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Chapter 1 Stable Matching

1.1 Stable Matching Problem

1.1.1 Stable Matching Problem

Input: A set A of n objects and a set B of n objects, along with a preference list of A and B.

Perfect Matching: A matching M is a set of ordered pairs in A×B such that only one pair in M contains a for all
a ∈ A and the similar statement holds for b ∈ B. The matching M is perfect if M is a bijective function, namely
|M | = n.

Definition 1.1 (Unstable Pair)

♣

Given a perfect matching, a and b form an unstable pair if both a prefers b than M(a) and b prefers a than
M(b). In other words, An unstable pair a− b could each improve by joint action.

Stable Matching Problem: Given the preference lists, find a stable matching (if one exists).

1.1.2 Gale-Shapley Algorithm

Algorithm 1 Gale-Shapley
Initialize M to empty matching
while Some element a ∈ A is unmatched and hasn’t proposed to every b ∈ B do

b← first a on b’s list to which a has not yet proposed.
if b is unmatched then

Add (a, b) to matching M .
else if b prefers a to current partner a′ then

Replace (a′, b) with (a, b) in matching M .
else

b rejects a.
end if

end while
return stable matching M .

Property (1) Element a ∈ A propose to b ∈ B in decreasing order of preference.
(2) Once b ∈ B is matched, then b never becomes unmatched, namely only trades up are possible.

Property Algorithm terminates after at most n2 iteration of while loop.

Proof Each proposal through the while loop must be different from previous proposals, and there are n2 distinct
proposals, so the while loop terminates after at most n2 iterations. ■



1.1 Stable Matching Problem

Property Gale-Shapley outputs a matching.

Proof For all a ∈ A, a proposes only if a unmatched, so a matches to at most one b ∈ B. For all b ∈ B, if b accepts
the proposal of a, whether b is unmatched or b then rejects the previous proposal from a′, so b matches to at most
one a ∈ A. ■

Property In Gale-Shapley matching, every element in A and every elements in B get matched.

Proof The loop terminates only if all a ∈ A is matched or every b ∈ B is proposed by some unmatched a ∈ A. For
the latter case, there exists b ∈ B unmatched, so a never proposes to b by the second property, contradiction. For the
first case, since |A| = |B| and M is a matching, every element in B get matched. ■

Property In Gale–Shapley matching M∗, there are no unstable pairs.

Proof Consider (a, b) /∈ M∗. Case 1: if a never proposed to a, then a prefers M∗(a) than b since a proposes in a
decreasing order, it follows that (a, b) is not unstable. Case 2: if a proposed to b, b rejects or renounces to M∗(b), so
b prefers M∗(b) over a, implying that (a, b) is not unstable. ■

Corollary 1.1

♡The Gale–Shapley algorithm guarantees to find a stable matching for any problem instance within O(n2).

1.1.3 A-Optimality

Definition 1.2 (Valid Partner)

♣

Element b ∈ B is a valid partner for element a ∈ A if there exists any stable matching in which a and b are
matched.

Proposition 1.1

♠Gale-Shapley matching M∗ is A-optional (namely, each a ∈ A receives best valid partner).

Proof Proof by contradiction. Assume a is the first element in A be rejected from its best valid partner b, and b

forms commitment to a′. Then there exists b′ such that (a, b), (a′, b′) ∈ M for some stable matching M . Since b

rejected a, we have a′ >b a. Since a′ was not rejected by b′ upon rejected by b, so a′ has not yet proposed to b′,
implying that b >a′ b

′. Therefore, (a′, b) is an unstable pair in M , contradicting the fact that M is stable. ■

Proposition 1.2

♠Gale-Shapley matching M∗ is B-pessimal (namely, each b ∈ B receives worst valid partner).

Proof Proof by contradiction. Let a denotes the worst valid partner of b, and suppose (a′, b), (a, b′) ∈ M where

4



1.1 Stable Matching Problem

a ̸= a′, b ̸= b′. It is obvious that a′ >b a, and by A-optimality, b >a′ b
′. Thus (a, b) is an unstable pair, resulting in

a contradiction. ■
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Chapter 2 Basics of Algorithm Analysis

2.1 Asymptotic Order of Growth

2.1.1 Computational Tractability

Efficient Algorithm An algorithm is poly-time (Polynomial running time) if there exists constants a > 0 and b > 0

such that for every input size of n, the complexity is no larger than anb primitive computational steps. We say that
an algorithm is efficient if it has a polynomial running time.

Worst-case Analysis The worst case analysis yields the running time guarantee for any input size n. It generally
captures efficiency and hard to find effective alternative. However, there are some exponential-time algorithms are
used widely in practice because the worst case instances don’t arise.

Other Types fo Analyses Probabilistic: expected running time of a randomized algorithm. Amortized: worst-case
running time for any sequence of n operations. Also, average case analysis, smoothed analysis, etc. are in used.

2.1.2 Asymptotic Order of Growth

Definition 2.1 (Upper Bound, Big O Notation O(f))

♣f(n) is O(g(n)) if there exist constants c > 0 and N ≥ 0 such that 0 ≤ f(n) ≤ c · g(n) for all n ≥ N .

Note: (a) We sometimes use f(n) ∈ O(g(n)) to denote f(n) ∈ O(g(n)).

(b) We sometimes extend the domain and the codomain of f : N→ N to real.

Property The Big O Notation has the following properties:

1. Reflexivity: f ∈ O(f);

2. Transitivity: if f ∈ O(g) and g ∈ O(h), then f ∈ O(h).

3. Constants: if f ∈ O(g) and c > 0, then cf ∈ O(g);

4. Products: if f1 ∈ O(g1) and f2 ∈ O(g2), then f1f2 ∈ O(g1g2);

5. Sums: if f1 ∈ O(g1) and f2 ∈ O(g2), then f1 + f2 ∈ O(max{g1, g2});

Definition 2.2 (Lower Bound, Big Omega Notation Ω(f))

♣f(n) is Ω(g(n)) if there exist constants c > 0 and N ≥ 0 such that 0 ≤ c · g(n) ≤ f(n) for all n ≥ N .



2.1 Asymptotic Order of Growth

Definition 2.3 (Tight Bound, Big Theta Notation Θ(f))

♣

f(n) is Θ(g(n)) if there exist constants c1, c2 > 0 and N ≥ 0 such that 0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n) for
all n ≥ N .

Proposition 2.1

♠If limn→∞ f(n)/g(n) = c for some constant 0 < c <∞, then f(n) ∈ Θ(g(n)).

Proof By the definition of limit, choose ε = c/2, there exists N such that

c

2
= c− ε ≤ f(n)

g(n)
≤ c+ ε =

3c

2

for all n ≥ N . It follows that (c/2) · g(n) ≤ f(n) ≤ (3c/2) · g(n) for n ≥ N . ■

Corollary 2.1

♡

If limn→∞ f(n)/g(n) = 0, then f(n) ∈ O(g(n)) but not in Ω(g(n)); if f(n)/g(n) diverges when n → ∞,
then f(n) ∈ Ω(g(n)) but not in O(g(n)).

Property Asymptotic bounds for some common functions:

Polynomials: Let f(n) = a0+a1n+· · ·+adn
d with ad > 0, i.e., a polynomial of degree d, then f(n) ∈ Ω(nd).

Logarithms: Let f(n) = loga n where a > 1, then f(n) ∈ Ω(logb n) for every b > 1.

Logarithms and polynomials: Let f(n) = loga n where a > 1, then f(n) ∈ O(nd) for every d > 0.

Exponential and polynomials: Let f(n) = nd where d > 0, then f(n) ∈ O(rn) for every r > 1.

Factorial: Let f(n) = n!, then f(n) ∈ 2Ω(n logn).

Example 2.1

Constant time (running time O(1)) example: condition branch, arithmetic/logic operation, declare variable,
access element in an array, etc.

Linear time (running time O(n)) example: iterate through an array, merge two sorted list in mergesort, etc.

Logarithmic time (running time O(log n)) example: binary search in a sorted array.

Linearithmic time (running time O(n log n)) example: mergesort.

Quadratic time (running time O(n2)) example: closest pair of points.

Polynomial time (running time O(nk) where k > 0) example: fine k pairwise disjoint node in a graph.

Exponential time (running time O(2n
k
) where k > 0) example: Euclidean TSP - find a tour of minimum

length in a plane with n points.
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Chapter 3 Graphs

3.1 Undirected Graph

3.1.1 Graph and Representations

Definition 3.1 (Undirected Graphs)

♣

An undirected graphs is denoted by G = (V,E), where V are nodes (vertices) and E are the edges between
pairs of nodes, and we denote the size parameters as n = |V | and m = |E|. It captures pairwise relationship
between objects.

Graph Representation: Adjacency Matrix The adjacency matrix is a n× n matrix with Au,v = 1 is (u, v) is an
edge.

The space complexity is proportional to Θ(n2).

Checking if (u, v) is an edge takes Θ(1) time.

Identifying all edges takes Θ(n2) time.

Graph Representation: Adjacency List Node-index array of lists.

The space complexity is proportional to Θ(n+m).

Checking if (u, v) is an edge takes O(deg u) time, where deg u = number of neighbors of u.

Identifying all edges takes Θ(m+ n) time.

3.1.2 Path and Connectivity

Definition 3.2 (Path, Connectivity)

♣

A path in an undirected graph G = (V,E) is a sequence of nodes v1, · · · , vk with the property that each
consecutive edges is different. A path is simple if all nodes are distinct.

An undirected graph is connected if for every pair of nodes u, v, there is a path between u and v.

Definition 3.3 (Cycle)

♣

A cycle is a path v1, · · · , vk which v1 = vk and k > 1. A cycle is simple if all nodes are distinct (except for
v1).

An undirected graph is a tree is it is connect and does not contain a cycle. A tree can be converted to a rooted tree if
we choose a root r and orient all nodes away from r.

Property Let G be an undirected graph on n nodes, any two of the following statements imply the third:



3.1 Undirected Graph

G is connected

G contains no cycles.

G has n− 1 edges.

The connected components are all nodes reachable from s.

3.1.3 Graph Connectivity and Traversal

Two connectivity problems we want to solve:

1. s-t connectivity problem: given two nodes s and t, is there a path between s and t?

(2) s-t shortest path problem: given twp nodes s and t, that is the length of a shortest path between s and t?

Breadth First Search (BFS) The intuition is that we explore outward from s in all possible directions, adding
nodes one “layer” at a time. Let

L0 = {s} and L1 = all neighbors of L0

Recursively defined Li+1 = all neighbors of nodes in Li where do not belong to an earlier layer.

Proposition 3.1

♠

For each i, Li consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in
some layer.

Property Let T be a BFS tree, if there is an edge (u, v), then the levels of x and y differ by at most 1.

Proposition 3.2

♠The above implementation of BFS runs in O(m+ n) time if the graph is given by its adjacency list.

Proof The loop runs at most n times since each node is traversed at most once. For each node u we visit, we take
O(1) to access and deg n operations to process since there are deg u incident edges. Since the total time processing
edges is

∑
u∈V deg u = 2m and time processing nodes is O(n), it follows that the total time is O(m+ n). ■

Example 3.1 Flood fill: given green pixel in an image, change color of entire blob of neighboring green pixels to
blue. The nodes are pixels, edges are neighboring green pixels, and the blob represents the connected component of
green pixels.

Depth-First Search

DFS explores a path at a time and backtrack whenever the path ends (or the node is already marked explored). DFS
runs in O(m+ n).
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3.1 Undirected Graph

Algorithm 2 DFS
1: Mark u as “explored” and add u to R
2: for each node (u, v) incident to u do
3: if v is not marked “explored” then
4: Recursively invoke DFS(v)
5: end if
6: end for

3.1.4 Bipartiteness

Definition 3.4 (Bipartite)

♣

An undirected graph G = (V,E) is bipartite if the nodes can be colored in two colors such that every edge
incidents nodes with different colors.

Proposition 3.3

♠If a graph G is bipartite, it cannot contain an odd length cycle.

Proposition 3.4

♠

Let G be a connected graph, and let L0, · · · , Lk be the layers produced by BFS starting at node s. Exactly
one of the following holds:

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle, and hence G is
not bipartite.

Remark That is, if G is bipartite, we can orients the graph into layers of nodes for which there is no edges join
nodes in the same layer or non-adjacent layers.

Proof (i) Suppose no nodes joins two nodes in same layer. By BFS property, each edge joins nodes in adjacent
levels, so coloring white on odd layers and blue on even layers yields the desired coloring.

(ii) Suppose (x, y) is an edge with x, y in same level Lj . Then the cycle x→ s→ y → x has a odd length j+ j+1.
Hence G is not bipartite. ■

10



3.2 Directed Graph

3.2 Directed Graph

3.2.1 Connectivity in Directed Graphs

In a directed graph G = (V,E), each edge (u, v) ∈ E leaves node u and enters node v (ordered pair).

Definition 3.5 (Strong Connectivity)

♣

Nodes u and v are mutually reachable if there is both a path from u to v and also a path from v to u.

A graph is strongly connected if every pair of nodes is mutually reachable.

Proposition 3.5

♠

Let s be any node. G is strongly connected if and only if every node is reachable from s and s is reachable
from every node.

Proof (⇒) This direction is trivial by definition. (⇐) For every pair of points u, v, concatenate the path u→ s and
s→ v gives a path from u to v. The converse holds without loss of generality. ■

Theorem 3.1

♡The strong connectivity can be determined in O(m+ n) time.

Proof Pick any node s, run BFS from s in G and run BFS from s in Greverse, and return true iff all nodes reached in
both BFS. The correctness follows from the previous lemma.

A strong component is a maximal subset of mutually reachable nodes. We can find all strong components in
O(m+ n) time [Tarjan, 1972].

3.2.2 DAG and Topological Ordering

Definition 3.6 (DAG, Topological order)

♣

A DAG (directed acyclic graph) is a directed graph that contains no directed cycles. A topological order of
a directed graph G = (V,E) is an ordering of its nodes as v1, · · · , vn so that for every edge (vi, vj) we have
i < j.

Proposition 3.6

♠If G has a topological order, then G is a DAC.

Proof For the sake of contradiction, suppose G has a topological order and a directed cycle C. Let vi be the lowest
indexed node and let (vj , vi) be an edge in C. Then by the definition topological order, j < i, contradicting the

11



3.2 Directed Graph

assumption. ■

Proposition 3.7

♠If G is a DAG, then G has a node with no entering edges.

Proof Proof by contradiction. Suppose G is a DAG and every node has at least one entering edge. Fix a node v1,
choose v2 where (v2, v1) ∈ E. Define recursively v3, · · · , vn+1. vi = vj for some i < j by the Pigeonhole principle,
then we obtain a cycle vj → vj−1 → · · · → vi = vj , contradiction. ■

Proposition 3.8

♠If G is a DAG, then G has a topological ordering.

Proof Suppose G is a DAG, choose v1 be the node with no entering edges. G− {v1} is a DAG, since deleting v1

cannot create cycles. Then we can recursively define v2, · · · , vn as above. The ordering v1, · · · , vn is the topological
order of G, since vi has no entering edges from {vi+1, · · · , vn}. ■

Remark The topological order is not necessarily unique.

Theorem 3.2

♡Algorithm finds a topological order in O(m+ n) time.
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Chapter 4 Greedy Algorithm

4.1 Motivating Examples

4.1.1 Coining Changing

Consider the coining changing problem, where we have coin denomination of {1, 5, 10, 25, 100} cents and we want
to pay x cents using fewest coins. We can use Cashier’s Algorithm: at each iteration, add coin of largest value that
doesn’t take us past the amount.

In general, suppose we have coin denomination {c1, · · · , cn} and amount x to pay, the Cashier’s Algorithm is
described as:

Cashiers’ Algorithm
1: Sort n coin demoniations so that 0 < c1 < · · · < cn.
2: S ← ∅
3: while x > 0 do
4: k ← largest coin denomination ck such that ck ≤ x.
5: if no such k then
6: return No solution.
7: else
8: x← x− ck
9: S ← S ∪ {k}.

10: end if
11: end while
12: return S.

�

Note Cashier’s algorithm is optimal for U.S. coins {1, 5, 10, 25, 100}.

Remark The Cashier’s Algorithm is optional for U.S. coin denominations because of the special property of this
denomination. However, this algorithm does not work in general.

4.1.2 Interval Scheduling

Consider the interval scheduling problem: we have job j starts at sj and finishes at fj , two jobs are compatible if
they do not overlap. The goal is to find maximum subset of mutually compatible jobs.



4.1 Motivating Examples

Earliest-Finish-Time-First
1: Sort jobs by finish times and renumber so that f1 ≤ · · · ≤ fn.
2: S ← ∅
3: for j = 1 to n do
4: if job j is compatible with S then
5: S ← S ∪ {j}.
6: end if
7: end for
8: return S.

�

Note The earliest-finish-time-first algorithm is optimal.

Proof Proof by contradiction. Suppose greedy solution i1, · · · , im is not the optimal solution, where the latter is
denoted by j1, · · · , jr. We can replace j1 by i1, since i1 finish no later than j1. Recursively, we can replace jk by ik

in {j1, · · · , jk−1, ik}. This implies that {j1, · · · , jr} is also optimal, contradiction. ■

4.1.3 Interval Partitioning

Consider lecture j starts at sj and finished at fj , the goal is to find minimum number of classrooms to schedule all
lectures.

Earliest-Start-Time-First
1: Sort lectures by starts times and renumber so that s1 ≤ · · · ≤ sn.
2: d← 0.
3: for j = 1 to n do
4: if lecture j is compatible with some classroom then
5: Schedule lecture j in any such classroom k.
6: else
7: Allocate a new class room d+ 1.
8: Schedule lecture j in classroom d+ 1.
9: d← d+ 1.

10: end if
11: end for
12: return schedule.

Definition 4.1 (Depth)

♣The depth of a set of open interval is the maximum number of intervals that contain any given point.

Property Notice that the number of classrooms need to be greater than the depth. In addition, the above algorithm
never schedules two compatible lecture in the same classroom.

�

Note The earliest-start-time-first algorithm is optimal.

Proof Let d = number of classrooms allocated. Let classroom d to opened to schedule a lecture, j, that is
incompatible with lectures in all other classrooms. Thus, the depth is at least d, since we have d lectures at sj + ε.
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4.2 Dijkstra’s Algorithm

Thus, all schedule uses at least d classrooms. ■

4.1.4 Minimize Maximal Lateness

Single resource processes on job at a time. Suppose job j requires tj units of processing time and is due at time dj ;
and if j starts at time sj , it finishes at time fj = sj + tj . We define the lateness to be lj = max{0, fj − dj}. The
goal is to schedule all jobs to minimize maximum lateness L = max lj .

Earliest-Deadline-First
1: Sort lectures by deadlines and renumber so that d1 ≤ · · · ≤ dn.
2: t← 0.
3: for j = 1 to n do
4: Assign job j to interval [t, t+ tj ].
5: sj ← t; fj ← t+ tj
6: t← t+ tj
7: end for
8: return intervals [s1, f1], · · · , [sn, fn].

Define an inversion to be a pair of jobs i and j such that di < dj but j is scheduled before i.

Property

(1) There exists an optimal schedule with no idle time.

(2) The earliest-deadline-first schedule has no idle time.

(3) The earliest-deadline-first schedule is unique idle-free schedule with no inversions.

(4) If an idle-free schedule has an inversion, then it has an adjacent inversion (two inverted jobs scheduled
consecutively).

Property Exchanging two adjacent inverted jobs i and j reduced the number of inversion by 1 and does not increase
the max lateness.

Proof The first part of the statement is trivial. Let l, l′ be the lateness before and after the swap, respectively. l′k = lk

for all k ̸= i, j, and l′i ≤ li. Note that if j is late, l′j = f ′
j − dj = fi − dj ≤ fi − di ≤ li. ■

4.2 Dijkstra’s Algorithm

Problem

Single-pair Shortest Path Problem: Given a graph G = (V,E), edge length le ≥ 0, source s ∈ V , and
destination t ∈ V , find a shortest directed path from s to t.

Single-source Shortest Path Problem: Given a graph G = (V,E), edge length le ≥ 0, and source s ∈ V , find
a shortest directed path from s to every node.

15



4.2 Dijkstra’s Algorithm

Dijkstra’s Algorithm (Single-source) Maintain a set of explored nodes S for which algorithm has determined
d[u] = length of a shortest s→ u path.

Initialize S ← {s}, d[s]← 0.

Repeatedly choose unexplored node v /∈ S which minimizes

π(v) = min
e=(u,v):u∈S

(d[u] + le),

add v to S and set d[v]← π[v].

To recover path, set pred[v]← e that achieves the minimum.

Proposition 4.1

♠Invariant: For each node u ∈ S, d[u] is the length of a shortest s→ u path.

Proof We proceed by induction on |S|. |S| = 1 is trivial. Assume for |S| ≥ 1, let v be the next node added to S.
Suppose the Dijkstra path is s→ u→ v, and there is another path p : s→ x→ v. If x /∈ S, wp > π(x) > π(v). If
x ∈ S, then by the construction of v, π(v) = π(u) + lu,v ≤ π(x) + lx,v = l(p). Therefore, π(v) ≤ l(p). ■

Optimizations

(1) For each unexplored node v /∈ S, we can explicitly maintainπ[v] instead of computing direction from definition,
that is, update π[v]← min{π[v], π[u] + le} if e = (u, v).

(2) Use a min-oriented priority queue to choose an unexplored node that minimized π[v].

Algorithm 3 Dijkstra’s Algorithm
1: π[s]← 0; and for all v ̸= s: π[v]←∞, pred[v]← null.
2: Create an empty priority queue pq.
3: for all v ∈ V : insert(pq, v, π[v]).
4: while pq is not empty do
5: u← del-min(pq).
6: for all edge e = (u, v) ∈ E leaving u do
7: if π[v] > π[u] + le then
8: decrease-key(pq, vπ[u] + le).
9: π[v]← π[u] + le; pred[v]← e.

10: end if
11: end for
12: end while

Proposition 4.2

♠The time complexity for Dijkstra’s algorithm is O(|E| log |V |).
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4.3 Minimum Spanning Trees

4.3 Minimum Spanning Trees

4.3.1 Minimum Spanning Trees

Definition 4.2 (Cut, Cutset)

♣

A cut is a partition of nodes into two nonempty subsets S and V − S. The cutset of a cut S is the set of edges
with exactly one endpoint in S.

Proposition 4.3

♠A cycle and a cutset intersect in an even number of edges.

Remark The key idea is that in a cycle, for every edge goes from S to V − S, there is another returning path.

Definition 4.3 (Spanning Tree, MST)

♣

Let H = (V, T ) be a subgraph of an undirected graph G = (V,E). H is a spanning tree of G if H is both
acyclic and connected.

Suppose each edge e corresponds a cost ce, a minimum spanning tree (MST) (V, T ) is a spanning tree of G
such that the sum of the dges costs in T is minimized.

Property Let H = (V, T ) be a subgraph of an undirected graph G = (V,E), then the following are equivalent:

H is a spanning tree of G, namely H is acyclic and connected.

H is minimally connected: removal of any edge disconnects it, that is, connected and has |V | − 1 edges.

H is maximally acyclic: addition of any edge creates a cycle, that is, acyclic and has |V | − 1 edges.

Fundamental cycle For any non-tree edge e ∈ E, T ∪ {e} contains an unique cycle, denoted C. For any edge
f ∈ C, (V, T ∪ {e} − {f}) is a spanning tree.

Fundamental cutset For any tree edge f ∈ T , (V, T = {f}) has two connected components. Let D denote
corresponding cutset, for any edge e ∈ D, (V, T − {f} ∪ {e}) is a spanning tree.

�

Note If ce < cf , then (V, T ) is not an MST. This implies that we may use the exchange argument to construct the
algorithms.

The Greedy Algorithm

(i) Red Rule: Let C be a cycle with no red edges, color the uncolored edge with max cost to red.

(ii) Blue Rule: Let D be a cutset with no blue edges, color the uncolored edge with min cost to blue.

(iii) Apply red and blue rule until all edges are colored (we may stop once n−1 edges colored blue), the blue edges
form an MST.
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4.3 Minimum Spanning Trees

Proposition 4.4

♠Color Invariant: There exists an MST (V, T ∗) containing every blue edge and no red edge,

Proof We proceed by induction on number of iterations. Base case is trivial. Induction step (blue rule): choose a
cut set D, let f denotes the edge colored blue. Proof by contradiction. Assume f /∈ T , consider a fundamental cycle
by adding f to T . Let e ∈ T be another edge in D, then e is uncolored and cf ≤ ce (by blue rule), so T ∪ {f}− {e}
is a spanning tree less than T . The proof for red rule is similar.

Proposition 4.5

♠The greedy algorithm terminates. Blue edges form an MST.

Proof Suppose an edge e is uncolored. If both endpoints are in same blue tree, we can apply red rule to cycle
formed by e and the blue forest. Otherwise if endpoints of e are in different blue trees, we apply blue rule to cutset
induced by one of the trees.

4.3.2 Prim’s Algorithm
�

Note Initialize S = {s} for any node s, T = ∅. Repeat n− 1 times:

Add to T a min cost edge with exactly one endpoint in S.

Add the other endpoints to S.

Algorithm 4 Prim’s Algorithm
1: S ← ∅, T ← ∅
2: s← an arbitrary node in V .
3: π[s]← 0; for all v ̸= s do π[v]←∞, pred[v]← null.
4: Create an empty priority pq.
5: for all v ∈ V do insert(pq, v, π[v]).
6: while pq is nonempty do
7: u← del-min(pq).
8: S ← S ∪ {u}, T ← T ∪ {pred[u]}.
9: for all edge e = (u, v) ∈ E with v /∈ S do:

10: if ce < π[v] then
11: decrease-key(pq, v, ce).
12: π[v]← π[v] + ce; pred[v]← e.
13: end if
14: end for
15: end while

Proposition 4.6 (Prim’s Algorithm)

♠Prim’s algorithm computes an MST.

Proof Special case of greedy algorithm (blue rule repeatedly applied to S).
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4.3 Minimum Spanning Trees

Proposition 4.7

♠Prim’s algorithm can be implemented to run in O(m log n) time.

4.3.3 Kruskal’s Algorithm
�

Note Consider edges in ascending order of cost, add to tree unless it would create a cycle.

Algorithm 5 Kruskal’s Algorithm
1: Sort m edges by cost and renumber so ce1 ≤ ce2 ≤ · · · .
2: T ← ∅.
3: for all v ̸= V do make-set(v).
4: for i = 1 to m do
5: (u, v)← ei.
6: if find-set(u) ̸= find-set(v) then
7: T ← T ∪ {ei}.
8: union(u, v) ▷ Make u and v in same component.
9: end if

10: end for
11: return T .

Proposition 4.8

♠Kruskal’s algorithm computes an MST.

Proposition 4.9

♠Kruskal’s algorithm can be implemented to run in O(m logm) time.

We sort edges by cost, and use union-find data structure to dynamically maintain connected components.

4.3.4 Reverse-delete Algorithm
�

Note Start with all edges in T and consider them in descending order of cost. Delete edge from T unless it would
disconnect T .

Proposition 4.10

♠The reverse-delete-algorithm computes an MST.

Proof Special case of greedy algorithm, where we apply red rule to a cycle containing e if deleting e does not
disconnect T , and apply blue rule to the cutset induced by either component (e will become blue since it is the only
remaining edge).
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4.3 Minimum Spanning Trees

4.3.5 Boruvka’s Algorithm
�

Note Start by considering every node itself as a tree, repeat until only one tree:

Apply blue rule to cutset corresponding to each blue tree.

Color all selected edges blue.

Proposition 4.11

♠Boruvka’s algorithm computes the MST if edge costs are distinct.

Proof Special case of greedy algorithm (repeatedly apply blue rule).
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Chapter 5 Divide and Conquer

Divide-and-conquer approaches

Divide up problem into several subproblems

Solve (conquer) each subproblem recursively

Combine solutions to subproblems into overall solution.

5.1 Motivating Examples

5.1.1 Mergesort

Divide-and-conquer approach: Mergesort recursively sort left and right half and merge two halves to make sorted
whole.

Algorithm 6 Mergesort, Merge-Sort(L)
1: if list L has one element then
2: return L.
3: end if
4: Divide the list into two halves A and B.
5: A← Merge-Sort(A). ▷ T (n/2)
6: B ← Merge-Sort(B). ▷ T (n/2)
7: L← Merge(A,B). ▷ Θ(b)
8: return L.

T (n) = max number of compares to mergesort a list of length n. The recurrence is

T (n) ≤

{
0 if n = 1

T (⌊n/2⌋) + T (⌈n/2⌉) + n if n > 1
.

where n represents the comparison between sets in the partition. Assume n is a power of 2 and n > 1, the
T (n) = 2(T/2) + n. Then it is not hard to prove T (n) = n log n by induction.

Proposition 5.1

♠T (n) ≤ n⌈log n⌉.

Proof We proceed by strong induction on n. The base case n = 1 is trivial. For n > 1, define n1 = ⌊n/2⌋ and
n2 = ⌈n/2⌉ and note that n = n1 + n2. Then

T (n) ≤ T (n1) + T (n2) + n ≤ n1⌈log n1⌉+ n2⌈log n2⌉+ n

≤ n⌈log n2⌉+ n ≤ n(⌈log n⌉ − 1) + n

= n⌈log n⌉.



5.1 Motivating Examples

Sorting Lower Bound

Proposition 5.2

♠An deterministic compare-based sorting algorithm must make Ω(n log n) compares in the worst-case.

Proof There are n! different orderings of an array consists of n distinct values, and note that a binary tree of height
h has no more than 2h leaves. By the Stirling approximation,

2h ≥ n! =⇒ h ≥ log(n!) ≥ n log n− n/ ln 2,

so there are Ω(n log n) comparisons in the worst-case. ■

5.1.2 Counting Inversions

Suppose there is a two rank on n objects. Rank A: 1, · · · , n, and rank B: a1, · · · , an. Objects i and j are inverted if
i < j but ai > aj .

Divide-and-conquer:

Divide: separate list into halves A and B

Conquer: recursively count inversions in each list.

Combine: count inversions (a, b) with a ∈ A and b ∈ B.

However, combine two subproblems may be challenging. The O(n) approach is, assuming A and B are sorted, to
scan and compare A and B from left to right, compare elements to update inversions, and update points.

Counting Inversion, Sort-and-Count(L)
1: if list L has one element then
2: return (0, L).
3: end if
4: Divide the list into two halves A and B.
5: (rA, A)← Sort-and-Count(A). ▷ T (n/2)
6: (rB, B)← Sort-and-Count(B). ▷ T (n/2)
7: (rAB, L)← Merge-and-Count(A,B). ▷ Merge the sorted sets and count the inversions, Θ(n)
8: return (rA, rB, rAB, L).

Proposition 5.3

♠The sort-and-count algorithm counts the number of inversions in a permutation of size n in O(n log n) time.

5.1.3 Randomized Quicksort

Three-way Partitioning

Goal: Given an array A and fixed a pivot p, partition the array so that elements smaller than p are in the left
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5.1 Motivating Examples

subarray L, elements equal to p are in the middle subarray M , and element larger than p are in right subarray
R.

Approach: Let the first item p of A be the pivot; place points l, r on the front and end of the array, respectively.
Scan i from front to end,

If A[i] < p: swap A[l] and A[i], increment both l and i.

If A[i] > p: swap A[r] and A[i], decrement r.

If A[i] = p: increment i.

Algorithm 7 Randomized-Quicksort(A)
1: if array A has zero or one element then
2: return
3: end if
4: Pick pivot p ∈ A uniformly at random.
5: (L,M,R)← Partition-3-way(A, p). ▷ Θ(n)
6: Randomized-Quicksort(L) ▷ T (i)
7: Randomized-Quicksort(R) ▷ T (n− i− 1)

Proposition 5.4

♠The expected number of compares to quicksort an array of n distinct elements is O(n log n).

Proof Suppose a1 < · · · < an. The probability of ai and aj are compared is 2/(j − i+ 1) [ai and aj is compared
iff ai or aj is selected and is not compared iff ak : i < k < j is selected as pivot]. Thus, the expected number of
compares is

n∑
i=1

n∑
j=i+1

2

j − i+ 1
= 2

n∑
i=1

n−i+1∑
j=2

1

j
≤ 2n

n∑
j=1

1

j
≤ 2n(lnn+ 1).

where the last inequality holds from the harmonic sum. ■

5.1.4 Closed Pair of Points

Problem Given n points in the plane, find a pair of points with the smallest Euclidean distance between them. We
may use non-degeneracy assumption: no two points have the same x-coordinate.

Divide and Conquer

Divide: draw vertical line L so that n/2 points on each side.

Conquer: find closest pair in each side recursively

Combine: find closed pair with one point in each side.

Return: the best of three.

The “combine” step takes Θ(n2) using brute force. Indeed, assuming the shortest distance is δ in the conquer step,
it suffices to consider points within δ of line L, called the 2δ-strip.
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5.1 Motivating Examples

Let si be the point in the 2δ-strip, ordering determined by ascending y-coordinate.

Property If |j − i| > 7, then the distance between si and sj is at least δ.

Proof Consider 2δ by δ rectangle R in strip whose min y-coordinate is y-coordinate of si. Subdivide R into 8

squares, and there is at most 1 point per each square. Then |j − i| > 7 implies sj /∈ R, so there distance is at least δ.

Closest-Pair(p1, · · · , pn)
1: ▷ Divide and Conquer

Compute vertical line L such that half the points are on each side of the line. ▷ O(n)
2: δ1 ← Closest-Pair( points in the left half ). ▷ T (n/2)
3: δ2 ← Closest-Pair( points in the right half ). ▷ T (n/2)
4: ▷ Combine

δ ← min{δ1, δ2}.
5: Delete all points further than δ from L. ▷ O(n)
6: Sort remaining points by y-coordinate. ▷ O(n log n)
7: Scan points in y-order and compare distance between each point and next 7 neighbors.

If any of these distances is less than δ, update δ. ▷ O(n)
8: return δ.
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5.2 Master’s Theorem

5.2 Master’s Theorem

Theorem 5.1 (Master’s Theorem)

♡

Let a ≥ 1, b ≥ 2, and c ≥ 0 and suppose that T (n) is a function on the nonnegative intgers that satisfies the
recurrence

T (n) = aT (n/b) + Θ(nc)

with T (0) = 0 and T (1) = Θ(1), where n/b means either the floor or ceiling of n/b.

(1) Case 1: If c > logb a (i.e., bc > a), then T (n) = Θ(nc).

(2) Case 2: If c = logb a (i.e., bc = a), then T (n) = Θ(nc log n).

(3) Case 3: If c < logb a (i.e., bc < a), then T (n) = Θ(nlogb a).

Example 5.1 The integral multiplication runs in Θ(n2) using grade-school algorithm. However, the Karatsuba trick
divides x, y into low and high order bits x = 2ma + b and y = 2mc + d, then xy = 22m(ac) + 2m(ad + bc) + bd

(brute force using this identity still requires Θ(n2)). Indeed, we can compute the middle term by ad + bc =

ac+ bd− (a− b)(c− d), and ac, bd is free in terms of complexity. Thus, T (n) = 3T (n/2) +Θ(n), so by Master’s
Theorem T (n) = Θ(nlog2 3) ≈ O(n1.585). Hence the grade-school multiplication is not optimal.

25



Chapter 6 Dynamic Programming

Dynamic Programming Break up a problem into series of overlapping subproblems (whereas in divide-and-conquer,
the subproblems are independent); combine solutions to smaller subproblems to form solution to large subproblem.
Dynamic programming is planning over time, we catch intermediate results in a table for later reuse.

6.1 Motivating Examples

6.1.1 Weighted Interval Scheduling

Recall in unweighted interval scheduling problem (i.e., all weights are 1), we can use greedy approach: consider jobs
in ascending order of finish time. However, the greedy algorithm is no longer applicable if jobs are weighted.

Dynamic Programming Let jobs be sorted in ascending order of finish time f1 ≤ · · · ≤ fn. Denote by p(j)

the largest index i < j such that job i is compatible with j. We want to optimize OPT(j) = optimal weight of
subproblem consisting only jobs 1, · · · , j.

Case 1: OPT(j) does not select job j. Then OPT(j) = OPT(j − 1), i.e., we employs the optimal solution of
its subproblem.

Case 2: OPT(j) selects job j. Jobs compatible with j are 1, · · · , p(j), so OPT(j) = wj + OPT(p(j)).

We therefore obtain the Bellman equation (optimizing equation)

OPT(j) =

{
0 if j = 0

max{OPT(j − 1), wj + OPT(p(j))} if j > 0
.

Remark The brute-force approach using Bellman equation causes repeated computation, resulting in exponential-
time algorithm. In dynamic programming, we use the idea of memorization to cache the result of subproblem j in
M [j].

Weighted Interval Scheduling (Bottom-up)
1: Sort jobs by finish time and renumber so that f1 ≤ · · · ≤ fn.
2: Compute p[1], · · · , p[n] via binary search.
3: M [0] = 0 ▷ Global array
4: for j = 1, · · · , n do
5: M [j]← max{OPT(j − 1), wj + OPT(p(j))}.
6: end for
7: return M [n].

Remark The top-down approach is also applicable: we can call OPT(n) directly and use recursion to incur the
subproblems when calculating M [n].



6.1 Motivating Examples

Proposition 6.1

♠The algorithm above takes O(n log n) time.

�

Note To obtain the optimal solution (scheduling of jobs), we can compare M [j] to M [j − 1] to determine whether
job j is selected.

6.1.2 Segmented Least Squares

Problem Given n points in the plane, we want to find a reasonable choice for f(x) (sequence of line segments) to
balance accuracy and parsimony (number of lines). In other words, the goal is to minimize E+ cL for some constant
c > 0, where E is the sum of squared errors, L is the number of lines.

Dynamic Programming: Multiway Choice Define OPT(j) = minimum cost for points, and eij = SSE for
points pi, pi+1, · · · , pj . If the last segment uses points pi, · · · , pj , the cost is given by eij + c + OPT(i − 1). The
Bellman equation is

OPT(j) =

 0 if j = 0

min
1≤i≤j

{eij + c+ OPT(i− 1)} if j > 0
.

Proposition 6.2 (Bellman 1916)

♠DP algorithm solves the segmented least squares problem in O(n3) time and O(n2) space.

The time complexity can be improved to O(n2) by precompute cumulative sums
∑i

k=1 xk,
∑i

k=1 yk,
∑i

k=1 x
2
k, and∑i

k=1 xkyk. Using cumulative sums, we can compute eij in O(1) times.
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6.2 Knapsack Problem

6.2 Knapsack Problem

Problem Suppose the knapsack has weight limit of W , and there are n items: item i provides value vi > 0 and
weights wi > 0. We want to pack knapsack so as to maximize total value of items taken.

Dynamic Programming Define OPT(i, w) = optimal of knapsack problem with items 1, · · · , i subject to weight
limit w. The goal is to optimize OPT(n,W ).

Case 1: OPT(i, w) does not select item i, then OPT(i, w) = OPT(i− 1, w).

Case 2: OPT(i, w) selects item i, then OPT(i, w) = OPT(i− 1, w − wi).

Thus the Bellman equation is

OPT(i, w) =


0 if i = 0

OPT(i− 1, w) if wi > w

max{OPT(i− 1, w), vi + OPT(i− 1, w − wi)} otherwise

.

Algorithm 8 Knapsack Problem (Bottom-up)
1: for each w = 0, · · · ,W do M [0, w]← 0.
2: for i = 1, · · · , n do
3: for w = 0, · · · ,W do
4: if wi > w then
5: M [i, w]←M [i− 1, w].
6: else
7: M [i, w]← max{M [i− 1, w], vi +M [i− 1, w − wj ]}.
8: end if
9: end for

10: end for
11: return M [n,W ].

Proposition 6.3

♠

The DP algorithm solves the knapsack problem with n items and maximum weight W in Θ(nW ) time and
Θ(nW ) space.
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6.3 Dynamic Programming in Graphs

6.3 Dynamic Programming in Graphs

6.3.1 Bellman-Ford-Moore Algorithm

Problem Given a digraph G = (V,E) with arbitrary length (not necessarily nonnegative) cvw associated with each
edge, find the shortest path v ⇝ t.

Issue With Dijkstra Consider the graph where the edge weights cvw are arbitrary (can be negative), Dijkstra may
not produce shortest paths.

Definition 6.1 (Negative Cycles)

♣A negative cycle is a directed cycle for which the sum of its edge lengths is negative.

Proposition 6.4

♠

(a) If some v ⇝ t path contains a negative cycle, then there does not exist a shortest v ⇝ t path.

(b) If G has no negative cycles, then there exists a shortest v ⇝ t path that is simple (and thus has at most
n− 1 edges).

Dynamic Programming Solution Define OPT(i, v) to be the minimum cost of v ⇝ t path using at most i edges.

Case 1: At most i− 1 edges are used, then OPT(i− 1, v).

Case 2: If i edges are used, and (v, w) edge is in the path, OPT(i, v) = cvw + OPT(i− 1, w).

Then the Bellman equation is given by

OPT(i, v) = min

{
OPT(i− 1, v), min

(v,w)∈E
{cvw + OPT(i− 1, w)}

}
.

Algorithm 9 Shorest-Path(G, s, t)
1: n← number of nodes in G.
2: Define an array M [{0, · · · , n− 1}, V ] by the equalities M [0, t] = 0 and M [0, v] =∞ for all v ̸= t.
3: for i = 1, · · · , n− 1 do
4: for v ∈ V do
5: Compute M [i, v] using the recurrence.
6: end for
7: end forreturn M [n− 1, s].

Proposition 6.5

♠

Given a directed graph G = (V,E) with no negative cycles, the DP algorithm computes the length of a shortest
v ⇝ t path for every node v in Θ(mn) time and Θ(n2) space.
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6.3 Dynamic Programming in Graphs

6.3.2 Detecting Negative Cycles

Problem Given a digraph G = (V,E), with edge length cvw, find a negative cycle if one exists.

Lemma 6.1

♡

There exists a node v ∈ V such that OPT(n, v) < OPT(n − 1, v) if and only if (any) shortest v ⇝ t path of
length ≤ n contains a cycle W . Moreover W is a negative cycle.

Proposition 6.6

♠Can find whether a graph contains a negative cycle in Θ(mn) and Θ(n2) space.
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Chapter 7 Network Flow

7.1 Max-flow and Min-cut Problem

7.1.1 Problem Introduction

Max-flow Problems Find a flow of maximum value.

Definition 7.1 (Flow Network)

♣

A flow network is a tuple G = (V,E, s, t, c). It contains a digraph (V,E) with source s ∈ V (assume all
nodes are reachable from s) and sink t ∈ V . Capacity c(e) ≥ 0 (assume integers) for each e ∈ E.

Definition 7.2 (st-flow)

♣

An st-flow (flow) is a function that satisfies:

(Capacity) For each e ∈ E, 0 ≤ f(e) ≤ c(e).

(Flow conservation) For each v ∈ V \ {s, t}:
∑

e in tov f(e) =
∑

e out of v f(e).

The value of a flow f is: val(f) =
∑

e out ofs f(e)−
∑

e in to s f(e).

Minimum-cut Problem Find a cut of minimum capacity.

Definition 7.3 (st-cut)

♣

An st-cut (cut) is a partition (A,B) of the nodes with s ∈ A and t ∈ B. The capacity of an st-cut is the sum
of capacities of the edges from A to B, namely cap(A,B) =

∑
e out of A c(e).

7.1.2 Ford–Fulkerson algorithm

Consider the greedy algorithm that finds paths and augment flow repeatedly. The issue of this algorithm is that it
cannot decrease the flow to do backtracking on bad distribution.

Residual Network Suppose edge e0 = (u, v) ∈ E with flow f(e0) and capacity c(e0). We create an edge e ∈ Ef

where c(e) = c(e0) − f(e0) and a reverse edge e−1 = (v, u) with capacity c(e−1) = f(e0) to undo the flow sent.
For example, the edge e0 = 6/17 is converted to e and e−1 as shown below

u v u v
e0=6/17

e=0/11

e−1=0/6



7.1 Max-flow and Min-cut Problem

Augmenting Path An augmenting path is a simple s⇝ t path in the residual network Gf , its bottleneck capacity
is the minimum residual capacity of any edge in P .

Property Let f be a flow and P be an augmenting path in Gf . The after calling Augment(f, c, P ), which augment
the flow in residual network, the resulting f ′ is a flow and val(f ′) = val(f) + bottleneck(Gf , P ).

Ford-Fulkerson

Start with f(e) = 0 for each edge e ∈ E.

Find an s⇝ t path in the residual network Gf .

Augment flow along path P .

Repeat until get stuck.

Algorithm 10 Ford-Fulkerson
1: function Ford-Fulkerson(G)
2: for each edge e ∈ E do f(e)← 0.
3: Gf ← residual network of G with respect to flow f .
4: while there exists an s⇝ t path P in Gf do
5: f ← Augment(f, c, P ).
6: Update Gf .
7: end while
8: return Gf .
9: end function

10: function Augment(f, c, P )
11: δ ← bottleneck capacity of augmenting path P .
12: for each e ∈ P do
13: if e ∈ E them f(e)← f(e) + δ.
14: else f(e−1)← f(e−1)− δ ▷ if e = d−1 for some d ∈ E, let f(d)← f(d)− δ
15: end for
16: return f .
17: end function

7.1.3 Max-flow and Min-cut Theorem

Proposition 7.1 (Flow Value Lemma)

♠

Let f be any flow and let (A,B) be any cut. Then the value of the flow f equals the new flow across the cut
(A,B), i.e., val(f) =

∑
e out of A f(e)−

∑
e in to A f(e).

Proposition 7.2 (Weak Duality)

♠Let f be any flow and (A,B) be any cut. Then val(f) ≤ cap(A,B).
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7.1 Max-flow and Min-cut Problem

Theorem 7.1 (Max-flow and Min-cut Theorem, Strong Duality)

♡The value of a max flow is equal to the capacity of a min cut.

Proof It suffices to prove the following three conditions are equivalent:

(a) There exists a cut (A,B) such that cap(A,B) = val(f).

(b) f is a max flow.

(c) There is no augmenting path with respect to f .

(a) ⇒ (b) follows immediately from weak duality. (b) ⇒ (c) follows from contrapositive, having augmenting path
means we can improve f by sending flow along this path.

(c)⇒ (a): Let f be a flow with no augmenting paths and let A = set of nodes reachable from s in residual network
Gf . It is obvious that s ∈ A and t /∈ A. Then val(f) =

∑
e out f(e)−

∑
e in f(e) = c(e)− 0 = cap(A,B). ■

Given any max flow f , we can compute a min cut (A,B) in O(m) times. To obtain the min cut, we can let A = set
of nodes reachable from s in residual network Gf , and A is the min cut according to the proof of above theorem.

7.1.4 Application - Baseball Elimination Problem

Problem Given the set of teams S with a distinguished team z ∈ S. For each team x, given that x has won wx

games already, and team x and y play each other rxy additional times for all y ̸= x.

The problem is that: given current standings, is there any outcome of the remaining games in which team z finishes
with the most (or tied for the most) wins?

7.1.4.0.1 Network Flow Solution We can create a network so that the first layer is a singleton s, the second layer
represents matches between teams other than z, the third layers represents all teams other than z, and the last layer is
a singleton t.

The edges from layer 1 to 2 have capacities equal to the number of corresponding games left, edges from layer 2 to 3
have infinity capacity, and edges from layer 3 to 4 have capacity of maximum number of wins of x given that team z

wins.
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7.1 Max-flow and Min-cut Problem

Proposition 7.3

♠Team z is not eliminated if and only if max flow saturates all edges leaving s.

Proof Note that each remaining game between x and y added to number of wins for team x or team y. Capacity on
(x, t) edges ensures no team wins too many games.

�

Note Hoffman-Rivlin, 1967 Suppose T ⊂ S, denote by w(T ) the number of total wins of teams in T and by g(T )

the number of remaining games between teams in T ,

w(T ) :=
∑
i∈T

wi, g(T ) :=
∑

(x,y)⊂T

gxy.

Team z is eliminated if and only if there exists a subset T ∗ such that

wz + gz <
w(T ∗) + g(T ∗)

|T ∗|
.

Remark That is, z is eliminated if and only if the number of maximum possible wins of z is less than the least
average possible wins of some T ⊂ S.

7.1.5 Application - Bipartite Matching

Problem Given a bipartite graph G = (L ∪R,E), find a max-cardinality matching.

Network Flow Solution Add a super source s and a super sink t, and let s be connected to every node in L and t

be connected to every node in R, and assign capacity of 1 for every such edges. Let edges from L to R have infinite
capacity. Denote the network G′.

Proposition 7.4

♠There is a bijection between matching of cardinality k in G and integral flow of value k in G′
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Chapter 8 Intractability

8.1 Reductibility and Satisfiability

8.1.1 Reductibility

Definition 8.1 (Reduction)

♣

Problem X polynomial-time reduces to problem Y if arbitrart instances of probelm X can be solved using:

polynomial number of standard computational steps, plus

polynomial number of calls to oracle that solves problem Y .

We use the notation X ≤p Y .

If X ≤p Y and Y can be solved in polynomial time, then X can be solved in polynomial time.
�

Note If both X ≤p Y and Y ≤p X , we use notation X ≡p Y ; in this case, X can be solved in polynomial time iff
Y can be.

�

Note The transitivity holds for ≤p: if X ≤p Y and Y ≤p Z, then X ≤p Z.

8.1.2 Packing and Covering Problems

Given a graph G and k ∈ Z,

Independent-Set: Is there a subset of k (or more) vertices such that no two are adjacent?

Vertex-Cover: Is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex
in the subset?

Given a set U of elements, a collection S of subsets of U , and an integer k

Set-Cover: Are there ≤ k of these subsets whose union is equal to U?

Proposition 8.1

♠Independent-Set ≡p Vertex-Cover

Proof Sketch: S is an independent set of size k iff V − S is a vertex cover of size n− k.

Proposition 8.2

♠Vertex-Cover ≤p Set-Cover.

Proof Sketch: Let Sv = {e ∈ E | e incident to v} for all v. Suppose {Svi} forms a set cover, then {vi} is a vertex
cover, and vice versa. Hence G contains a vertex cover of size k iff U contains a set cover of size k. ■



8.1 Reductibility and Satisfiability

8.1.3 Satisfiability

A literal is a boolean variable or its negation, namely xi or x̄i, a clause is a disjunction (∨) of literals, namely
Cj = x1 ∨ w2 ∨ · · · .

Definition 8.2 (Satisfiability)

♣

The conjuctive normal form (CNF) is a propositional formula Φ that is a conjunction (∧) of clauses. The
satisfiability (Sat) problem is to determine whether there is a truth assignment that satisfies the given CNF
formula Φ. 3-Sat problem is the SAT problem where each clause contains exactly three literals (each literal
corresponds to a different variable).

The scientific hypothesis that that there does not exists a poly-time algorithm for 3-Sat. This hypothesis is equivalent
to P ̸= NP conjecture.

Proposition 8.3

♠3-Sat ≤p Independent-Set.

Proof Sketch: Given an instance Φ of 3-Sat, we can construct a graph G by including all literals as nodes, connect
3 literals in a clause, and connect literal to each of its negation. Then Φ is satisfiable iff G contains an independent
set of size k = |Φ| (by setting literals in the independent set to true and everything else to false). ■

8.1.4 Sequencing Problem

Hamilton-Cycle: Given an undirected graph G = (V,E), does there exist a cycle Γ that visits every node exactly
once?

Directed-Hamilton-Cycle: Given an directed graph G = (V,E), does there exist a cycle Γ that visits every node
exactly once?

Proposition 8.4

♠Directed-Hamilton-Cycle ≤p Hamilton-Cycle.

Proof Sketch: Given a directed graph G, we can construct a graph G′ with 3n nodes: For each v ∈ V , construct
vin, v, vout in G′, and connect (vin, v) and (v, vout). For each (v, v′) ∈ E, connected vout and v′in. Then G has a
directed Hamilton cycle iff G′ has a Hamilton cycle, since each (vout, v

′
in) in the Hamilton cycle of G′ represents

(v, v′) in the directed Hamilton cycle of G. ■

Proposition 8.5

♠3-Sat ≤ Directed-Hamilton-Cycle.

Proof Sketch: Given 3-Sat instance Φ with n variable and k clauses. For each xi, construct a double linked list of
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8.1 Reductibility and Satisfiability

nodes in row i, let the traversal of path i from left to right be equivalent to setting xi to true. For each clause Cj , add
a node Cj and two edges, where the edges are connected left to right if xi appears in Cj and connected right to left
if x̄i appears.

Then we claim Φ is satisfiable iff G has a Hamilton cycle. If Φ has a satisfying assignment x∗. Let row i be traversed
from left to right iff x∗i = true; then for each clause, there will be at least one row i which are going in the correct
direction to splice clause node Cj into cycle. Conversely, suppose Γ is a Hamilton cycle. By replacing the edge
connecting to Cj by an parallel edge in row i, we obtain Hamilton cycle of G−{C1, · · · , Ck}. Set x∗i as above, then
each clause is satisfied. ■

8.1.5 Graph Coloring and Numerical Problems

3-Color: Given an undirected graph G, can nodes be colored in three colors so that no adjacent nodes have the same
color.

Proposition 8.6

♠3-Sat ≤p 3-Color.

Subset-Sum: Given n natural numbers w1, · · · , wn and an integer W , is there a subset that adds up to exactly W .

Proposition 8.7

♠3-Sat ≤p Subset-Sum.

8.1.6 Summary

In conclusion, 3-Sat problem can be reduced to the above problems:

3-Sat ≤p Independent-Set ≡p Vertex-Cover ≤p Set-Cover.

3-Sat ≤p Dir-Ham-Cycle ≤p Ham-Cycle.

3-Sat ≤p 3-Color.

3-Sat ≤p Subset-Sum.
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8.2 P versus NP

8.2 P versus NP

8.2.1 P vs. NP

Definition 8.3 (P, NP)

♣

AlgorithmA runs in polynomial time if for every string s,A(s) terminates in≤ p(|s|) steps for some polynomial
function p(·). P = set of decision problems for which there exists a poly-time algorithm.

Algorithm C(s, t) is a certifier for problem X is for every string s: s ∈ X iff there exists a string t such that
C(s, t) = true. NP = set of decision problems for which there exists a poly-time certifier.

EXP = decision problems for which there exists an exponential-time algorithm.

Example 8.1 Examples of problems in P are: Prime (decide if x is a prime), L-Solve (decide if there is a vector x
such that Ax = b), etc.

Examples of problems in NP are: Sat, Hamilton-Path, Factor (decide if x has a nontrivial factor less than y).

Proposition 8.8

♠P ⊆ NP ⊆ EXP.

Proof P ⊆ NP follows immediately by setting the certificate t = ε, i.e., C(s, t) = A(s). Consider X ∈ NP, there
exists a poly-time certifier C(s, t). To solve instance s, run C(s, t) on all strings t with |t| ≤ p(|s|), then the answer
exists iff C(s, t) is true for some certificates. ■

8.2.2 NP-Complete

Definition 8.4 (NP-Complete)

♣A problem Y ∈ NP-C if for every problem X ∈ NP, X ≤P Y .

Proposition 8.9

♠Suppose Y ∈ NP-C, then Y ∈ P iff P = NP.

Example 8.2 The first NP-C problem is Sat by Cook and Levin. Problems in the previous section, such as 3-Sat
and Subset-Sum, are instances of NP-C problems.

Most NP problems are know to be either P or NP-C. Indeed, unless P = NP, there exists problems in NP that are
neither P not NP-C (Ladner, 1975).
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