detpA ´ t Idq “ p´1qntn ` pn´1tn´1 ` ¨ ¨ ¨ ` p1t ` p0,

where the eigenvalues are the roots of pAptq. {

If λ1, λ2, ¨ ¨ ¨ , λp are the p distinct roots of pAptq, we can write:

pAptq “ p´1qnpt ´ λ1qn1pt ´ λ2qn2 ¨ ¨ ¨ pt ´ λpqnp ,

where ni is the algebraic multiplicity of λi.

Definition IV.1.3. Spectrum.

The spectrum of A P Cmˆm is the set of distinct eigenvalues of A, denoted:

σpAq “ tλ1, λ2, ¨ ¨ ¨ , λpu

{

Definition IV.1.4. Eigenspace.

Given a matrix A P Cmˆm and λ is a eigenvalue of A, then the eigenspace of λ is:

Eλ “ tx : pA ´ λ Idqx “ 0u “ kerpA ´ λ Idq,

which is the set if all eigenvalues of A associated to λ and 0. In particular, we defined the dimension of
the eigenspace being the geometric multiplicity of λ. {

Theorem IV.1.5. Property of Geometric Multiplicity.

For any λi P σpAq, we have 1 ď gi ď ni.

Definition IV.1.6. Non-defective Matrix.

A matrix A P Cmˆm is called non-defective if for all λi, the geometric multiplicity is the same as algebraic
multiplicity of λi. It is defective if it is non-defective. {

Theorem IV.1.7. Non-defective ðñ Diagonalizable.

Let A P Cmˆm, A is non-defective if and only if A is diagonalizable, i.e., there exists nonsingular S P Cmˆm
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such that:

S´1 AS “ D “

»

—

—

—

—

–

λ1 0 ¨ ¨ ¨ 0
0 λ2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ λm

fi

ffi

ffi

ffi

ffi

fl

.

Note that we may also rewrite the matrix as:

A “ SDS´1,

which is a type of eigenvalue revealing factorization.

A special case is the Hermitian matrices, that is A˚ “ A.

Theorem IV.1.8. Hermitian ùñ Unitarily Diagonalizable.

Let A P Cmˆm be Hermitian, then A is unitarily diagonalizable, i.e., there exists a matrix Q P Cmˆm,
unitary (Q˚ “ Q´1) such that Q˚ AQ “ D

Definition IV.1.9. Normal Matrix.

A matrix A P Cmˆm is normal if A˚ A “ AA˚. This aligns with the definition of a normal subgroup, that
is, A˚ ApA˚q´1 “ A. {

Theorem IV.1.10. Normal ðñ Unitarily Diagonalizable.

Let A P Cmˆm, then A is normal if and only if A is unitarily diagonalizable.

Remark IV.1.11. Inclusions of Matrices.

Hermitian Matrices Ĺ Normal Matrices “ Orthogonally Diagonalizable Matrices. {

IV.2 Schur Triangularization

Theorem IV.2.1. Schur Lemma.

For any matrix A P Cmˆm, there exists:

• an upper triangular matrix T,

• a unitary matrix Q,

such that A “ QTQ˚. This is called a Schur factorization.

Proof. For m “ 2. Let A P Cmˆm, it has at least one eigenvalue λ, then there exists x ‰ 0 such that
A.x “ λx. We normalize x as u “ x{}x}. By denoting u “ pa, bq, we choose a vector v such that v K u, and
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v is unitary vector. (For example, we let v “ p´b, aq, so that v˚u “ 0.)
Therefore, let Q “

”

u v
ı

, it has orthonormal columns, so Q is unitary.
Now, we have:

Q˚AQ “

«

u˚

v˚

ff

A
”

u v
ı

“

«

u˚ Au u˚Av
v˚ Auv˚ Av

ff

,

which implies that:

u˚pA.uq “ u˚pλuq “ λu˚u “ λ,

v˚pA.vq ´ v˚pλuq “ λv˚u “ 0.

Now, we have:

Q˚ AQ “

«

λ ˚

0 ˚

ff

“ T,

which is upper triangular, so we have A “ QTQ˚.
For generic m, let A P Cmˆm having at least one eigenvalue λ, there exists x ‰ 0 such that A.x “ λx, and
we normalize it to u “ x{}x}.
Now, we compute u to an orthonormal basis, that is:

β “ tu, v1, ¨ ¨ ¨ , vmu Ă Cm

Here, we want to solve u˚v “ 0, where dimpim u˚q “ 1, dimpker u˚q “ m ´ 1, so we can use the Gram-
Schmidt to orthogonalize m ´ 1 linearly independent solutions and normalize them.
Now, we define Q “

”

u v2 ¨ ¨ ¨ vm

ı

“

”

u V
ı

, so we compute:

Q˚ AQ “

«

u˚

V˚

ff

A
”

u V
ı

“

«

u˚ Au u˚ AV
V˚Au V˚ AV

ff

“

«

λ w˚

0 B

ff

.

Now we have:

• u˚ Au “ λ, and

• V˚pAuq “ λV˚u “ λ
”

vi
˚u

ı

“ 0.

By the induction hypothesis, we have B “ U˚RU, where R is upper triangular, and U is unitary. So
R “ U˚BU.
Now, we will have:

Q2 “

«

1 0˚

0 U

ff

.

Now, we have:

Q˚
2 pQ˚

1 AQ1qQ2 “

«

λ ˚

0 R

ff

“ T.

Thus, we have shown that A “ QTQ˚.

Such decomposition is called a Schur triangularization.

Remark IV.2.2. Eigenvalues of Upper Triangular Matrix.
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Let the upper triangular matrix T be:

T “

»

—

—

—

—

–

t11 t12 ¨ ¨ ¨ t1m

0 t22 ¨ ¨ ¨ t2m
...

...
. . .

...
0 0 ¨ ¨ ¨ tmm

fi

ffi

ffi

ffi

ffi

fl

,

the eigenvalues of T is t11, t22, ¨ ¨ ¨ , tmm, which is exactly the eigenvalues of A, i.e., T and A have the same
spectrum. {

Thus, we consider Schur triangularization as an eigenvalue-revealing factorization.

Theorem IV.2.3. Hermitian ùñ Diagonal Decomposition.

If A is Hermitian, then for the Schur triangularization A “ QTQ˚, T is diagonal.

Proof. From the decomposition T “ Q˚AQ, so T˚ “ pQ˚ AQq˚ “ Q˚ A˚pQ˚q˚ “ Q˚ AQ “ T, so T˚ “ T,
i.e., T is Hermitian.
But, also note that T is triangular, then:

T˚ “

»

—

—

—

—

–

t11 0 ¨ ¨ ¨ 0
t12 t22 ¨ ¨ ¨ 0
...

...
. . .

...
t1m t2m ¨ ¨ ¨ tmm

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

t11 t12 ¨ ¨ ¨ t1m

0 t22 ¨ ¨ ¨ t2m
...

...
. . .

...
0 0 ¨ ¨ ¨ tmm

fi

ffi

ffi

ffi

ffi

fl

“ T.

Thus, we must have all non-diagonal entries being zero, and the diagonal being real.

A consequence of the above statement is that for Hermitian matrices, the Schur triangularization is just a
unitary diagonalization, since Q´1 “ Q˚.

IV.3 Obstructions to Finding Eigenvalues

Now, we have learned three eigenvalue revealing factorization.

• A is non-defective ðñ A is diagonalizable, i.e., there exists nonsingular S such that A “ SΛS´1.

• A is normal (A˚ A “ AA˚) ðñ A is unitarily diagonalizable, i.e., there exists unitary Q such that
A “ QΛQ˚.

• Any A P Cmˆm has a Schur triangularization, i.e., there exists upper triangular T such that there
exists unitary Q in which A “ QTQ˚.

Remark IV.3.1. Traditional Way to Compute Eigenvalues.

Let a matrix A P Cmˆm, we do the following steps:

(i) Compute the characteristic polynomial:

pAptq “ detpA ´ t Idq. (Cost: Opm3q.)

(ii) Find the roots of the characteristic polynomial pAptq. (Unstable process.)
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Note that for the second step, for the roots of a degree 2 polynomial, we can use a quadratic formula,
where λ1,2 “ ´b˘

?
b2´4ac

2a . For degree 3 and 4 polynomials, there are respectively cubic formula and quartic
formula, which are very complex. Although being very complex, we can find the roots within a finite
number of operations (i.e., `, ´, ˆ, ˜, k

a

p´q). {

Theorem IV.3.2. Abel-Ruffini Theorem.

There is no “quintic formula.”
For any m ě 5, there exists a polynomial pptq of degree m that has a root r that cannot be represented
computed using a finite number of operation (i.e., `, ´, ˆ, ˜, k

a

p´q).

This theorem is a direct consequence of Galois correspondence and the Galois correspondence group be-
ing unsolvable.

A consequence is that when m ě 5, the roots of pptq can only (in general) be approximated with an infinite
number of operations, which is called iterative methods.

However, finding roots of polynomials with iterative methods is unstable, so to estimate eigenvalues of A,
we will avoid finding roots of characteristic polynomials.

A fact is that if A P Cmˆm with m ě 5, then all eigenvalue solvers are iterative.

Remark IV.3.3. General Scheme to Find Eigenvalues.

For a given A PsCmˆm, we will deploy iterative methods to find an approximation of Schur factorization
(eigenvalue revealing), so we find a sequence tQiu

8
i“1 of unitary matrices such that:

Q˚
n ¨ ¨ ¨ Q˚

2 Q˚
1 ApQ1Q2 ¨ ¨ ¨ Qnq

nÑ8
ÝÝÝÝÑ T,

which is upper triangular, and Qn is unitary. (T will be diagonal if A is Hermitian). {

In particular, we consider the scheme as two phases, in which:
»

—

—

—

—

—

—

—

–

˚ ˚ ˚ ¨ ¨ ¨ ˚

˚ ˚ ˚ ¨ ¨ ¨ ˚

˚ ˚ ˚ ¨ ¨ ¨ ˚

...
...

...
. . .

...
˚ ˚ ˚ ¨ ¨ ¨ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

˚ ˚ ¨ ¨ ¨ ˚ ˚

˚ ˚ ¨ ¨ ¨ ˚ ˚

0 ˚ ¨ ¨ ¨ ˚ ˚

...
...

. . .
...

...
0 0 ¨ ¨ ¨ ˚ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

˚ ˚ ˚ ¨ ¨ ¨ ˚

0 ˚ ˚ ¨ ¨ ¨ ˚

0 0 ˚ ¨ ¨ ¨ ˚

...
...

...
. . .

...
0 0 0 ¨ ¨ ¨ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

A H T

Phase 1 Phase 2

Here, phase 1 turns the matrix A into Hessenberg form, that is having zeros below the first subdiagonal.

• For phase 1, it has finite number of steps, i.e., Opm3q flops.

• For phase 2, there needs to be finitely many steps, that is:

– There needs to be Opmq iterations to achieve convergence to T.

– Each iteration needs Opm2q flops.
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So the total is OpmqOpm2q “ Opm3q flops.

If we apply Phase 2 directly to A, the the number of flops is Opm4q or higher.

Remark IV.3.4. Special Hermitian Case of Decomposition.

When A is Hermitian, then H and T are also Hermitian, so H is:

H “

»

—

—

—

—

—

—

—

–

˚ ˚ 0 ¨ ¨ ¨ 0
˚ ˚ ˚ ¨ ¨ ¨ 0
0 ˚ ˚ ¨ ¨ ¨ 0
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and T is diagonal. H has nonzero entries on the diagonal, first sub-diagonal and first super-diagonal. {

Our scheme is as follows:

(i) We have:

A
ρpU1,‚q
ÞÝÝÝÝÑ H “ U1 AU˚

1 ,

where this is the conjugation action of U1 and U1 is unitary, so it is a similarity transformation.
Here, we let U1 “ Q1Q2 ¨ ¨ ¨ Qm´2, where Qj is unitary matrix that performs a Householder reflection,
which is normally used for QR factorization, that is:

A “ QR,

which is not a similarity transformation (which is different from A “ U˚
1 HU).

(a) For the first step of QR factorization, we have A P Cmˆm as:
»

—

—

—

—

—

—

—

–

˚ ˚ ˚ ¨ ¨ ¨ ˚

˚ ˚ ˚ ¨ ¨ ¨ ˚

˚ ˚ ˚ ¨ ¨ ¨ ˚

...
...

...
. . .

...
˚ ˚ ˚ ¨ ¨ ¨ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Q1.‚
ÞÝÝÝÑ

»

—

—

—

—

—

—

—

–

‹ ‹ ‹ ¨ ¨ ¨ ‹

0 ‹ ‹ ¨ ¨ ¨ ‹

0 ‹ ‹ ¨ ¨ ¨ ‹

...
...

...
. . .

...
0 ‹ ‹ ¨ ¨ ¨ ‹

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

in which the first column got transformed into zero entries except for the first row.

x1

x2

x P Cm

}x}e1

v

hyperplane

Figure IV.1. Decomposition as a reflection in QR factorization.

Here, we define v “ }x}e1 ´ x, so:

F “ Id ´2
vv˚

v˚v
,

and we let Q1 “ F.
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Proposition IV.3.5. Properties of First Step in Factorization.

Here are the properties of F and Q1:

• F˚ “ F, which is Hermitian,

• F´1 “ F˚, which is unitary, thus

• F´1 “ F, which is involutory.

(b) In the second step of QR, we have the step as:
»

—

—

—

—

—

—

—

–

‹ ‹ ‹ ¨ ¨ ¨ ‹

0 ‹ ‹ ¨ ¨ ¨ ‹

0 ‹ ‹ ¨ ¨ ¨ ‹

...
...

...
. . .

...
0 ‹ ‹ ¨ ¨ ¨ ‹

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Q2.‚
ÞÝÝÝÑ“

»

—

—

—

—

—

—

—

–

‹ ‹ ‹ ¨ ¨ ¨ ‹

0 ♣ ♣ ¨ ¨ ¨ ♣
0 0 ♣ ¨ ¨ ¨ ♣
...

...
...

. . .
...

0 0 ♣ ¨ ¨ ¨ ♣

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

Here, we define v “ }x}e1 ´ x, with

F “ Idm´1 ´2
vv˚

v˚v
,

so we have:

Q2 “

«

1 0˚

0 F

ff

,

so Q2 is hermitian, unitary, and involutary.

(c) Then, we repeat such step for all k, that is having:

Qk “

«

Idk´1 0˚

0 F

ff

,

which is hermitian, unitary, and involutary.

Now, we get after m ´ 1 steps to get Qm´1Qm´2 ¨ ¨ ¨ Q2Q1 A “ R, so we have:

pQm´1 ¨ ¨ ¨ Q2Q1qr ´ 1s “ Q´1
1 Q´1

2 ¨ ¨ ¨ Q´1
m´1 “ Q1Q2 ¨ ¨ ¨ Qm´1.

Now, we let A “ QR where Q “ Q1 ¨ ¨ ¨ Qm´1, which is not eigenvalue revealing.

(ii) Here, we make the first attempt to compute the Hessenberg form, which is to:

• Perform first steps of QR, that is:
A ÞÑ Q1 A,

• We compute A ÞÑ Q1 AQ1, which is similarity transformation, which preserves eigenvalues.
In particular, pQ1 AqQ1 performs on columns of Q1 A the same operations that Q1 operated on
the rows of A.
Here, we may not necessarily have Q1 AQ1 to have zeros (except for the first row) to be pre-
serves. So our work is undone.

Remark IV.3.6. Equivalent with Abel-Ruffini Theorem.

Note that this is reasonable since if we could have get the eigenvalues of a matrix within finitely
many steps, that is equivalently solving for zeros of polynomials of arbitrarily large degree, which
is a contradiction to Abel-Ruffini Theorem. {
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(iii) Thus, we start over with another attempt, here, we use the last m ´ 2 entries for the x in householder
reflection, where we let:

»

—

—

—

—

—

—

—

–

˚ ˚ ˚ ¨ ¨ ¨ ˚

˚ ˚ ˚ ¨ ¨ ¨ ˚

˚ ˚ ˚ ¨ ¨ ¨ ˚

...
...

...
. . .

...
˚ ˚ ˚ ¨ ¨ ¨ ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Q1
ÞÝÝÑ ‚

»

—

—

—

—

—

—

—

–

˚ ˚ ˚ ¨ ¨ ¨ ˚

‹ ‹ ‹ ¨ ¨ ¨ ‹

0 ‹ ‹ ¨ ¨ ¨ ‹

...
...

...
. . .

...
0 ‹ ‹ ¨ ¨ ¨ ‹

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

‚Q1
ÞÝÝÑ

»

—

—

—

—

—

—

—

–

˚ ♣ ♣ ¨ ¨ ¨ ♣
‹ ♣ ♣ ¨ ¨ ¨ ♣
0 ♣ ♣ ¨ ¨ ¨ ♣
...

...
...

. . .
...

0 ♣ ♣ ¨ ¨ ¨ ♣

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Note that the zeros are preserves.
Then, we do the same thing with Q2 with the last m ´ 3 entries on the second column as x in the
Householder reflection. Thus, we have:

»

—

—

—

—

—

—

—

–

˚ ♣ ♣ ¨ ¨ ¨ ♣
‹ ♣ ♣ ¨ ¨ ¨ ♣
0 ♣ ♣ ¨ ¨ ¨ ♣
...

...
...

. . .
...

0 ♣ ♣ ¨ ¨ ¨ ♣

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Q2‚Q2
ÞÝÝÝÝÑ

»

—

—

—

—

—

—

—

–

˚ ♣ ♡ ¨ ¨ ¨ ♡
‹ ♣ ♡ ¨ ¨ ¨ ♡
0 ♡ ♡ ¨ ¨ ¨ ♡
...

...
...

. . .
...

0 0 ♡ ¨ ¨ ¨ ♡

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Q3‚Q3
ÞÝÝÝÝÑ ¨ ¨ ¨

Qm´2‚Qm´2
ÞÝÝÝÝÝÝÝÝÑ

»

—

—

—

—

—

—

—

–

˚ ♣ ♡ ¨ ¨ ¨ ?
‹ ♣ ♡ ¨ ¨ ¨ ?
0 ♡ ♡ ¨ ¨ ¨ ?
...

...
...

. . .
...

0 0 0 ¨ ¨ ¨ ?

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

in which our desired result is in Hessenberg form, which is exactly:

A “ pQ1Q2 ¨ ¨ ¨ Qm´2
looooooooomooooooooon

U1

qH pQm´2q ¨ ¨ ¨ Q2Q2
looooooooomooooooooon

U˚
1

.

Proposition IV.3.7. Hermitian ùñ Hessenberg is Tridiagonal.

If A is Hermitian, then H is Tridiagonal, i.e., having only diagonal, sub-diagonal, and super-diagonal
possibly nonzero.

Proof. Here, we have H “ U˚
1 AU1, then H˚ “ U˚

1 A˚U1 “ U˚
1 AU1 “ H, so H is Hermitian implies that it

is upper triangular, so H is Tridiagonal.

Here, we make the simplifying assumption that A “ A˚, that is to computer the singular values of B by
computing eigenvalues of A “ B˚B, which is Hermitian, i.e., A˚ “ A.

Therefore, the consequences are that:

• Eigenvalues are red, and

• A has unitary diagonalization, i.e., there exists unitary Q (Q˚ “ Q´1) as the orthonormal eigenvec-
tors of A.

Definition IV.3.8. Rayleigh Quotient.

Let A be Hermitian, the Rayleigh quotient of A is the function r : Cmzt0u Ñ C, defined as:

rpxq “
x˚ Ax
x˚x

,

which is the quadratic form over }x}2. {



N.L.A. Notes 85

Proposition IV.3.9. Rayleigh Quotient of Eigenvector is its Eigenvalue.

Suppose v ‰ 0 is an eigenvector of A associated to eigenvalue λ, i.e., A.v “ λv, then:

rpvq “
v˚ Av
v˚v

“
v˚pλvq

v˚v
“ λ.

With this property, we can find the eigenvalue as long as we can find the eigenvectors.

Remark IV.3.10. Geometric Interpretation of Rayleigh Quotient.

Let A P Cmˆm be Hermitian, and fix any nonzero vector x P Cm. Consider the function f : R Ñ R as:

f pαq “ }Ax ´ αx}2.

We want to minimize this w.r.t α. If x is an eigenvector, and for α “ λ, which is the eigenvalue, we have

f pλq “ }A.v ´ λv}2 “ 0,

which is the least value for a normed vector space. However, we want to think of x when it is not the
eigenvector. {

Theorem IV.3.11. Minimizer for f is Rayleigh Quotient.

Let A P Cmˆm be Hermitian. Then, for any x ‰ 0, the minimizer of f pαq “ }A.x ´ αx}2 is α “ rpxq, which
is the eigenvalue of x when x is eigenvector.

Proof. Equivalently, f pαq is minimizing:
`

f pαq
˘2

“ }A.x ´ αx}2
2 “ pA.x ´ αxq˚pAx ´ αxq

“ x˚ A˚ Ax ´ αx˚Ax ´ αx˚ A˚x ` α2x˚x

“ x˚ A2 ´ 2αx˚ Ax ` α2x˚x.

Then, we take the derivatives as:
d

dα

“`

f pxq
˘2‰

“ ´2x˚ Ax ` 2αx˚x “ 0,

which solves as:
α “

x˚ Ax
x˚x

“ rpxq,

as desired.

We have seen that if x “ v, then rpvq “ λ, and v is the stationary point of rpxq, so that:

∇rpvq “ 0.

Another assumption us that A P Rmˆm so that for x P Rm, we have A˚ “ A implying that A⊺ “ A.

Theorem IV.3.12. Gradient of Rayleigh Quotient.
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The gradient ∇rpxq “

»

—

—

—

—

—

–

Br
Bx1

pxq

Br
Bx2

pxq

...
Br

Bxm
pxq

fi

ffi

ffi

ffi

ffi

ffi

fl

, where x “

»

—

—

—

—

–

x1

x2
...

xm

fi

ffi

ffi

ffi

ffi

fl

given by:

∇rpxq “
2

x˚x
pAx ´ rpqxq P Cm.

Proposition IV.3.13. Formal Derivatives.

With the same construction, we have:

(i)
B

Bxi
px˚xq “ 2x, and

(ii)
B

Bxi
px˚Axq “ 2pAxqi, that is the i-th entry of vector A.x.

Proof. Recall from calculus, we have:
d

dx

„

f
g

ȷ

“
f 1g ´ f g1

g2 .

Then, the partial derivative is:
B

Bxi
rpxq “

B

Bxi

x˚ Ax
x˚x

“

B
Bxi

px˚ Axq ¨ x˚x ´ px˚ Axq B
Bxi

px˚xq

px˚xq2

“
2pA.xqix˚x ´ px˚ Axq2xi

px˚xq2

“
2

x˚x

„

pAxqi ´
x˚ Ax
x˚x

xi

ȷ

“
2

x˚x
“

pA.xq ´
`

rpxqx
˘

i

‰

“
2

x˚x
`

Ax “ rpxqx
˘

i.

Hence, we have:

∇rpxq “
2

x˚x
`

Ax ´ rpxqx
˘

,

which completes the proof.

Note that if x “ v, we have:

∇rpvq “
2

v˚v
`

Av ´ rpvqv
˘

“ 0,

and thus v is a stationary point of rpxq.

Proposition IV.3.14. Eigenvectors are Critical Points.

v is an eigenvector of A if and only if ∇rpvq “ 0.
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Proof. (ùñ:) Assume that x “ v, then we have:

rpvq “
2

v˚v
pAv ´ rpvq

loomoon

λ

vq “ 0.

(ðù:) Assume that ∇rpvq “ 0, then A.v ´ rpvqv “ 0, so A.v ´ rpvqv “ 0, thus A.v “ rpvqv, so v is
eigenvector of A.

Recall for a Taylor series, we have:

f pxq „ f px0q ` f 1px0qpx ´ x0q `
1
2

f 2px0qpx ´ x0q2 ` higher order terms.

For r : pRmqˆ Ñ R, we have:

rpxq “ rpq `
“

∇rpx0q
‰⊺

px ´ x0q `
1
2

px ´ x0q⊺Hrpx0qpx ´ x0q ` higher order terms,

where we have:
Hrpx0q “

”

Br
BxiByj

px0q
ı

Here, we choose x0 “ v, which is one eigenvector of A associated to eigenvalue λ, we have rpvq “ λ,
∇rpvq “ 0. For x near v, we have:

rpxq » λ `
1
2

px ´ vq⊺Hrpvqpx ´ vq,

i.e.:
rpxq ´ λ »

1
2

px ´ vq⊺Hrpvqpx ´ vq.

Recall that if A P Cmˆn and B P Cnˆp, and } ‚ } is a matrix norm induced by a vector norm, then:

}AB} ď }A} ¨ }B}.

Another fact is that if x P Cmˆ1 (or y P C1ˆm) and } ‚ }M is a matrix norm induced by a vector norm } ‚ }V ,
we can interpret x or y as a matrix, and we will have that the }x}M equal to the vector norm }xx}V that
induced the matrix norm.

Sketch of proof. Suppose } ‚ }M is the matrix norm induced by the vector 2 norm } ‚ }2, and suppose x P

C`m ˆ 1, we compute the matrix norm of x as:

}x}M “ sup
uPC1

}u}2“1

}xu}2 “ max
uPC

|u|“1

|u|}x}2 “ }x}2.

Hence, we get that:

|rpxq ´ λ| »
1
2

ˇ

ˇ px ´ vq⊺Hrpvqpx ´ vq
loooooooooooomoooooooooooon

C1ˆ1

ˇ

ˇ

“
1
2

}px ´ vq⊺Hrpvqpx ´ vq}

ď
1
2

}px ´ vq⊺}
loooomoooon

}x´v}2

¨ }Hrpvq}
looomooon

does not depend on x

¨ }px ´ vq}
loooomoooon

}x´v}2

.

Therefore, we obtain that:
|rpxq ´ λ| ď C}x ´ v}2

2,

i.e., |rpxq ´ λ| “ Op}x ´ v}2
2q.

Therefore, the Rayleigh quotient is a quadratically accurate estimate of λ.
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}x ´ v}

|rpxq ´ λ|

Figure IV.2. Convergence of Rayleigh quotient is quadratic.

IV.4 Power Method

Here, we first introduce another assumption. Consider A with m distinct eigenvalues, we order them in
decreasing order:

|λ1| ą |λ2| ą ¨ ¨ ¨ ą |λm|.

The spectral gap ratio is |λ1|

|λ2|
. (This only accounts for the first two.)

Here, we consider the power method

input: A

vec_v^0 in C^m % initial guess for eigenvector of lambda_1 and its norm is 1

while True:

vec_w = A*vec_v^(k-1)

vec_v^(u) = vec_w / ||vec_w||

lambda^(k) = r(vec_v^(u)) = (vec_v^(k)^T*A*vec_V^(k)) / ((vec_v^(u))*vec_v^(u))

% Termination condition

For the algorithm, we have the termination condition of:

|λpkq ´ λpk´1q| ă ϵ1 or

ˇ

ˇ

ˇ

ˇ

ˇ

λpkq ´ λpk´1q

λpk´1q

ˇ

ˇ

ˇ

ˇ

ˇ

ă ϵ2.

Suppose that β “ tq1, q2, ¨ ¨ ¨ , qmu is orthonormal. Let the eigenbasis of Cm for A, we can write vp0q as:

vp0q “ c1q1 ` c2q2 ` ¨ ¨ ¨ ` cmqm.

In the first step, we have:

w “ Avp0q “ c1 A.q1 ` c2 A.q2 ` ¨ ¨ ¨ ` cm A.qm “ c1λ1q1 ` c2λ2q2 ` ¨ ¨ ¨ ` cmλmqm,

vp1q “
w

}w}
“ d1 pc1λ1q1 ` c2λ2q2 ` ¨ ¨ ¨ ` cmλmqmq ,

λp1q “ rpvp1qq.

Then, for the second step, we have:

w “ Avp0q “ d1pc1λ2
1q1 ` c2λ2

2q2 ` ¨ ¨ ¨ ` cmλ2
mqmq,

vp2q “
w

}w}
“ d2pc1λ2

1q1 ` c2λ2
2q2 ` ¨ ¨ ¨ ` cmλ2

mqmq,

λp2q “ rpvp2qq.
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In the k-th step, we have:

vpkq “ dkpc1λk
1q1 ` c2λk

2q2 ` ¨ ¨ ¨ ` cmλk
mqmq,

λpkq “ rpvpkqq.

Here, we may rewrite the vector as:

vpkq “ dkλk
1

ˆ

c1q1 ` c2

˜

λ1

λ2

k
q2

¸

` ¨ ¨ ¨ ` cm

ˆ

λm

λ1

˙k
qm

loooooooooooooooooooooomoooooooooooooooooooooon

Ñ0 as kÑ8

˙

.

Thus, as k is arbitrarily large, we have:
vpkq » pdkλk

1c1qq1.

Since }q1}2 “ 1 and }vpkq}2 “ 1, we have |bkλk
1c1| “ 1, so we have:

either vpkq to q1 or vpmq Ñ ´q1.

Remark IV.4.1. Computation Complexity of Power Method.

The most costly operations are with:

wpkq “ Avpk´1q and λpkq “ r
`

vpkq
˘

Avpkq.

It would be cheaper if A is in Heisenberg or Tri-diagonal form. {

Proposition IV.4.2. Rate of Convergence for Power Method.

The rate of convergence for the power method is dependent on λ2{λ1, namely:

}vpkq ´ p˘q1q} “ O
˜

ˇ

ˇ

ˇ

ˇ

λ2

λ1

ˇ

ˇ

ˇ

ˇ

k
¸

,

|λpkq ´ λ| “ O
˜

ˇ

ˇ

ˇ

ˇ

λ2

λ1

ˇ

ˇ

ˇ

ˇ

2k
¸

.

Here, we can also obtain the following, more formal, result.

Theorem IV.4.3. Eigenvectors and Eigenvalues for Manipulations in Matrices.

Let A P Cmˆm and let v be an eigenvalue of A associated with eigenvalue λ.

(i) For any µ P C, we have that λ ´ µ being an eigenvalue of A ´ µ Id with same eigenvector v.

(ii) If A is nonsingular, then 1{λ is an eigenvalue of A´1 with the same of eigenvector v.

Proof. (i) Notice that:
pA ´ µ Idq.v “ A.v ´ µ Id .v “ λv ´ µv “ pλ ´ µqv.

(ii) Here, λ ‰ 0 since A is nonsingular, thus:

A.v “ λv which implies that A´1 A.v “ A´1.pλvq,

thus, we have that:
v “ λA´1v,
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thus we result in A´1.v “ 1
λ v, as desired.

As an immediate consequence of the previous theorem, we have the following result.

Proposition IV.4.4. Corollary on Manipulation of Matrices.

If λ is an eigenvalue of A with eigenvector, and µ P C is arbitrary such that A ´ µ Id being nonsingular,
then 1

λ´µ is an eigenvalue of pA ´ µ Idq´1 with the same eigenvector v.

In particular, the above corollary allows us to modify the gaps of the eigenvalues while preserving eigen-
vectors, it helps to improve the power method.

Suppose eigenvalues of A are:

|λ1| ą |λ2| ą ¨ ¨ ¨ ą |λm|, and
|λ2|

|λ1|
Æ 1.

Graphically, we would have:

λ
0

λ1λ2λ3λ4 λ5

µ

Figure IV.3. Eigenvalues of A on the axis with µ close to λ1.

When µ is closer to λ1 than λ2, we have:

|λ1 ´ µ| ! |λ2 ´ µ| ă |λj ´ µ| for all j ě 3.

Therefore, we have the inversion as:
1

|λ1 ´ µ|
"

1
|λ2 ´ µ|

ą
1

|λj ´ µ|
for all j ě 3.

Here, the eigenvalues of pA ´ µ Idq´1 are:
1

λ1 ´ µ
,

1
λ2 ´ µ

, ¨ ¨ ¨ ,
1

λ ´ µ
,

with the same eigenvectors (of A) as:
q1, q2, ¨ ¨ ¨ , qm.

This becomes the inverse iteration algorithm.

input: A

vec_v^0

mu

for k = 1, 2, 3, ...:

vec_w = (A - mu*Id)^(-1) vec_v^(k-1) % inverse matrix here, we avoid this

vec_v^(k) = vec_w / ||vec_w||

lambda^(k) = r(vec_v^(k)) = (vec_v^(k))^T A vec_v^(k)

Remark IV.4.5. Avoid doing Inverses.

Especially for the noted step, there is invert of a matrix, so we instead solve instead:

pA ´ µ Idqw “ vpk´1q for w,

for example using LU decomposition. {
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Suppose now that we have:

λ
0

λVλIIIλIIλIV λI

µ

Figure IV.4. Eigenvalues of A on the axis with µ elsewhere.

In this case, we have:

|λI ´ µ| ă |λII ´ µ| ă |λi ´ µ| for all other eigenvalues λi.

Hence, we have:
1

|λI ´ µ|
ą

1
|λII ´ µ|

ą
1

|λi ´ µ|
for all other eigenvalues λi.

Hence, the dominant eigenvalue of pA ´ µ Idq´1 is:
1

λI ´ µ
.

Then, we apply inverse iteration algorithm, and we will get:

vpkq kÑ8
ÝÝÝÝÑ qI and λpkq kÑ8

ÝÝÝÝÑ λI.

Iteration-wise, we have:

vpkq “ dkλI

«

cIqI ` cII

ˆ

λII

λI

˙k
qII ` ¨ ¨ ¨

ff

.

Proposition IV.4.6. Rate of Convergence for Inverse Iteration Algorithm.

The rate of convergence for the modified algorithm is:

}vpkq ´ p˘qIq}2 “ O
˜

ˇ

ˇ

ˇ

ˇ

λII

λI

ˇ

ˇ

ˇ

ˇ

k
¸

|λpkq ´ λI| “ O
˜

ˇ

ˇ

ˇ

ˇ

λII

λI

ˇ

ˇ

ˇ

ˇ

2k
¸

.

To make this faster, we want to update µ so it is closer to λI, i.e., we can change µpkq :“ λpkq. This leads to
Raileigh Quotient Iteration Algorithm.

input: A in C(m*m)

vec_v^(0)

mu

for k = 1, 2, 3, ...:

solve (A - mu*Id)vec_w = vec_v^(k-1) for vec_w

vec_v^(u) = vec_w / ||vec_w||

lambda^(k) = r(vec_v^(k))^* Avec_v^(k)

mu = lambda^(k)

Within machine precision, this algorithm is clearly faster.
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