
EN.601.475 Machine Learning

Contents

1 Introduction to Machine Learning 2

1.1 Recitation: Probability and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Introduction to Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Regression 8

2.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Error Analysis in Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Recitation: MLE, MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Classification: Logistic Regression 18

3.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Recitation: Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 SGD, Softmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Decision Trees 24

4.1 Classification and Regression Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Recitation: Matrix Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Ensemble Methods 27

5.1 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Stepwise Regression, Gradient Boosting, Random Forests . . . . . . . . . . . . . . . . . . . . 30

6 Support Vector Machines 32

6.1 Recitation: Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3 Kernel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Multi-armed Bandit (Optional) 40

7.1 Multi-armed Bandit Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2 Multi-armed Bandit Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Reinforcement Learning (Optional) 43

8.1 Reinforcement Learning Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.2 Reinforcement Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9 Generative Models, Mixture Models, EM 47

9.1 Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.2 Mixture Models, EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10 Neural Networks, Deep Learning 53

10.1 Perceptron, Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11 Course Summary 55

1



1 Introduction to Machine Learning

1.1 Recitation: Probability and Statistics

1.1.1 Basic Probability

The basic terminology are:

1. Sample Space (Ω, S): Set of possible outcomes.

2. Event Space (F , E): Collection of subsets of outcomes, F = 2Ω.

3. Probability Measure (P , π): the probability of an event.

4. Probability Space : A triple (Ω,F , P ).

Rearranging the chain rule of probability P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) yields Bayes’ Rule.

Bayes’ Rule

Suppose A,B ∈ F ,

P (B|A) =
P (A|B)P (B)

P (A)
and P (Bi|A) =

P (A|Bi)P (Bi)∑
i P (A|Bi)P (Bi)

where Bi are a partition of Ω.

Events are independent if the occurrence of one does not affect the probability of occurrence of the other.

1. Two events A and B are called independent if P (A ∩ B) = P (A)P (B), or equivalently, P (B|A) =

P (B) for P (A) > 0.

2. Two events A and B are called conditionally independent given C when P (A ∩B|C) =

P (A|C)P (B|C), or equivalently, P (B|A,C) = P (B|C).

1.1.2 Distributions

A random variable is a function X : Ω → Rd. The probability measure associated with the random

variable is characterized by its cumulative distribution function (CDF): FX(x) = P (X ≤ x).

• If X is discrete, it can be characterized by probability mass function (PMF):

fX(x) = P (X = x)

• If X is continuous, it can be characterized by its probability density function (PDF):

fX(x) =
d

dx
FX(x)

The probability of an interval (a, b) is given by P (a < X < b) =
∫ b

a
fX(x) dx.

A joint distribution ’s PMF or PDF can be written as fX,Y (x, y). Two random variables are independent

when joint PDF factorizes: fX,Y (x, y) = fX(x)fY (y).

The marginalizing is constructed by fX(x) =
∫
y
fX,Y (x, y) dy and the conditioning is given by fX|Y (x, y) =

fX,Y (x, y)/fY (y).
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Expectation The expectation of a distribution describe the “mean” of a distribution, and it is given

by

E(x) :=


∑
x

xfX(x), X is discrete∫ ∞

−∞
xfX(x) dx, X is continuous

(1.1)

The expectation is linear, namely E(aX + bY + c) = aE(X) + bE(Y ) + c, and note that E(EX) = EX.

Variance The variance of the distribution of a distribution describe how “spread out” a distribution

is, and it is given by

Var(X) := E(X − EX) = E(X2)− (EX)2 (1.2)

The variance is not linear, but the following holds: Var(aX + c) = a2Var(X).

Var(X + Y ) = E(X − EX)2 + E(Y − EY )2 + 2E[(X − EX)(Y − EY )]

= Var(X) + Var(Y ) + 2Cov(X,Y )

where Cov(X,Y ) = E[(X − EX)(Y − EY )]. Var(X + Y ) = Var(X) + Var(Y ) when X,Y are independent.

Entropy Entropy is a measure of uniformity in a distribution given by

H(X) = −
∑
x

fX(x) log2 fX(x) = −E(log2 fX(x)) (1.3)

1.1.3 Law of Large Numbers (LLN) and Central Limit Theorem (CLT)

Suppose X1, · · · , Xn are i.i.d. (independent and identically distributed), let X̄n = 1
n

∑n
i=1 Xi, EXi = µ, and

Var(Xi) = σ2. Then we have EX̄n = µ and Var(X̄n) = σ2/n.

Chebyshev’s Inequality states that

P (|X̄n − µ| ≥ ε) =
σ2

nε2
→ 0

for any fixed ε, as n→∞.

Laws of Large Numbers

Suppose X1, · · · , Xn are independent and identically distributed.

Weak law of large numbers: for all ε > 0, there is a n such that |X̄n − µ| < ε, namely,

lim
n→∞

P (|X̄n − µ| < ε) = 1

Strong law of large numbers: The mean converges to µ as n increases, namely,

P
(
lim
n→∞

X̄n = µ
)
= 1
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Central Limit Theorem

The distribution of X̄n converges weakly to a Gaussian,

lim
n→∞

FX̄n
(x) = ϕ

(
x− µ√

nσ

)
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1.2 Introduction to Machine Learning

Summary

• Loss (square loss, 0/1 loss)

• Risk (Bayes risk, empirical risk), Bayes Optimal Rule

1.2.1 Supervised Learning Task

Machine Learning is the design and analysis of algorithms that improve their performance at some task

with experience.

Task Given X ∈ X in the input domain, predict Y ∈ Y in the output domain, namely construct the

prediction rule f : X → Y in the hypothesis class.

Performance Performance describes how well does the algorithm do on average

1. for a test data X drawn at random, and

2. for a set of training data and labels Dn = {(Xi, Yi)}ni=1 drawn at random.

Performance is represented by the loss function.

Performance: Loss loss(Y, f(X)) is a measure of closeness between true label Y and prediction f(X)

(aka ŷ); that is, loss function is a measure of the performance of f associated with the event. In classification,

the loss function is usually 0/1 loss, given by

loss(Y, f(X)) = I(f(X) ̸= Y ) =

{
1, Y ̸= f(X)

0, Y = f(X)
(1.4)

where I is called the indicator function. In regression, we use square loss, which is given by

loss(Y, f(X)) = (f(X)− Y )2 (1.5)

Performance: Risk The risk function describes the performance of f on population (X,Y ) ∼ PXY (Dn),

Risk R(f) ≡ EXY [loss(Y, f(X))] (1.6)

The risk function of 0/1 loss is

Risk(f) = EXY [I(f(X) ̸= Y )] = P (f(X) ̸= Y )

and the risk function of square loss is

Risk(f) = E
[
(f(x)− Y )2

]
which is also known as MSE (mean squared error).

Machine Learning Algorithm The learning algorithm takes the training data {(Xi, Yi)}ni=1 and output

a prediction function f̂n to optimize the performance.
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1.2.2 Bayes Optimal Rule

Bayes Optimal Rule Ideal goal: construct f∗ : X → Y such that the Bayes Risk R∗ = minf∈F R(f)

is obtained (i.e., R∗ ≤ R(f) for all f), namely f such that the best possible performance is achieved. That

is, construct f∗ such that

f∗ = argmin
f

EXY [loss(Y, f(X))].

However, note that optimal rule is not computable, because PXY is unknown.

Empirical Risk Minimizer Practical goal: given Dn = {(Xi, Yi)}ni=1, learn prediction rule f̂n : X → Y.
The Expected Risk (Generalization Error) of f is given by

R̂(f) = EDn
[R(fn)] ≡ EDn

[EXY [loss(Y, fn(X))]] =
1

n

n∑
i=1

[loss(Yi, f(Xi))] (1.7)

When n is large, the law of large numbers suggests that

lim
n→∞

R̂(f) = lim
n→∞

1

n

n∑
i=1

[loss(Yi, f(Xi))] −→ EXY [loss(Y, f(X))] = R(f)

Therefore, we often use the Empirical Risk Minimizer , the prediction that introduced the smallest

empirical risk with the given experience,

f̂n = argmin
f∈F

R̂(f) = argmin
f∈F

1

n

n∑
i=1

[loss(Yi, f(Xi))] (1.8)

1.2.3 Learning Algorithm Evaluation

Consistency The excess risk is given by

Excess Risk = EDn

[
R(f̂n)

]
−R(f∗)

Consistent algorithms have excess risk → 0 as n→ 0.

Performance Evaluation One approach to evaluate the performance of an algorithm is to split available

data into two sets {(Xi, Yi)}ni=1, {(X ′
i, Y

′
i )}ni=1. Train f̂n using the learning algorithm with the training data.

Validate result using the validation data. the The Validation Error , an estimate of generalization error,

is given by

1

n

n∑
i=1

[
loss(Y ′

i , f̂n(X
′
i))
]

Better estimates: k-fold cross-validation, hold one out validation.

1.2.4 Approach to Solve Machine Learning Problems

1. Consider the goal → definition of task T

2. Consider the nature of available (or potential) experience E

3. Choose type of output O to learn

4. Choose the Performance measure P (error/loss function)
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5. Choose a representation for the input X

6. Choose a set of possible solutions H (hypothesis space)

7. Choose or design a learning algorithm
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2 Regression

2.1 Linear Regression

Summary

• Linear regression: general form, loss, and risk

• Least square estimation: ERM, matrix closed form

2.1.1 Regression Introduction

Formal Setup

• Input data space X , output (label, target) space Y

• Unknown probability distribution P (· , ·) over X × Y

• Given a set of labeled examples (xi, yi), (i = 1, · · · , N), sampled i.i.d. from p; xi ∈ X , yi ∈ Y

• Goal: for any future x, accurately predict y (drawn according to p); that is, learn a mapping f : X → Y

Types of Supervised Problems Goal: learn f : X → Y. We will consider two types of f based on the

nature of Y:

1. Regression : Y = R, learn a (continuous) function f

2. Classification : Y = {1, · · · , C}, learn a separator between classes

2.1.2 Linear Regression

Linear Fitting Linear Regression fits a linear function to an observed set of points X = [x1, · · · , xN ],

with associated labels Y = [y1, · · · , yN ].

Least squares (LSQ) fitting criterion: find the function that minimizes sum (or average) of square distances

between actual y’s in the training set and predicted ones.

Linear Functions General form:

f(x; w) = w0 + w1x1 + · · ·+ wdxd = w · x (2.1)

where x is augmented so that x0 ≡ 1. The linear functions are hyperplane in general, d-D case.

Loss: Empirical and Expected Let xi denotes the i-th data point in X (column vector representing

the i-th row), or xi = [xi1 xi2 · · · xin]
T , and X denotes the N × (d+ 1) matrix where i-th row is xi

T .

A loss function l : Y × Y → R maps prediction to cost, given true value: l(ŷ, y) defines the penalty paid

for predicting ŷ when the true value is y. Standard choice for regression: square loss

l(ŷ, y) = (ŷ − y)2,

it penalize larger mistakes more harshly.

The empirical loss of function y(x; w) on a set X is

L(w, X, y) =
1

N

n∑
i=1

l (f(xi;w), yi) =
1

N

n∑
i=1

(yi − f(xi;w))2,

8



and the ultimate goal is to minimize the expected loss, aka risk, risk :

R(w) = E(x0,y0)∼p(x,y) [l(f(x0;w), y0)] .

Empirical risk minimization (ERM) approach: the empirical loss serves as a proxy for the risk when the

training set is representative of p(x, y).

2.1.3 Empirical Risk Minimization (ERM)

Two steps:

1. Select a restricted class H of hypotheses f : X → Y. Note that linear functions are parameterized by

w.

2. Select a hypothesis f∗ ∈ H based on training set (X,Y ).

Least Squares: Estimation We need to minimize L w.r.t w,

L(w) = L(w, X, y) =
1

N

n∑
i=1

(yi −w · xi)
2
.

A necessary condition to minimize L is ∂
∂wL(w, X, y) = 0, i.e., partial derivative w.r.t. wj ,

∂

∂wj
L(w) = − 2

N

∑
i=1

(yi −w · xi)xij (2.2)

must be 0 for all features j. Therefore, when w minimizes L,

1. errors have zero mean (by taking j = 0) and

2. errors are uncorrelated with the data.

Least Squares: Matrix Form We first need to augment X so that X·,0 = 1. The empirical loss in

matrix form is

L(w, X, y) =
1

N
(y −Xw)T (y −Xw)

=
1

N
(yT −wTXT )(y −Xw)

Note that
∂aTb

∂a
=

∂bTa

∂a
= b,

∂aTBa

∂a
= 2Ba.

Therefore,

∂L(w)

∂w
=

1

N

∂

∂w

[
yTy −wTXTy − yTXw +wTXTXw

]
=

1

N

[
0−XTy − (yTX)T + 2XTXw

]
= − 2

N
(XTy −XTXw)

Let ∂L(w)/∂w = 0, we obtain the Normal equation XTy = XTXw. Assuming the inverse of XTX exists,

the optimal parameters w∗ is given by
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w∗ = (XTX)−1XTy (2.3)

and X† ≜ (XTX)−1XT is called the Moore-Penrose pseudoinverse of X. The prediction is given by ŷ0 =

w∗Tx0 = yTX†Tx0.

Linear regression in Python:

X[:, 0] = 1; X[:, 1::] = x

w = np.dot(np.linalg.pinv(X), y) # regression param. approx.

y_hat = np.dot(X, w) # prediction
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2.2 Error Analysis in Linear Regression

Summary

• Approximation and estimation error

• Gaussian noise model, Square loss

• Generalized linear regression

2.2.1 Error Analysis

Best Unrestricted Predictor

Suppose the model class H is not restricted. Suppose f : X → R. The risk for a single test point x0 is

R(f) = E(x0,y0)∼p(x,y)

[
(f(x0)− y0)

2
]

= Ex0∼p(x)

[
Ey0∼p(y|x)

[
(f(x0)− y0)

2
∣∣∣x0

]]
=

∫
x0

{
Ey0∼p(y|x)

[
(f(x0)− y0)

2
∣∣∣x0

]}
p(x0)dx0

and so the inner conditional expectation for each x0 need to be minimized,

∂

∂f(x)
Ey0∼p(y|x)

[
(f(x0)− y0)

2
∣∣∣x0

]
= 2Ey0∼p(y|x) [f(x0)− y0 |x0]

= 2
(
f(x0)− Ep(y|x) [y0|x0]

)
We can minimize the expected loss by setting f to the conditional expectation of y for each x:

f̂(x0) = Ey0∼p(y|x) [y0|x0]

If we know the distribution p(y|x), we can find the best unrestricted predictor, by taking for each x0 the

expectation ŷ(x0) = f(x0) = Ey∼p(y|x)[y|x0]. Based on the knowledge we have, there are some common

approaches:

• Generative approach: estimate p(x, y), and normalize to find the conditional density p(y|x).

• Discriminative approach: estimate the conditional density p(y|x) dirctly form the data

• Non-probabilistic approach: fit f(x) directly to the data.

Decomposition of Error in Linear Regression

Let ŵ ∈ H denotes the LSQ estimates from training data, and w∗ ∈ H denotes the optimal linear regression

parameters (generally unknown). Notice that y − ŵ · x = (y −w∗ · x) + (w∗ · x− ŵ · x),

R(ŵ) = Ep(x,y)

[
(y − ŵ · x)2

]
= Ep(x,y)

[
(y −w∗ · x)2

]
+ Ep(x,y)

[
(w∗ · x− ŵ · x)2

]
+ 2Ep(x,y) [(y −w∗ · x) (w∗ · x− ŵ · x)]

Note that the last term in the first equality vanishes since the expectation of prediction error (residual)is

uncorrelated with any linear function of x (Section 2.1.3 Equation 2.1.2, Necessary condition 2 to minimize

L), in particular, with (w∗ · x− ŵ · x). Therefore, we obtain
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R(ŵ) = Ep(x,y)

[
(y −w∗ · x)2

]
+ Ep(x,y)

[
(w∗ · x− ŵ · x)2

]
(2.4)

Approximation error (= bias2) Ep(x,y)

[
(y −w∗ · x)2

]
measures inherent limitation of the chosen hypoth-

esis class (linear function). This error will remain even with infinite training data.

Estimation error (= variance) Ep(x,y)

[
(w∗ · x− ŵ · x)2

]
measures how close to the optimal w∗ is ŵ esti-

mated from (finite) training data. For a consistent estimation procedure, limN→∞ ŵ = w∗, so the estimation

error decreases to 0.

2.2.2 Gaussian Noise Model (Square loss)

Noise Explicitly model the randomness in the data gives y = f(x;w) + ν where the noise ν accounts for

everything not captured by f . The noise may include a meaning component. Under this model, the best

predictor is

f∗(x) = Ep(y |x) [f(x;w) + ν |x] = f(x;w) + Ep(v)[ν]

Typically, Ep(v)[ν] = 0 (white noise / Gaussian noise).

Gaussian Noise Model Suppose y = f(x;w) + ν where v ∼ N (ν; 0, σ2). Given the input x, the label y

is a random variable

p(y |x;w, σ) = N (y; f(x,w), σ2) =
1√
2πσ

exp

(
− (y − f(x;w))2

2σ2

)
(2.5)

The likelihood of the parameters w given the observed data X = [x1, · · · , xN ], Y = [y1, · · · , yN ]T is defined

as p(Y |X;w, σ), namely the probability of observing these ys for the given xs, under model parameterized

by w and σ. Under the assumption that data are i.i.d., the likelihood is given by

p(Y |X;w, σ) =

N∏
i=1

p(yi |xi,w, σ)

Maximizing the likelihood is equivalent to maximizing log-likelihood,

log p(Y |X;w, σ) =

N∑
i=1

log p(y |x;w, σ) =

N∑
i=1

[
− (yi − f(xi;w))2

2σ2
− log

√
2πσ

]

log p(Y |X;w, σ) = −N log
√
2πσ − 1

2σ2

N∑
i=1

(yi − f(xi;w))
2

(2.6)

Note that −N log
√
2πσ and −1/2σ2 are independent of w. Thus, we can define a new function, log-loss -

negative conditional log-probability of the training data,

L(f(x;w), y) = − log p(y |x;w, σ) and L(f(X;w),y) = − 1

N

N∑
i=1

log p(yi |xi,w)

and so maximizing log-likelihood is equivalent to minimizing log-loss, which is equivalent to minimizing

12



squared loss. Under Gaussian noise model,

w∗ = argmax
w

N∑
i=1

L(f(x;w), y) = argmin
w

N∑
i=1

(yi − f(xi;w))
2

⋆ In conclusion, maximizing the likelihood under Gaussian Noise Model is equivalent to minimizing square

loss.

2.2.3 Generalized Linear Regression

Suppose the input space is X ⊆ Rd and the feature space is Z ⊆ Rm. The basis function ϕ(x) : X → Z
transforms the original data, so we can perform a linear model on transformed data as a more complex

model. A general extension of the linear regression model is

f(x;w) = w0 + w1ϕ1(x) + · · ·+ wmϕm(x) = w · ϕ(x)

where w ∈ Rm.
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2.3 Regularization

Summary

• Shrinkage method: ridge and lasso regularization

2.3.1 Overfitting and Complexity

Overfitting If a model overfits (too sensitive to data), it will be unstable, removing part of the data will

change the fit significantly. More complex model (smaller “degree of freedom”) overfits more than simple

model.

Cross-Validation To reduce the risk of overfitting, we can hold out part of the data, called validation

(val) set. We will fit the model to the rest and then test on the heldout data. k-fold cross-validation :

partition data into k roughly equal parts; train on all but j-th part, and test on j-th part.

Shrinkage Method We should penalize complexity to restrict the complexity.

w∗ = argmax
w

[
1

2

N∑
i=1

log p(datai;w)− penalty(w)

]

2.3.2 Regularization

Ridge Regression Shrinkage methods impose penalty on the size of w. Using L2 norm (Euclidean norm)

penalization:

w∗
ridge = argmax

w

[
N∑
i=1

log p(datai;w)− λ∥w∥2
]

This is ridge regression , λ is the regularization parameter.

w∗
ridge = argmin

w

 N∑
i=1

(yi −w · xi)
2 + λ

m∑
j=1

w2
j

 (2.7)

For simplicity, w = [w1, · · · , wm], then the closed form solution is

ŵ∗
ridge = (λI+XTX)−1XTy

note that the offset w0 is usually not included in the regularization.

Careful : the solution is not invariant to scaling, so we should normalize input before solving to address this

issue. For example, we can scale the data so that all features have the equal norm.

Lasso Regression The L1-penalized (L1 norm ∥w∥ =
∑m

j=1 |wj |) maximum likelihood under Gaussian

noise model is

w∗
ridge = argmin

w

 N∑
i=1

(yi −w · xi)
2 + λ

m∑
j=1

|wj |

 (2.8)
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This is Lasso Regression (least absolute shrinkage and selection operator). Lasso regression has no closed

form (need numerical optimization tools).

Optimization We can view the optimization problem as minimizing

min
w

N∑
i=1

(yi −w · xi)
2 subject to ∥wj∥p ≤ t

The correspondence λ ⇒ t can be shown using Lagrange multipliers. In 2D, the constrain for lasso is a

square (with vertices on x and y axis) where the constrain for ridge is a circle. An equivalent formulation

for Lp regularization is

ŵ = argmin
w:

∑m
j=1 |wj |p≤β

N∑
i=1

(yi −w · xi)
2.

For p > 1, no sparsity is achieved, and for p < 1, the problem is non-convex. Choice of λ: if the λ is too

small, overfitting will occur; conversely, underfitting occurs if λ is too large.
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2.4 Recitation: MLE, MAP

Maximum Likelihood Estimation (MLE) Suppose we have N data points {(xi, yi)}Ni=1 and the prob-

ability distribution function is p(x; θ), or p(y |x; θ). The plausibility of given data, fixing θ, is measured by

the likelihood function. The likelihood function and log-likelihood are given by

L(θ) = p(X; θ) =

n∏
i=1

p(xi; θ), l(θ) = logP (X; θ) =

n∑
i=1

log p(xi; θ)

Maximum likelihood principle suggests we should pick θ that maximizes the likelihood (ML), equivalently,

the log likelihood (by monotonicity)

θ̂ML = argmax
µ

p(X; θ) = argmax
µ

log p(X; θ).

However, note that MLE doesn’t work well if the sample size is small.

Maximum a Posteriori (MAP) In MLE, the parameter is viewed as a fixed unknown value, whereas

in MAP (Bayesian), the oaramteter is viewed as a random variable. By Bayes rule,

p(θ|X) =
p(X|θ) p(θ)

p(X)

The maximum a-posteriori (MAP) estimate is defined as

θ̂MAP = argmax
µ

p(θ|X) = argmax
µ

p(X|θ) p(θ)

since p(X) is independent of θ. Choice of prior, p(θ):

• Bayesian approach - try to reflect our belief about θ,

• Utilitarian approach - choose a prior which is computationally convenient.
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2.5 Gradient Descent

Summary

• Gradient descent algorithm

Gradient Descent The idea of gradient descent: start at a position and make steps in the direction of

maximal altitude decease (the opposite direction of gradient), or equivalently, gradient descent on the convex

loss log p(y |x;w).

Gradient Descent Algorithm

1. Iteration counter t = 0.

2. Initialize w(t) (to zero or small random vector).

3. For t = 1, · · · , compute the gradient ∇f
(
X,y;w(t−1)

)
and update the model

w(t) = w(t−1) − η∇f
(
X,y;w(t−1)

)
(2.9)

where the learning rate η controls the step size.

Gradient descent convergence usually relies on various properties of the objective function (strong convexity,

smoothness, etc.).
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3 Classification: Logistic Regression

3.1 Logistic Regression

Summary

• Loss, Surrogate Loss

• Logistic Regression MLE (Sigmoid Function, Gradient Descent)

3.1.1 Introduction to Classification

Linear Classifier (Binary Case) The standard form of linear classifier is given by

ŷ = h(x) = sign(w0 +w · x)

where w is the direction and w0 is the location of the boundary. The decision boundary is orthogonal to w,

and the scaling on w changes the confidence but not the boundary. Classifying using regression effectively

reduces the data dimension to 1.

Loss and Risk The expected loss (0/1) loss for classifier h : X → Y is

L(h(x), y) =

{
0 if h(x) = y

1 if h(x) ̸= y

The risk of a C-way classifier h is

R(h) = Ex,y [L(h(x), y)] =

∫
x

[
C∑

c=1

L(h(x), c) p(y = c |x)

]
p(x) dx,

so it is sufficient to minimize the conditional risk for any x,

R(h |x) =
C∑

c=1

L(h(x), c) p(y = c |x) = 1− p(y = h(x) |x).

To minimize conditional risk given x, the classifier must decide h(x) = argmax
c

p(y = c |x).

Log-odds Ratio The optimal rule h(x) = c∗ = argmaxc p(y = c |x) is equivalent to,

h(x) = c∗ ⇔ p(y = c∗ |x)
p(y = c |x)

≥ 1 ⇔ log
p(y = c∗ |x)
p(y = c |x)

≥ 0.

for all class c, since the probability of getting c∗ is the greatest among all classes.

3.1.2 Logistic Regression MLE

Sigmoid Function The decision boundary can be modeled as log [p(y = 1 |x)/p(y = 0 |x)] = 0 for the

binary case, or

p(y = 1 |x)
1− p(y = 1 |x)

= exp(w0 +w · x) = 1

p(y = 1 |x) = 1

1 + exp(−w0 −w · x)
=

1

2
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The logistic function is thus given by

σ(x) =
1

1 + e−x
(3.1)

which is a monotonic function, where σ(0) = 1/2 and 0 ≤ σ(x) ≤ 1 for all x. the logistic function σ can turn

the predicted value by regression into the likelihood.

The decision boundary is when w0 + w · x = 0, i.e., p(y = 1 |x) = σ(w0 + w · x) = 1/2. The decision

boundary depends on the parameters: the offset w0 will move the decision boundary, and w will change the

orientation of the boundary and its slope.

Surrogate Loss and Maximum Likelihood Estimation The likelihood function is given by

p(yi |x;w) =

{
σ(w0 +w · xi) if yi = 1

1− σ(w0 +w · xi) if yi = 0

= σ(w0 +w · xi)
yi(1− σ(w0 +w · xi))

1−yi

The log-likelihood of w is

log p(Y |X;w) =

N∑
i=1

yi log σ(w0 +w · xi) + (1− yi) log (1− σ(w0 +w · x)) (3.2)

Note that
∂

∂z
σ(z) =

e−z

(1 + e−z)2
= σ(z)(1− σ(z)),

to maximize the likelihood,

∂

∂w0
log p(Y |X;w) =

N∑
i=1

(yi − σ(w0 +w · xi)) = 0 (3.3a)

∂

∂wj
log p(Y |X;w) =

N∑
i=1

(yi − σ(w0 +w · xi))xij = 0. (3.3b)

We can treat yi − σ(w0 +w · xi) as the prediction error of the model.

Note that instead of minimizing the 0/1 loss, we minimizes the log-loss. This is a surrogate loss.

3.1.3 Logistic Regression Gradient Descents

Gradient Ascents The gradient ascent algorithm for logistic regression is

w := w + η

N∑
i=1

(yi − σ(w0 +w · xi))

[
1

xi

]
(3.4)

Newton-Raphson The Newton-Raphson algorithm approximates the local shape of log p as a quadratic

function.

w→ w +H−1 ∂

∂w
log p(X;w),
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where H is the Hessian matrix of second derivatives

H =



∂2 log p

∂w2
0

∂2 log p

∂w0w1
· · · ∂2 log p

∂w0wd

∂2 log p

∂w1w0

∂2 log p

∂w2
1

· · · ∂2 log p

∂w1wd
...

...
. . .

...

∂2 log p

∂wdw0

∂2 log p

∂wdw1
· · · ∂2 log p

∂w2
d
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3.2 Recitation: Convex Optimization

Problem Setup f0 is the objective function, and fi (i = 1, · · · ,m) are the constraint functions. The

standard optimization formulation is

minimizew f0(w)

subject to fi(w) ≤ 0, i = 1, · · · ,m

where fi(w) are all convex. General optimization problems are difficult to solve; however, certain problem

classes can be solved efficiently and reliably.

Convex Sets A function f : Rd → R is convex if for all λ ∈ [0, 1] and w1, w2 ∈ Rd, f(λw1 + (1− λ)w2) ≤
λf(w1) + (1− λ)f(w2). Equivalently, f(y) ≥ f(x) +∇f(x)T (y − x), the first order condition.

Optimality Criterion If f0 is differentiable then w is optimal if and only if it is feasible (w satisfies all

constraints) and
∇f0(w)T (w0 − w) ≥ 0 for all feasible w0

For unconstrained problem, ∇f0(w) = 0.

First Order Method: Gradient Descent Choose a starting point w0 and the desired tolerance ϵ.

Repeat until ∥∇f(wt)∥ ≤ ϵ is satisfied,

wt+1 = wt − ηt∇f(wt)

Note that the gradient descent is based on first order Taylor approximation f(w) = f(w1) +∇f(w1)(w −
w1) +O(∥w −w1∥2).

Stochastic Gradient Descent : Compute gradient at each iteration is expensive. SGD picks i and use

∇fi(w) (stochastic gradient) instead of ∇F (w) to perform gradient descent. Small step size will guarantee

the convergence to a local minimum.

Gradient Descent with Momentum: SGD has trouble navigating ravines, momentum is a method that helps

accelerate SGD in the relevant direction nd dampens oscillations.

∆wt = γ∆wt−1 + ηt∇f(wt)

wt+1 = wt −∆wt

Second Order Methods: Hessian Hessian incorporates the local geometry of curvature of the error

surface. For a function f : Rd → R, the hessian matrix H is defined as

Hij =
∂2f

∂wi∂wj

The hessian appears as a coefficient of the quadratic term in the Taylor expansion of f :

f̂(w + v) = f(w) +∇f(w)Tv +
1

2
vTHv

Newton’s Method : compute

wt+1 = wt +∆wnt = wt −H−1f(wt)

until ∇f(wt)
TH−1∇f(w1) ≤ ε. Newton’s method and batch gradient can be expensive for large data size,

stochastic gradient descent can be efficient.
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3.3 SGD, Softmax

Summary

• Stochastic gradient descent

• Regularized logistic regression

• Softmax Model

3.3.1 Stochastic Gradient Descent (SGD)

SGD Intuition The disadvantage of gradient descent is computing gradient on allN examples is expensive.

The intuition of SGD: assuming the gradient on the entire set is similar to the gradient on a single example

(∇L(w) ≈ N∇Li(w)), then perform gradient descent on a single data each time.

SGD Algorithm Present examples (xi, y) one at a time, modify w slightly to increase the log probability

of observed yi: (assuming w0 = 0)

w := w + η
∂

∂w
log p(yi |xi;w) = w + η

(
yi − σ(wTxi)

)
xi (3.5)

where η is the learning rate. Epoch (full pass through data) contains N updates instead of one. It is a good

practice to shuffle the data.

3.3.2 Maximum a posteriori (MAP)

Overfitting with Logistic Regression We can get the same decision boundary with an infinite number

of settings for w (since scaling w does not affects the decision boundary). Suppose the data are separable

by w0 + αw · x, with α → ∞, there is a continuum of w0 that reach perfect separation, which meanwhile,

reduce the likelihood to approaching 0.

MAP Estimation Intuition: we may have some belief about the value of w, regardless of the data. (A

prior of small w can serves as the regularization of logistic regression.)

A possible prior that captures that belief is p(w) = N (w; 0, σI). The objective becomes, instead of the

log-likelihood p(Y |X;w), the log-posterior :

log p(Y |X,w;σ) = log p(Y |X;w) + log p(w;σ)

=

N∑
i=1

log p(yi |xi;w)− 1

2σ2

d∑
j=1

w2
j + const(w)

where setting σ2 affects the penalty on ∥w∥. Larger σ (smaller penalty) results in denser contours, and ML

solution is attained when σ →∞.

3.3.3 Softmax

Logistic regression computes a score f(x;w) = w · ϕ(x), which is converted to posterior

p(y = 1 |x) = exp f(x;w)

1 + exp f(x;w)
.

The softmax model address the multi-class classification. Suppose we have C classes, and C scores fc(x,W) =

wc · ϕ(x). To get posteriors from scores, exponentiate and normalize
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p(y = c |x) = exp(wc · ϕ(x))∑C
k=1 exp(wk · ϕ(x))

(3.6)

The posteriors are invariant to shifting scores. To address the common problem of overflow in exp(wc ·ϕ(x)),
we can subtract the exponent by a = maxc wc · ϕ(x) (so the max score is 0) and then exponentiate and

normalize. Note that softmax is not needed for predictions.
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4 Decision Trees

4.1 Classification and Regression Trees

Summary

• Regression Trees, Classification Trees

• Tree Pruning: weakest link pruning

4.1.1 Regression Trees

Partition The goal for decision trees is to deciding non-overlapping partition of the space into hyper-

rectangles, and described the partition via a tree. Each leaf is associated with a fixed prediction value.

Decision: A point is placed in a region by moving it down the tree, applying the decision rule in each node.

Regression Predictor Model corresponding to a tree with M leaves; leaf m ⇒ region Rm ⇒ value fm.

The predictor is given by

f(x) =

M∑
m=1

fm · 1{x∈Rm}

where 1{·} is the indicator function. To minimize the squared loss

L(Y |X; f) =

N∑
i=1

(f(xi)− yi)
2 =

M∑
m=1

∑
xi∈Rm

(fm − yi)
2,

we want to minimize J(fm) =
∑

xi∈Rm
(fm− yi)

2 for each m. By setting derivative of J(fm) to 0, we obtain

fm =
1

|Im|
∑
i∈Im

yi (4.1)

where Im = {i |xi ∈ Rm}; i.e., fm is the average label of the training points in Rm.

Regression Tree Construction The goal is to find R1, · · · , RM to minimize
∑N

i=1(fm · 1{xi∈Rm} − yi)
2,

which is not computationally tractable. Greedy algorithm: consider a split at s along j-th feature,

RL(j, s) = {x |ϕj(x) ≤ s}, RU (j, s) = {x |ϕj(x) ≥ s}

The cost of the split, assigning RL → fL, RU → fU , is the sum of errors in two child trees:

min
fL

∑
xi∈RL

(yi − fL)
2 +min

fU

∑
xi∈RU

(yi − fU )
2

Therefore, we need to find j, s such that the cost is minimized. Since for any j, s, the fL, fU are the averages

of the labels in induced RL, RU . We can exhaustively evaluate all distinct j, s pairs, and the complexity is

O(Nd).

4.1.2 Tree Pruning

Tree Pruning The decision tree can be easily over-fitted, gaining zero training errors. One way to limits

model complexity is define notion of gain (reduction in loss) and don’t split is the gain is small; however,
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this method can be short-sighted. Alternatively, we can grow a large tree T0, then prune to T ⊂ T0.

Let |T | denotes the number of leaves, Nm = |Im| is the size of a leaf, fm is the value in the leaf, and

Qm(T ) = 1
Nm

∑
i∈Im

(yi − fm)2 be the leaf error. The cost-complexity criterion of tree T ⊂ T0:

Cλ(T ) =

|T |∑
m=1

NmQm(T ) + λ|T | (4.2)

note that the goodness
∑|T |

m=1 NmQm(T ) is the overall square loss, and λ|T | is the complexity. If λ = 0, then

T = T0; if λ→∞, T is a single node. For a given λ ≥ 0, there exists a unique tree Tλ = argminT Cλ(T ).

Weakest link pruning Intuition: keep collapsing the internal nodes that produce the smallest increase

in cost C(T ) =
∑

m NmQm(T ), going from T0 to a single node. For each nodes t, there is a λt such that

C(T ′) + λt|T ′| = C(T ) + λt|T | ⇔ λt =
C(T )− C(T ′)

|T ′| − |T |

where T ′ is the tree when collapsing t. That is, collapsing the node t will results in a gain in Cλ(T ) whenever

λ > λt. The pruning algorithm is:

1. Starts with T0. Find λ1 = min(λt), gives T1.

2. Repeat the procedure until TR is a single node. Find the sequence of {(λi, Ti)}Ri=1 where λi is strictly

increasing.

For any λ, the tree Ti where i = argmaxi{i |λ > λi} is the optimal tree under λ.

4.1.3 Classification Trees

Classification Trees The fraction of example from class c in Rm: p̂m,c =
1

Nm

∑
i∈Im

1yi=c. Similarly, we

want to minimize 0/1 loss, per leaf:

argmin
ŷm

∑
i∈Im

1{yi ̸=ŷm},

and the solution is ŷm = argmaxcp̂m,c.

Leaf Impurity In classification, the leaf impurity (square loss as an analogy in regression) can be measured

by the misclassification rate or Gini Index . The Gini index of leaf m in tree T :

Qm(T ) =

C∑
c=1

p̂m,c(1− p̂m,c) (4.3)

Common practice: use Gini to grow the tree and misclassification rate to prune.

4.1.4 Trees: Summary

The approach described above to regularize tree building is called CART (classification and regression trees).

The advantages includes that CART is interpretable, can deal with non-numerical features naturally, and

is naturally multi-class and non-linear. Limitations are hard split (non-smooth regression), limited to axis-

aligned splits, and often have high variance despite regularization.
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4.2 Recitation: Matrix Calculus

Derivative of Scalar The derivative of a scalar with respect to a vector x ∈ Rn×1 is defined as

dy

dx
=


dy

dx1
...

dy1
dxn

 ∈ Rn×1

The derivative of a scalar with respect to a matrix X ∈ Rm×n is defined as

dy

dX
=

[
dy

dx1

...
dy

dxn

]
=


dy

dx11
· · · dy

dxn1
...

. . .
...

dy

dxm1
· · · dy

dxmn

 ∈ Rm×n

Derivative of Vector Suppose y ∈ Rn×1. The derivative of y with respect to a scalar

dy

dx
=

[
dy1
dx

· · · dyn
dx

]
∈ R1×n

The derivative of y with respect to a vector x ∈ Rm×1

dy

dx
=
[
∇y1(x) · · · ∇yn(x)

]
=


dy1
dx1

· · · dyn
dx1

...
. . .

...

dy1
dxm

· · · dyn
dxm

 ∈ Rm×n
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5 Ensemble Methods

5.1 Boosting

Summary

• AdaBoost

5.1.1 Boosting Introduction

Combining Classifiers The general formulation to combine classifiers h1, · · · , hm : X → {±1} is the

function H : X → [−1, 1] defined as

H(x) = α1h1(x) + · · ·+ αmhm(x)

where αj is the vote assigned to classifier hj , and it should be higher for more reliable classifiers. The

prediction is made by ŷ(x) = sign H(x).

Greedy Assembly Suppose the family of classifiers H is parameterized by θ. The intuition is

• Set the initial classifier θ1 to minimize the training error (using surrogate for the 0/1 loss).

• Set the following classifiers θ2, · · · to minimize the (surrogate) loss of the combination∑N
i=1 L(H(xi), yi).

Surrogate Loss: Exponential Loss Exponential loss, another surrogate loss, is given by

L(H(x), y) = e−y·H(x), L(H,X) =

N∑
i=1

e−yi·H(xi)

Note that it assigns loss to the data even the prediction is correct.

5.1.2 AdaBoost

Intuition The intuition of greedy algorithm for m = 1, · · · ,M is

1. Maintain weights (weight distribution of the data points) W
(m)
i , initially all 1/N

2. Pick a weak classifier hm, minimizing error ϵm weighted by W (m−1)

3. Set the vote (αm) for hm

4. Update weights Wm
i based on mistakes of hm on αm

The final (strong) classifier is sign(
∑

m αmhm).

Optimizing Weak Learner Suppose hi are weak classifiers (Y = {±1}) and denote Hm(x) = α1h1(x) +

· · ·+ αmhm(x). Suppose we add αm · hm(x) to Hm−1,

L(Hm, X) =

N∑
i=1

e−yiHm−1(xi)e−αmyihm(xi)

Define the weight as the loss after m − 1 iterations W
(m−1)
i = e−yiHm−1(xi), which captures the history

of classification of xi by Hm−1. Optimization choose αm, hm = h(x; θm) that minimize the (weighted)

exponential loss at iteration m.
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The ensemble loss is

L(Hm, X) =

N∑
i=1

W
(m−1)
i e−αmyihm(xi) = e−αm

∑
i:yi=hm(xi)

W
(m−1)
i + eαm

∑
i:yi ̸=hm(xi)

W
(m−1)
i

For any αm > 0, e−αm < eαm , so minimizing L is equivalent to minimizing training error weighted by

W (m−1).

Normalizing the weights gives

W
(m−1)
i =

exp [−yiHm−1(xi)]∑N
j=1 exp [−yjHm−1(xj)]

(5.1)

Optimizing Votes The weighted error of hm is

ϵm =
∑

i:yi ̸=hm(xi)W
(m−1)
i

Note that L(hm;X) = e−αm(1− ϵm) + eαmϵm thus ∂L
∂αm

= −e−αm(1− ϵm) + eαmϵm. Given hm and its ϵm,

the optimal αm that minimized the exponential loss is

αm =
1

2
log

1− ϵm
ϵm

(5.2)

as long as ϵm < 1/2, αm > 0.

5.1.3 AdaBoost: Algorithm

1. Initialize weights W
(0)
i = 1/N .

2. Iterator for m = 1, · · · ,M :

• Find weak classifier hm that attains weighted error

ϵ =
1

2

(
1−

N∑
i=1

W
(m−1)
i yihm(xi)

)
<

1

2

• Calculate the vote αm

αm =
1

2
log

1− ϵm
ϵm

• Update the weights and normalize so that
∑

i W
(m)
i = 1:

W
(m)
i =

1

Z
W

(m−1)
i e−αmyihm(xi)

where Z is the normalization constant Z =
∑

i W
(m−1)
i e−αmyihm(xi).

3. The combined classifier: sign
(∑M

m=1 αmhm(x)
)

5.1.4 More on Boosting

AdaBoost Behavior Training error: The training error in m-th iteration is bounded above by∏m
j=1

√
2ϵm(1− ϵm). Test error: the test can error can still decrease after training error is flat (even zero).
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Typical behavior: training error of H goes up and votes αm goes down, and weighted error ϵm goes up. We

can regularize via (1) early stopping or (2) regularization of weak learners.

Boosting the Margin: Suppose the classifiers are hm : x→ ±1. Define the margin of an example as

γ(xi) = yi ·
α1h1(xi) + · · ·αmhm(xi)

α1 + · · ·+ αm

γ(xi) ∈ [−1, 1], positive if and only if sign H(xi) = yi; this is a measure of confidence in the correct decision.

Iterations of AdaBoost increase the margin of training examples even the training error is flat.

Boosting: Additive Regression View Additive form for a classifier: H(x) =
∑

m∈M αmhm(x) for

some countable set M. Boosting is a greedy algorithm for fitting α, under sparsity constraint ∥α∥0 ≤ M .

Another view is coordinate descent in the space of H.

Variations of Boosting Variations include:

• Different surrogate loss function.

• Confidence rated version: h(x) ∈ [−1, 1] instead of {±1}.

• FloatBoost: after each round (having added a weak classifier), see if removal of a previously added

classifier is helpful.

• Totally corrective AdaBoost:update the α for all weak classifiers one done.

Boosting Stumps Suppose x = [ϕ0(x), · · · , ϕd(x)]
T , the decision stump is a simple classifier with linear

and axis parallel decision boundary

θj,r =

{
1 if ϕj(x) ≥ r

− 1 if ϕj(x) < r

Boosting the decision stumps can yields an accurate model.

Bias-Variance Tradeoff Denote H(x) =
∑M

m=1 αmhm(x). The complexity is determined by the weak

classifiers hm and their number M . Typically we should prefer simple weak classifiers: stumps, shallow

decision trees. Regularization of H: early stopping, or controlling the complexity of hm.
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5.2 Stepwise Regression, Gradient Boosting, Random Forests

Summary

• Gradient Boosting (Stepwise Regression)

• Bagging: Random Forest

5.2.1 Stepwise Regression

Stepwise Regression Intuition The linear regression model can be viewed as a combination of simple

regressors Fd(x;w) =
∑d

j=0 fj(x;w) where fj(x;w) = wjϕj(x). Parameterize the set of functions: f(x; θ)

where θ = [w, j], we can build this combination greedily: pick the best feature ϕm(x) to construct a regressor

wmϕm(x), and build on the regressor by minimizing the residuals through other features.

Stepwise Regression Algorithm The algorithm is given by

1. Fit the first simple model

θ1 = argmin
θ

N∑
i=1

(yi − f(xi; θ))
2

2. Fit other simple models to minimize the residuals of the previous step:

θj = argmin
θ

N∑
i=1

((yi − Fj(xi))− f(xi; θ))
2

3. Stop when no significant improvement in training error. The final estimate after M steps is:

ŷ(x) = FM (x;w) = f1(x; θ1) + · · ·+ fM (x; θM )

Equivalence to L0 Regularization The ensemble regressor y =
∑M

j=1 f(x; θj) where θm = argminθ
L ({θ1, · · · , θm−1, θ} ,X) is a greedy approximation to argminθ L(θ,X) such that ∥θ∥0 ≤M , equivalently

argminθL(θ,X) + λ∥θ∥0

5.2.2 Gradient Boosting

Generic Algorithm

1. Start with initial best constant fit F1(x) =
1
N

∑N
i=1 yi

2. For m = 1, · · · , until convergence, calculate the negative gradients for each i = 1, · · · , N

−g(xi) =
∂L(yi, Fm(xi))

∂FM (xi)
= yi − Fm(xi)

fit a regression function fm+1 to negative gradients fm+1(xi) ≈ −g(xi), update model Fm+1 = Fm +

ηfm+1.

We can modify L to derive new gradient boosting algorithm.

Classification Gradient Boosting With C-way classification, F predicts a matrix (let Fc(xi) denotes

the prediction score of class c for the data point xi). Negative gradients are aslos a matrix, with entry at

(c, i)

−gc(xi) = −
∂L

∂Fc(xi)
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Gradient boosting: start with F
(1)
1 , at each iteration, m fit f

(m+1)
c to negative gradients −gc(x1), · · · ,

−gc(xN ).

Step Size Model update in GB: Fm+1 = Fm + ηfm+1.

• An aggressive strategy: steepest descent in the direction of fm+1. Once we fit fm+1, solve ηm =

argminη
∑

i L(yi, Fm(xi) + ηfm+1(xi))

• Alternative strategy (may regularize better): fixed η < 1, or decaying ηm (ex. ηm = n0/
√
m).

Example: XGBoost Let m denote the leaf, t be the tree, wt
m,c be the value (score) of the leaf, and

Qt(xi) be the index of the leaf where xi falls in tree. Given T trees, the score of class c is given by the sum

of scores in T trees:

F (T )
c (xi) =

T∑
t=1

wt
Qt(xi),c

XGBoost : in iteration t, minimize regularized objective

min
ft

N∑
i=1

L
(
yi, F

(t)(xi) + ft(xi)
)
+ γ|ft|+ λ∥wt∥2

where |ft| is the size of the tree added in this iteration and wt is the parameter (score) vector for the tree

(all classes and all leaves).

5.2.3 Random Forests

Random forest is a bagging approach (bootstrap aggregation).

Intuition Deep decision trees have low bias but high variance, and CART pruning often leads to poor

bias/variance tradeoff, so we want to let trees be deep (low bias), averages many trees (low variance).

Random Forests Suppose we have N data points and d features. Injecting randomness into tree con-

struction ensures diversity thus low variance. For each tree, we introduce two sources of randomness:

• Bootstrap sampling: sample N with replacement (some points appear more than once, and approx.

37% will not appear, out of bag) or N ′ < N without replacement.

• Sampling feature in each node, when considering splits, only look at a random m < d features. Rec-

ommended heuristic value of m is
√
d for classification, and d/3 for classification.

Each tree is less likely to overfits since over-fittings are likely to cancel out in averaging. To make prediction:

average (regression) or vote.

Tuning parameters: number of trees T , feature set size m, tree depth / min number in leaves.

Bagging in General Bagging reduce the variance through averaging (best with unstable nonlinear pre-

dictors, e.g., trees). The “out of bag” (OOB) data can be used as validation set.
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6 Support Vector Machines

6.1 Recitation: Constrained Optimization

Equality Constraint Suppose the constraint problem is

minimize f(x)

subject to G(x) = 0.

x∗ is optimal if there exists x∗ such that ∇f(x∗) = λ∇G(x∗) (λ is the Lagrange multiplier). Define the

Lagrangian :
L(x, λ) = f(x) + λG(x).

The optimality condition is equivalent to

∇L(x∗, λ∗) =

[
∇f(x∗) + λ∗∇G(x∗)

G(x∗)

]
= 0

Inequality Constraint Suppose the constraint problem is

minimize f(x)

subject to G1(x), · · · , Gn(x) ≤ 0.

Note that all constraints are equivalent to this form: G(x) ≥ 0 ⇔ −G(x) ≤ 0, and G(x) = 0 ⇔ G(x) ≤ 0

and −G(x) ≤ 0.

We can introduce maxλi≥0 λiGi(x) as the zero-infinity penalty functions on Gi(x), which evaluates to ∞
if the condition is violated and zero otherwise. The optimality condition is equivalent to minx[f(x) +∑

i maxλi≥0 λiGi(x)]. Define the Lagrangian

L(x,λ) = f(x) +
∑
i

λiGi(x)

Then the primal problem become the dual problem

min
x

max
λi≥0

L(x,λ)

KKT Condition The KKT condition states that the following conditions

1. Primary feasibility: Gi(x
∗) ≤ 0

2. Dual feasibility: λ∗
i ≥ 0

3. Complementary slackness: λ∗
iGi(x

∗) = 0 ∀ i

4. Stationarity: ∇L(x∗,λ∗) = 0

are sufficient to the optimality of the dual problem

max
λ≥0

min
x

L(x,λ).

Duality The dual function is d(λ) = minx L(x, λ), and the dual problem is

d∗ = max
λ≥0

d(λ) = max
λ≥0

min
x

L(x, λ)
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Weak duality, d∗ ≤ p∗ (where p∗ = minx maxλi≥0 L(x,λ) is the optimal f(x) under the constraints), always

holds. Strong duality holds if

max
λ≥0

min
x

L(x, λ) = min
x

max
λ≥0

L(x, λ),

and under strong duality, KKT is the necessary and sufficient to optimality. Slaker’s Condition : Strong

duality holds if

• f,Gi are convex, and

• ∃ x, ∀ i, Gi(x) < 0.

Given a constrained optimization problem, if strong duality holds and the KKT conditions will yield the

solution or a simpler optimization problem if both conditions hold.

33



6.2 Support Vector Machines

Summary

• Support Vector Machine (SVM)

• Dual Problem and KKT

• SVM with Slack (Hinge Loss)

6.2.1 Max-Margin Classification and SVM

Classification Margin Discriminant function f(x) = w · x+w0. The distance from a correctly classified

(x, y) to the boundary is d = y(w · x+ w0)/∥w∥, which is constant under scaling.

Margin of the classifier on X = {(xi, yi)}Ni=1, assuming X is separable, is the distance to the closed point

mini di = mini yi(w · x+ w0)/∥w∥. The motivation of support vector machines is to find the classifier that

attains the largest margin, namely

argmaxw,w0

{
1

∥w∥
min
i

yi(w · x+ w0)

}
.

Optimal Separating Hyperplane We can set mini yi(w · xi + w0) = 1 (so the positive and negative

hyperplane are w · x + w0 = ±1) by rescale ∥w∥, w0. Then the optimization becomes argmaxw,w0
1/∥w∥

such that yi(w · xi + w0) ≥ 1 ∀ i. Equivalently,

argmin
w,w0

1

2
∥w∥2 s.t. ∀ i, yi(w · xi + w0)− 1 ≥ 0.

Solving by Lagrange Multiplier Using Lagrange Multiplier method with inequality constraint, KKT

condition, and Strong duality (Refer to Section 6.1), we can reformulate the problem as

min
w

{
1

2
∥w∥2 +

N∑
i=1

max
λi≥0

λi [1− yi(w · xi + w0)]

}
⇔

max
λ≥0

min
w

{
1

2
∥w∥2 +

N∑
i=1

λi [1− yi(w · xi + w0)]

}
(6.1)

where the first expression comes from the Lagrange multiplier and the second expression is followed by the

strong duality guaranteed by Slaker’s Theorem. Define J(w, w0;λ) =
1
2∥w∥

2 +
∑N

i=1 λi [1− yi(w · xi + w0)]

to be the Lagrangian.

Strategy for optimization:

1. Minimize J(w, w0;λ) as a function of w, w0 (fixed λ): find w(λ), w0(λ) as a function of λ

2. Maximize J(w(λ), w0(λ);λ) as a function of λ: find λ∗

3. Find w∗, w∗
0 by substitution: w∗ = w(λ∗) and w∗

0 = w0(λ)

Minimizing J with respect to w,w0 For fixed λ, we can minimize J by setting derivatives w.r.t. w0,w

to 0:
∂

∂w
J(w, w0;λ) = w −

N∑
i=1

λiyixi = 0

∂

∂w0
J(w, w0;λ) =

N∑
i=1

λiyi = 0.
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Therefore,

w(λ) =

N∑
i=1

λiyixi,

N∑
i=1

λiyi = 0

where the first equality can be characterized by the Representer’s Theorem

Solving for λ Substitute the result from previous step into Lagrangian yields

J∗(x) = max
λ≥0,

∑
λiyi=0

J(w(λ), w0(λ);λ)

= max
λ≥0,

∑
λiyi=0

1

2

(
N∑
i=1

λiyix
T
i

) N∑
j=1

λjyjxj

+

N∑
i=1

1− λiyi

 N∑
j=1

λjyjxj

xT
i + w0


= max

λ≥0,
∑

λiyi=0

1

2

N∑
i=1

N∑
j=1

λiλjyiyix
T
i xj +

N∑
i=1

λi −
N∑
i=1

N∑
j=1

λiλjyiyix
T
i xj −

N∑
i=1

λiyiw0


= max

λ≥0,
∑

λiyi=0


N∑
i=1

λi −
1

2

N∑
i,j=1

λiλjyiyjxi · xj


Max-Margin and Quadratic Programming The max-margin problem is the dual program in λ:

max
λ≥0,

∑
λiyi=0


N∑
i=1

λi −
1

2

N∑
i,j=1

λiλjyiyjxi · xj

 (6.2)

Solving the quadratic program yields λ∗, we can substitute λ∗ back to get w:

ŵ = w(λ∗) =

N∑
i=1

λ∗
i yixi.

Support Vectors Suppose under the optimal solution, the margin of a particular xi is yi(ŵ ·xi+w0) > 1,

then necessarily λ∗
i = 0, so xi is not a support vector. That is, xi is a support vector if and only if

ŵ · x+ w0 = 1, and the affine plane which xi lies on is the marginal hyperplane.

6.2.2 SVM with Slack

Non-separable Case In non-separable case, the constraint violation is unavoidable (1− yi(w ·x+w0 < 0

for some x), so the constraint λ ≥ 0 will cause J →∞. We will set maximum penalty on constraint violation

0 ≤ λ ≤ C.

Slack Variables We introduce slack variables to satisfy margin constraints

yi(w · xi + w0)− 1 + ξi ≥ 0, ξi ≥ 0

ξi (as a function of w) captures the minimum amount to fix, ξi = max{0, 1− yi(w ·xi+w0)}. The objective
function becomes

min
w

{
1

2
∥w∥2 + C

N∑
i=1

ξi

}
(6.3)
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subject to yi(w · xi +w0)− 1 + ξi ≥ 0 and ξi ≥ 0. Introduce additional multipliers µ for the ξ ≥ 0, we have

the Lagrangian

L(w, w0, ξ,λ,µ) =
1

2
∥w∥2 + C

N∑
i=1

ξi +

N∑
i=1

λi (1− ξi − yi(w · x+ w0))−
N∑
i=1

µiξi

By the stationarity, namely ∇L = 0, we have

• ∂L/∂w = w −
∑

i λiyixi = 0, thus w =
∑

i λiyixi

• ∂L/∂w0 =
∑

i λiyi = 0

• ∂L/∂ξi = C − λi − µi = 0, thus C = λi + µi

Solving the optimization by using Lagrange multipliers results in the dual problem

max
λ


N∑
i=1

λi −
1

2

N∑
i,j=1

λiλjyiyjxi · xj


subject to

N∑
i=1

λiyi = 0, 0 ≤ λ ≤ C.

Note that

1. When 0 < λ∗
i < C, then ξi = 0 thus yi(w · x+ w0), namely xi is on the marginal hyperplane.

2. When λ∗
i = C, yi(w · x+ w0) = 1− ξi, namely xi lies inside the margin or miss-classified.

6.2.3 SVM in the Primal

Surrogate Loss: Hinge Loss ξi = max{0, 1− yi(w · xi + w0)} is the hinge loss.

Solving SVM in the Primal Setting λ = 2/C we get the objective function

primal: min
w

λ

2
∥w∥2 +

N∑
i=1

max{0, 1− yi(w · xi + w0)}

we will solve by subgradient descent, since hinge loss is not differentiable.

Subgraident Descent The subgradient of L atw is any g such that ∀ w′ : L(w′) ≥ L(w)+g(w′−w) (i.e.,

g defines a tight linear lower bound). Subdifferential of L atw is ∂L(w) = {g | g is a subgradient of L at w};
if L is differentiable, then ∂L(w) = ∇L(w).

Let Li(w, w0) = max{0, 1− yi(w · x+ w0)}, the the subgradient of the hinge loss on (xi, yi) is

∇wLi(w, w0) =

{
− yixi, if yi(w · x+ w0) < 1

0, if yi(w · x+ w0) < 1
.

Similarly compute for ∂Li/∂w0 and perform the gradient descent. Remember to add gradient of the regu-

larizer.
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6.3 Kernel Methods

Summary

• Kernel Trick

• Kernels: Polynomial, RBF

• Regression SVM and Multiclass SVM

6.3.1 Motivations

SVM and Dot Product Similarity Suppose |u| = |v| = 1, the dot product measures angle between

then, u · v = cos(u,v); this is a measure of similarity. SVM prediction

ŷ = sign

(
ŵ0 +

∑
λi>0

λiyixi · x

)

can be interpreted as each SV xi votes for x to be assigned to class yi, and it is modulated by similarity to

x measured by the dot product. We often normalize every example to unit length before training (especially

for sparse, high dimensional data).

Feature Space Data can be mapped into nonlinear feature space so the data can be easily separable by a

hyperplane, and we can then compute the inner product and the SVM. Indeed, we are able to calculate dot

product in the feature space implicitly using kernel K (without perform feature expansion).

Kernel Trick Given feature map ϕ : X → RD, there exists K : X × X → R. Replacing dot products in

SVM formulation with kernel values, the optimization problem and the classifier becomes

max


N∑
i=1

λi −
1

2

N∑
i,j=1

λiλjyiyjK(xi,xj)

 and ŷ = sign

(
ŵ0 +

∑
λi>0

λiyiK(xi,x)

)
,

and note that we need to compute the kernel matrix for the training data and K(xi,x) for all i. Also, we

have
∥w∥2 = BTKB

where K ∈ RN×N and Kij = K(xi,xj).

6.3.2 Kernels

Representer Theorem Suppose w∗ is the minimizer w∗ = argminw∥w∥2 such that yi(w · xi + w0) ≥ 1

for all i, then the solution can be represented as

w∗ =

N∑
i=1

βixi.

Proof : Suppose w∗ = wX+w⊥ where wX ∈ span(x1, · · · ,xN ), and w⊥ /∈ span(x1, · · · ,xN ) thus w⊥ ·xi = 0

for all i. Then yi(w
∗ · xi + w0) = yi(wX · xi +w⊥ · xi + w0) = yi(wX · xi + w0) ≥ 1 for all i, so wX is a

feasible solution. Now ∥w∗∥2 = ∥wX∥2+ ∥w⊥∥2+2wX ·w⊥ = ∥wX∥2+ ∥w⊥∥2 ≥ ∥wX∥2. Hence w∗ = wX

is the optimal solution.
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Remark : The Representer theorem implies that

ŵ =

N∑
i=1

λiyiϕ(xi)

Kernel SVM in the Primal Since ∥w2∥ =
∑N

i,j=1 λiλjyiyjK(xi,xj), by SVM in the primal (Section

6.2.3), the learning objective is (define [a]+ = max{0, a}),

min
λ

λ

2

N∑
i,j=1

λiλjyiyjK(xi,xj) +
∑
i

1− yi
∑
j

λjyjK(xi,xj)


+


Mercer’s Kernels Theorem due to Mercer (1909): K must be

1. continuous;

2. symmetric K(x, z) = K(z,x), and

3. positive definite: for any x1, · · · ,xN , the kernel matrix K, where Kij = K(xi,xj) must be positive

definite (i.e., xTKx > 0 for all nonzero x).

Popular Kernels

1. Linear Kernel : K(x, z) = x · z, leading to the original linear SVM.

2. Polynomial Kernel : K(x, z; b, p) = (b+ x · z)p.

3. Radial Basis Function (RBF) Kernel :

K(x, z;σ) = exp

(
− 1

σ2
∥x− z∥2

)
The RBF kernel is a measure of similarity between two examples. (RBF approaches 0 if two examples are

very different and is 1 if they are identical.) The feature space is infinite-dimensional (Taylor expansion)

thus any data will be separable.

The parameter σ regularize overfitting: small σ likely to overfits the data, and small σ likely to underfits the

data.

6.3.3 SVM Regression and Multiclass Classification

SVM Regression The key idea is use an ϵ-tube (data points inside the ŷ±ϵ tube are not support vectors),
and introduce two sets of slack variables:yi ≤ f(xi) + ϵ+ ξi, ξi ≥ 0

yi ≥ f(xi)− ϵ− ξ̂i, ξ̂i ≥ 0

The optimization objective is

min
1

2
∥w∥2 + C

∑
i

(ξi + ξ̂i)

Multiclass Classification With any native binary classifier (e.g., AdaBoost, logistic regression, SVM),

options for C > 2 include:

• one vs all: build C classifiers, then reconcile all classifiers.
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• one vs one: build
(
C
2

)
classifiers, need to reconcile and then we can build “tournament” (e.g. trees).

More problematic because of inconsistencies.

• Extend to multiclass by modifying the machinery (e.g. softmax from logistic regression, and multiclass

SVM)

Multiclass SVM For K classes, learn wk for k = 1, · · · ,K,

ŷ(x;w1, · · · ,wK) = argmaxkwk · x

we can the stack wk’s into rows of W. Surrogate loss on (x, y):

max
r

{
wT

r x+ 1− δr,y
}
−wT

y x

where δy,k = 1 iff y = k, otherwise 0; and the surrogate loss is an upper bound on 0/1 loss. The optimization

objective is

minimize ∥W∥2F + C
N∑
i=1

ξi

subject to wy · xi −wr · xi ≥ 1− δr,y − ξi

where ∥W∥F is the Frobenius norm. For k = y, 0 ≥ 0− ξi thus ξi ≥ 0. For k ̸= y, (wy −wk)
Txi ≥ 1− ξi,

so ξi ≥ 1− (wy −wk)
Txi, which is equivalent to the hinge loss.

Introducing Lagrange multipliers λi, r, the optimization objective is

min
W,ξ

max
λ

λ

2

K∑
k=1

∥wc∥22 +
N∑
i=1

ξi +

N∑
i=1

K∑
k=1

λi,k

[
(wk −wyi

)Txi + 1− δk,yi
− ξi

]
subject to λi,k ≥ 0, ξi ≥ 0.
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7 Multi-armed Bandit (Optional)

7.1 Multi-armed Bandit Introduction

Multi-armed Bandit (MAB) Multi-armed Bandit is a basic model to study sequential decision making

under uncertainty. (Sequential decision making : interact with the environment and learn from the

consequence of actions.) MABs are simplified models for reinforcement learning (RL).

Problem Setup A fixed set of k actions (“arms”), and for each arm i ∈ {1, · · · , k} is associated with a

reward distribution with mean µi. In each round, t = 1, · · · , n, the learner chooses an arm at ∈ {1, · · · , k}
and observe reward rt for the chosen arm. Bandit feedback setting: the rewards for unchosen arms are not

observed. The goal is to maximize the total rewards.

Exploration-exploitation Trade-off The problem of whether to acquire new information (“exploration”)

or make the best decision based ib available information (“exploitation”). Exploration-exploitation trade-off

is the fundamental trade-off in decision making with limited information.

Bandit Variations The variations includes:

1. Reward:

(a) i.i.d. rewards: the reward for each arm is drawn independently from a fixed distribution.

(b) Adversarial rewards: rewards are chosen by an adversary

(c) Constrained adversary: rewards are chosen by an adversary with known constraints

(d) Stochastic rewards (beyond iid): reward of each arm evolves over time as a stochastic process

2. Contexts: in each round, there might be a context observable before the decision is made.

3. Combinatorial bandits: multi-armed bandit setting but in each round, we play a combinatorial set S

of arms and receive the reward of the set.

4. Top-m arm identification: the goal is to dins the top-m arms out of k arms using as few samples as

possible. (applications: medical trails, crowd-sourcing)

5. Other variations: structural rewards, global constraints, complex action space, complex outcomes/feed-

back, delayed feedback.
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7.2 Multi-armed Bandit Algorithms

Formal Setup

• Arm set: A = {1, · · · , k} and |A| = k.

• At every round t = 1, · · · , n:

– learner chooses an arm at ∈ A
– data point zt = {zt,1, · · · , zt,k} ∈ [0, 1]k is sampled independently from an unknown distribution

with unknown means (µ1, · · · , µk) ∈ [0, 1]k

– learner observes reward zt,at
(but not other rewards, bandit feedback)

• The goal is to minimize the pseudo-regret Rn defined as

Rn =

n∑
t=1

E[zt,a∗ − zt,at
] =

n∑
t=1

(µa∗ − µat
) = nµa∗ −

n∑
t=1

µat

where a∗ = argmaxa∈Aµa.

• atm the decision at round t, is a function of a1, · · · , at−1 and z1,a1
, · · · , zt−1,at−1

.

• Note: learning occurs when algorithm achieves sub-linear growth in n, namely E[Rn]/n→ 0.

Multi-armed Bandit Problem Let Nt,a :=
∑t

i=1 1{ai=a} denotes the times arm a is pulled up to time

t. The suboptimality of arm a is ∆a := µa∗ − µa.

Lemma 1 : Rn =
∑k

a=1 ∆aNn,a.

Proof : Rn = nµa∗ −
∑n

t=1 µat =
∑k

a=1 µa∗Nn,a −
∑k

a=1 µaNn,a =
∑k

a=1 ∆aNn,a. ■

Two attempts: (1) Explore-then-commit: explore all arms for m times and then commit to the arm with the

highest sample mean. Exploration-exploitation trade off controlled by m. (2) ϵ-Greedy: keep exploration

on with probability ϵ. Exploration-exploitation trade off controlled by ϵ. Both approaches suffer from linear

pseudo regret.

Upper Confidence Bound (UCB) Algorithm The idea is to let the exploration depends on the confi-

dence of means estimates. The exploration-exploitation trade-offs are controlled by the confidence parameters

{βt} to be tuned later. After the initial exploration, follow the following algorithm

Algorithm Upper Confidence Bound (UCB)

1: for t = k+1, · · · , n do
2: Set at = argmaxaµ̂t,a +

√
βt/Nt,a

3: end for

Lemma 2 : In UCB, set βt =
1
2 log[4(n− k)/δ] for any δ > 0. Then the expected pseudo-regret is

E[Rn] ≤ 2 log
4(n− k)

δ

∑
a̸=a∗

1

∆a
+ nδ

k∑
a=1

∆a.

Proof : Step 1 : Construct a confidence region around the sample mean. Mt :=
√

log[4(n−k)/δ]
2Nt,a

for later

convenience. By Hoeffding’s inequality and union bound,

P (|µ̂t,a − µa| ≤Mt, ∀ t ∈ [k + 1, n]) ≥ 1− δ/2.
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Define lower confidence bound (LCB) and upper confidence bound (UCB) Lt,a = µ̂t,a − Mt and Ut,a =

µ̂t,a +Mt. For any arm a, we have P (µa ∈ [Lt,a, Ut,a]) ≥ 1− δ/2.

Step 2 : show that any non-optimal action a cannot be pulled too frequently. Fix any non-optimal arm a ⊮.
Consider the event Ea := {µa ∈ [Lt,a, Ut,a]}∩{µa∗ ∈ [Lt,a∗ , Ut,a∗ ]}, and let na be the largest round in which

arm a is played, then we must have Una,a ≥ Una,a∗ . Under event Ea,

µa ≥ Lna,a = Una,a − 2Mna
≥ Una,a∗ − 2Mna

≥ µa∗ − 2Mna

It implies that Nn,a = Nna,a ≤ 2 log[4(n− k)/δ]/∆2
a. Thus, we have

∆aE[Nn,a] = ∆aE
[
Nn,a1{Ea}

]
+∆aE

[
Nn,a1{Ec

a}
]
≤ 2 log[4(n−k)/δ]

∆a
+ n∆aδ.

Combing via E[Rn] =
∑k

a=1 ∆aE[Nn,a], we obtain the desired result. ■

Lemma 3 : In UCB, set βt =
1
2 log[4(n− k)/δ] for any δ > 0, then

E[Rn] ≤ x
√
2nk log[4n(n− k)] + k = O(

√
nk log n)

The UCB algorithms we considered so far yields the regret bound O(
√
nk log n). We can construct minimax

lower bounds to know whether this bound is improvable.
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8 Reinforcement Learning (Optional)

8.1 Reinforcement Learning Introduction

Reinforcement Learning Problems involve learning from interacting with an environment, which pro-

vides reward signals for each action. Key features include:

1. The learner is not told what actions to take, instead it needs to find out by trail-and-error search.

2. The environment is stochastic.

3. The reward may be delayed.

4. Learner need to balance the need to explore its environment and exploit its current knowledge.

Agent Environment Interaction Protocol Agent and environment interact at discrete time steps t =

0, 1, · · · , agent observed state st ∈ S, chooses action at ∈ A, and gets rewards rt ∈ R. The objective is to

get as much total reward as possible.

Type of tasks: (1) Episodic Task: interaction breaks naturally into episodes. We usually use the total

rewards Gt = rt+1 + · · · + rT where T is a final step at which a terminal state is reached. (2) Continuing

Tasks: interaction does not have natural episodes. In this tasks class, we use the discounted return Gt =∑∞
k=0 γ

krt+k+1 where γ ∈ [0, 1] is the discount rate.

Policy Execute actions in environment, observe rewards, and learn policy (strategy, way of behaving)

π : S ×A 7→ [0, 1],
π(a|s) = Pr(at = a | st = s).

The policy can be deterministic, π : S 7→ A, which π(s) = a giving action chosen in the state s. Suppose

the sequence of rewards after step t is rt+1, rt+2, · · · . We want to compute or maximize the expected return

E[Gt] on each step t.

Markov Decision Process A mathematical formulation of RL problems. Markov Property : current

state completely characterizes the state of the world and next state depends only on the current state and

the action. Defined by tuple (S,A, R, P, γ) where P is the transition probability (i.e., probability of next

state given current state).

At time t = 0, environment sample initial state s0 ∼ p(s0). From t = 0 until done,

• agent selects action at,

• environment samples reward rt ∼ R(st, at),

• environment samples next state st+1 ∼ P (· | st, at),
• agent receives reward rt and observed next state st+1.

A policy π : S → ∆(A) maps a state into a distribution over action space. Discounted return: Gt :=∑∞
k=0 γ

krt+k+1. Objective: find an optimal policy π∗ that maximizes Gt on each step t thus maximizes the

expected cumulative reward.

Value Function and Bellman Equation State-value function

V π(s) = Eπ

[ ∞∑
k=0

γkrt+k+1 | st = s

]
.
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is the expected cumulative reward when following policy π starting from state s. Q-value function

Qπ(s, a) := Eπ

[ ∞∑
k=0

γkrt+k+1 | (st, at) = (s, a)

]
.

is the expected cumulative reward when following policy π, starting from state-action pair (s, a). Bellman

Theorem and Optimality Bellman equation:

Qπ(s, a) =
∑
r,s′

∑
a′

π(a′ | s′)p(r, s′ | s, a) (r + γQπ(s′, a′))

Q∗(s, a) = Er∼R(s,a), s′∼P (· | s,a)

[
r + γmax

a′∈A
Q∗(s′, a′)

]
The value of a state under an optimal policy must equal the expected return for the best action from that

state V ∗(s) = maxa Q
∗(s, a) = maxa

∑a
r,s′ p(r, s

′ | s, a)(r + γV ∗(s′)). Given Q∗, the optimal action-value

function is π∗(s) ∈ argmaxaQ
∗(s, a).

Dynamic Programming Approach

• Policy Evaluation: Key idea: use Bellman equation. Procedure: initialize any function Q1, iteratively

compute
Qt+1(s, a)←

∑
r,s′

∑
a′

π(a′ | s′)p(r, s′ | s, a) (r + γQt(s
′, a′))

Result: Qt converges to Qπ when t→∞.

• Policy Improvement: Given a policy π, we can greedify with respect to a given the value function Qπ,

denoted π′. Namely, π′(argmaxaQ
π(s, a) | s) = 1, then we have V π′

(s) ≥ V π(s).

• Value Iteration: Use Bellman equation as an iterative update: Qi+1(s, a) ← E [r + γmaxa′ Qi(s
′, a′)].

Qi converges to Q∗ when i→∞.

Drawback: DP require the full knowledge about MDP, but we don’t know MDP and must learn from

experience in learning setting.
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8.2 Reinforcement Learning Algorithm

8.2.1 Action-Value Methods

The core idea is to learn the value of each action and pick the maximum.

Temporal Difference (TD) Simple Monte Carlo: V (st) 7→ V (st) + α(Gt − V (st)).

TD (Temporal-difference) learning for policy evaluation: A bootstrapping method that does not wait until

the end of an episode to make update. Given an experience (st, at, rt, st+1):

V (st) 7→ V (st) + α(rt + γV (st+1)− V (st)).

Learning for control tasks: learn an optimal policy from experience (need exploration). Type of explorations:

• Randomization: add noise to the greedy policy (e.g. ϵ-greedy)

• Optimism in face of uncertainty principle: prefer actions with high estimated value and high uncertainty

(e.g., UCB)

• Probability Matching: select actions based according to their probability of being optimal (e.g., Thomp-

son)

SARSA: On-policy TD Control Given current action-value function estimate Q(s, a). Choose a from

s using current Q. Take a and observe r, s′. Choose a′ from s′ using current Q. TD update:

Q(s, a) 7→ Q(s, a) + α(r + γQ(s′, a′)−Q(s, a))

SARSA always learn the action-value function of the current policy, and it always act near-greedily w.r.t.

the current action-value function estimates.

Q-Learning: Off-policy TD Control Given current action-value function estimate Q(s, a). Choose a

from s using current Q. Take a and observe r, s′. TD Update: ?

Q(s, a) 7→ Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a))

In tabular case, converges to Q∗.

Deep Q-Network (DQN) and Double Q-Learning DQN intuition: changing the value of one action

will change the value of other actions and similar states → network can end up chasing its own tail because

of bootstrapping.

Q-learning suffers from larger overestimation caused by maximization bias (since max is taken), so we

introduce Double Q-Learning. Train two action-value functions Q1, Q2 independently. At each time step,

randomly pick Q1, Q2 and do Q-learning in it. If updating Q1, use Q2 for the value of the next state and

vice versa,
Q1(s, a) 7→ Q1(s, a) + α[r + γQ2(s

′, a)−Q1(s, a)]

Action selection is ϵ-greedy w.r.t the sum of Q1 and Q2.

8.2.2 Policy Gradient Methods

This approach learn the parameters of a stochastic policy and update by gradient ascent in performance.
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The policy is usually simpler to approximate than value functions, and policy is usually stochastic, enabling

smoother change in policy and avoid a search on every step.

General Policy-Gradient Directly parameterize policy πθ(a | s). Objective function:

J(θ) = E

[
T∑

t=0

γtrt | πθ

]
Gradient ascent θ → θ + η∇θJ(θ).

Note that ∇θπθ(a | s) = πθ(a | s)∇θ log πθ(a | s), we have

∇θ = E

[(
T∑

t=0

γtrt

)(
∇θ

T∑
t=0

log πθ(a | s)

)]

Stochastic gradient descent: θ 7→ θ − α∇θĴ(θ).

Actor-Critic Monte-Carlo policy gradient has high variance, we can use a critic to estimate the action-

value function: Qw(s, a) ≈ Qπθ (s, a). Critic updates action-value function parameter w; actor updates policy

parameters θ, in a direction suggested by the critic. Actor-critic algorithms follow an approximate policy

gradient

∇θJ(θ) ≈ Eπθ
[∇ log πθ(s, a)Qw(s, a)]

∆θ = α∇θ log πθ(s, a)Qw(s, a)

We can subtract a baseline function B(s) to reduce variance, without changing the expectation

Eθπ [∇θπθ(s, a)B(s)] = 0. A good baseline is the state value function B(s) = V πθ (s). We can rewrite policy

gradient using the advantage function

Aπθ (s, a) = Qπθ (s, a)− V πθ (s)

∇θJ(θ) = Eπθ
[∇ log πθ(s, a)A

πθ (s, a)]
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9 Generative Models, Mixture Models, EM

9.1 Generative Models

Summary

• Generative Model

Review: Bayes Risk The Bayes classifier is given by

h∗(x) = argmaxc p(y = c |x) = argmaxc p(x | y = c)p(y = c)/p(x)

= argmaxc [log p(x | y = c) + log p(y = c)].

The risk (probability of error) of Bayes classifier h∗ is called the Bayes risk R∗, R∗ = 1−
∫
x
maxc[p(x | y =

c)p(y = c)] dx. It is the minimal achievable risk for the given p(x, y) with any classifier, and it measures the

inherent difficulty of the classification problem.

Review: Multivariate Gaussians The multivariate Gaussians is given by

N (x; µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
(9.1)

where the covariance matrix Σ determines the shape of the density, and its determinant measures the spread

(analogous to σ2). N is the joint density of coordinates x1, · · · , xd. The log-likelihood is given by

logN (x; µ,Σ) = −d

2
log 2π − 1

2
log |Σ| − 1

2
(x− µ)TΣ−1(x− µ).

Therefore, the maximum likelihoods for the mean and the covariance are

µ̂ML =
1

n

n∑
i=1

xi and Σ̂ML =
1

n

n∑
i=1

(xi − µ)(xi − µ)T

Discriminant Functions For each class c, a discriminant function is constructed as

δc(x) := log p(x | y = c) + log p(y = c) (9.2)

such that h∗(x) = argmaxc δc(x).

Binary Classification Case: In case of two classes y ∈ {±1}, the Bayes classifier is

h∗(x) = argmaxc δc(x) = sign(δ+1(x)− δ−1(x))

and the decision boundary is given by f(x) = δ+1(x) − δ−1(x) = 0, and f(x) is sometimes referred to

as a discriminant function. With equal prior, this is equivalent to the (log)-likelihood ratio test: h∗(x) =

sign[log[p(x | y = +1)/p(x | y = −1)]].

Equal Covariance Gaussian Case: Consider the case of px(x) = N (x; µc,Σ), and equal prior for all classes,

i.e., p(y = c) = 1/C for all c.
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δk(x) = log p(x | y = k) = − log(2π)d/2 − 1

2
log |Σ| − 1

2
(x− µk)

TΣ−1(x− µk)

∝ const− xTΣ−1x+ µT
kΣ

−1x+ xTΣ−1µk − µT
kΣ

−1µT
k

∝ 2µT
kΣ

−1x− µT
kΣ

−1µT
k

where the last proportionality holds because xTΣ−1x is independent of k (so it is equal for all k). Now

consider two classes r, q, two class discriminant is given by

δr − δq = (µT
r Σ

−1x− µT
r Σ

−1µT
r )− (µT

q Σ
−1x− µT

q Σ
−1µT

q )

= 2(µT
r − µT

q )Σ
−1x+ (−µT

r Σ
−1µT

r + µT
q Σ

−1µT
q )

so the optimal decision boundary is linear, in the form of wTx + w0. By knowing µ1,··· ,C and Σ, we can

compute the optimal w, w0. However, we don’t always know the Gaussian.

Gaussian With Unequal Covariances: Suppose we have the covariance Σc for each c, we need to compute

ML estimate for µc,Σc for each c. We get discriminants quadratic in x:

δc(x) = −
1

2
xTΣ−1

c x+ µT
c Σ

−1
c x− constc(x)

The decision boundary with two classes is δ1 − δ0 = 0, which is quadratic in x.

Quadratic decision boundary: Second-degree curves can be any conic section, e.g., linear functions (parallel

or intersecting), parabola, hyperbola, ellipse (circle).

Generative Models In generative model, we need one explicitly models p(x, y) (equivalently, p(x | y = c)

and p(y = c)) to derive discriminant. Typically, the model imposes certain parametric form on the assumed

distributions, and requires estimation of the parameters from data. The most popular model is Gaussian for

continuous and multinomial for discrete.
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9.2 Mixture Models, EM Algorithm

9.2.1 Mixture Models

Mixture Models The mixture model is motivated to solve the case where each class contains number of

distinct types. We will focus on one class, suppose the class has:

• k underlying types (components),

• hi is the identity of the component responsible for xi, and

• hi is a hidden (latent) variable, which is never observed.

A mixture model is

p(x;π) =

k∑
j=1

p(h = j) p(x |h = j)

πj := p(h = j) are the mixing probabilities. We need to parametrize the component densities p(x |h = j).

Suppose the parameters of the j-th component are θj , then we can denote θ = {θ1, · · · ,θk} and write

p(x;θ,π) =

k∑
j=1

πj · p(x;θj). (9.3)

Any valid setting of θ and π, subject to
∑k

j=1 πj = 1, produces a valid pdf.

Generative Model for a Mixture The generative process with k-component mixture:

• The parameters θj for each component j are fixed.

• Draw hi ∼ [π1, · · · , πk].

• Given hi, draw xi ∼ p(x |hi;θhi
)

The entire generative model for x and h

p(x, h;θ,π) = p(h;π) · p(x |h;θh)

Mixture Density Estimate Mixture of Gaussian: If the h-th component is a Gaussian, p(x | j = h) =

N (x;µj ,Σj), a Gaussian mixture model is

p(x;θ,π) =

k∑
j=1

πj · N (x;µj ,Σj),

where θ = {µ1, · · · ,µk,Σ1, · · · ,Σk}, and πj are the mixing probabilities.

Likelihood of a mixture model: estimate set of parameters that maximize likelihood given the observed data.

The log-likelihood is given by

log p(X;π,θ) =

N∑
i=1

log

k∑
j=1

πj N (xi;µj ,Σj)

There is no closed-form solution because of the sum inside log (we need to take into account all possible

components that could generate xi).

Mixture Density Estimate - Known Types: Assume we know the type of each data point. Let zi = [zi1, · · · , zik]
where zij = 1{hi=j} be the binary indicator variables, and let the count of example from j-th component to

be denoted by Nj :=
∑N

i=1 zij . If we know zi, the ML estimates of the Gaussian components are
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π̂j =
Nj

N
(9.4a)

µ̂j =
1

Nj

N∑
i=1

zijxi (9.4b)

Σ̂j =
1

Nj

N∑
i=1

= zij(xi − µ̂j)(xi − µ̂j)
T (9.4c)

Expected Likelihood Credit Assignment: Suppose we don’t know the types but know the component

parameters, θ and mixing probabilities π. The posterior of each label using Bayes rule:

γij = p̂(j = h |x;θ,π) = πj · p(x;θj ,πj)∑k
l=1 πl · p(x;θl,πl)

We call γij the responsibility of the j-th component for x.

The “complete data” likelihood (when z are known) and the log-likelihood

p(X,Z;π,θ) ∝
N∏
i=1

k∏
j=1

[
πj · N (xi;µj ,Σj)

]zij
log p(X,Z;π,θ) = const +

N∑
i=1

k∑
j=1

zij
[
log πj + logN (xi;µj ,Σj)

]
We are unable to compute the log-likelihood, but we can be take the expectation w.r.t. the posterior of z,

which is γij , thus the expected likelihood of the data is given by

J(X,π,θ) = Ezij∼γij [log p(xi, zij ;π,θ)] =

N∑
i=1

k∑
j=1

γij
[
log πj + logN (xi;µj ,Σj)

]
since Ezij∼γij [zij ] = γij . Note that the constraint

∑
j πj = 1 must hold.

Expectation Maximization Derivation: The Lagrangian is L(X,π,θ) = J(X,π,θ) + λ
(∑k

j=1 πj − 1
)
. Set-

ting the partial derivative to zero is gives

0 =
∂L
∂πj

=

N∑
i=1

γij
πj

+ λ ⇒ πj = −
1

λ

N∑
i=1

γij

Note that
∑

j πj = −(1/λ)
∑N

i=1

∑k
j=1 γij = −N/λ = 1, so λ = −N . Therefore,

π̂j =
1

N

N∑
i=1

γij .

Compute partial derivative of logN (x;θ) is (∂ log p)/(∂µj) = Σ−1
j (x−µj), and setting the partial derivative

of J to zero yields

0 =
∂J

∂µj
=

N∑
i=1

γijΣ
−1
j (xi − µj) = Σ−1

j

(
N∑
i=1

γijxi −
N∑
i=1

γijµj

)
, so

µ̂j =
1∑N

l=1 γlj

N∑
i=1

γijxi.

The derivation of Σ̂ is omitted.
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Expectation Maximization: Maximizing the expected likelihood (by setting derivatives to zero and using

Lagrange multipliers), we obtain

π̂j =
1

N

N∑
i=1

γij (9.5a)

µ̂j =
1∑N

l=1 γlj

N∑
i=1

γijxi (9.5b)

Σ̂j =
1∑N

l=1 γlj

N∑
i=1

γij(xi − µ̂j)(xi − µ̂j)
T (9.5c)

Recap We want to find the parameters and indicators (assignments).

• If we know the indicators but not the parameters, we can do ML estimation of the parameters.

• Conversely, if we know the parameters but not the indicators, we can compute the posterior of indicators

(γ), and the we can estimate parameters that maximize the expected likelihood.

However, we know neither parameters not the indicators, so we introduce EM algorithm.

9.2.2 The EM Algorithm

EM Algorithm

1. Starting with a guess of π,θ. (Typically, we use a random Gaussians and πj = 1/k).

2. Iterate until convergence:

• E-step: compute values of expected assignments, i.e., calculate γij , using current estimates

of π,θ,

γij =
πj p(xi;θj)∑k
l=1 πl p(xi;θl)

• M-step: maximize the expected likelihood, under current γij ,

π,θ 7→ argmax
π,θ

N∑
i=1

k∑
j=1

γij [log πj + logN (xi;θ)]

EM Algorithm in General

1. Observe data X, hidden variables Z.

2. Initialize θ, and iterate until convergence:

• E-step: compute the expected complete data log-likelihood as a function of θ,

Q(θ′;θ) = Ep(Z|X,θ)

[
log p(X,Z;θ′) |X,θ

]
• M-step: compute θ′ 7→ argmaxθ Q(θ′;θ).
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Regularized EM The problem of EM: we can be unlucky with the initial guess. To regularize EM we

can impose a prior on θ. Instead of maximizing the likelihood in the M-step, maximize the posterior:

θ 7→ argmax
θ′

{
Ep(Z|X;θ′)

[
log p(X,Z;θ′) | X;θ

]
+ log p(θ′)

}
A common prior on a covariance matrix: the Wishart distribution

p(Σ; S, n) ∝ 1

|Σ|n/2
exp

(
−1

2
Tr(Σ−1S)

)
(intuition: S is the covariance of n “hallucinated” observation)

Overfitting Selecting a large k will likely to overfits the data. In order to reduce overfitting, we can (1)

validate on a held-out data set, or (2) penalize model complexity directly (e.g., Bayesian Information Criterion

(BIC)). For a model class M with parameters θM, we find ML (or MAP) estimates of the parameters on

X:

L∗(M) := max
θM

log p(X | M;θM).

The BIC score for the modelM is

BIC(M) = L∗(M)− 1

2
|θM| logN

9.2.3 Mixture Model for Regression

Mixture of Experts Model The distribution of y is a conditional mixture model:

p(y |x;θ) =
k∑

j=1

p(j |x) p(y |x; θj)

A gating network specifies the conditional distribution p(j |x; η) (i.e., determining which expert should be

responsible); a common choice is softmax η = {v1, · · · ,vk}. Responsibilities (under softmax):

γij = p(j |xi, yi;θ,η) =
p(j |xi;η) p(yi |xi; θj)∑k
l=1 p(l |xi;η) p(yi |xi; θj)

EM for Mixtures of Experts

• Initialize: random θj , σ
2
j ,η.

• E-step: compute responsibilities γij = p(j |xi, yi;θ,η)

• M-step: for each expert j, estimate

θj 7→ argmaxθ

N∑
i=1

γij log p(yi |xi;θ),

and then estimate the gating network separately

η 7→ argmaxη

N∑
i=1

k∑
j=1

γij log p(j |xi;η).
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10 Neural Networks, Deep Learning

10.1 Perceptron, Neural Networks

Summary

• Neural Network

• Back-propagation

10.1.1 Neural Networks

Perceptron Mistake-driven algorithm: update weights only when making a mistake on the example, i.e.,

w 7→ w + yixi and w0 7→ w0 + yi

The loss is perceptron loss:

l(xi, yi) =

{
0 if yi(w · xi) > 0,

yixi otherwise

Assume data are linearly separable, let w, w0 be a linear separator where ∥w∥ = 1, and the margin be γ.

Theorem (Novikoff, 1962): perceptron will converge after O[(max ∥xi∥)2/γ2].

Neural Networks McCullough-Pitts Model: inputs (ϕj(x), output from the previous layer) → weights

(wjt) → adder (at) → activation function (h) → output (zt).

Feed-forward network : Consider two-layer network, we fit the model by those features ŷ = f(w(2) · ϕ(x))
(f is logistic regression or linear regression), and the key idea is to learn parametric features ϕj(x) =

h(w
(1)
j · x + w

(1)
0j ) for some functions h. Feed-forward networks: feed-forward operation from input x to

output ŷ is given by

ŷ(x;w) = f

 m∑
j=1

w
(2)
j h

(
d∑

i=1

w
(1)
ij xi + w

(1)
0j

)
+ w

(2)
0

 .

Then common choice for the activation functions are linear, logistic, tanh, and threshold.

10.1.2 Network Architectures

Training the Network The error of the network on a training set is L(X;w) =
∑N

i=1
1
2 (yi − ŷ(xi;w))2,

and there is no closed-form solution in general, so we need to resort to gradient descent. The derivative on

a single example is
∂L(xi)

∂wj
= (ŷi − yi)xij .
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Back-propagation Idea of back-propagation: apply chain rule of derivation to ∂L(ŷ, y)/∂w
(k)
j .

General unit activation: zt = h(
∑

j wjtzj). Forward-propagation - calculate for each unit at =
∑

wjtzj

where z is the output from the previous layer. The loss L depends on wjt only through at, let δt := ∂L/∂at

(note that δt = ŷ − y by L = (ŷ − y)2/2), then

∂L

∂wjt
=

∂L

∂at

∂at
∂wjt

= δtzj

Suppose hidden unit zt = h(at) sends input to units S. Since as =
∑

j:j→s wjsh(aj), δt is given by

δt =
∑
s∈S

∂L

∂as

∂as
∂at

= h′(at)
∑
s∈S

wtsδs (10.1)

That is, the loss of a node t depends on the loss of all nodes that t feeds into. Recursively from the output

layer back-propagating, we obtain δt for all nodes, and we can update the weights by using gradient descent.

Classification Networks For multi-class output, the final layer consists of K units (number of classes)

zT,c = wT
t,czT−1 i.e., zT = WT zT−1

The features (previous layer) are shared, but used with different weights. Loss computed on zT and used in

back-propagation.

10.1.3 Learning DNN

Model Complexity of MLP Traditionally, two form of regularization in neural networks: (1) weight

decay

min
w

{
1

N

N∑
i=1

L(yi, ŷ(xi;W)) +
λ

2
∥W∥2

}
and (2) early stopping (when the validation loss starts increasing) to prevent overfitting.

Learning Rate and Momentum Learning Rate: Objective: J(w) = L(yy, ŷ(xt;w)) + R(w), SGD

update: wT = wt−1 + ∆wt where ∆wt = −ηt∇wJ . Theoretical suggested schedule for ηt = η0/(1 + γt),

but in in practice most common schedule: constant ηt, occasionally dropping when training loss plateaus.

Momentum: Vanilla SGD update ∆wt = −ηn∇wJ , with momentum, ∆wt = µ∆wt−1 − ηn∇wJ (typically

µ = 0.9).

RELU Traditional activation function has the problem of vanishing gradient due to saturating non-

linearity. Rectified linear unit action (RELU) max(0, a). Sometimes an order of magnitude speed-up.

Dropout Problem: fully connected units near the top of the network suffer from co-adaptation. Idea of

dropout: during each iteration of training, randomly remove a fraction of units with a probability p. During

the test time, we multiply activation of unit by p. Drop out is equivalent to L2 regularization, assuming the

data is normalized. It is often important in deep networks.
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