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1 Introduction to Proofs and Systems of Linear Equations

1.1 Proofs

Implication Symbols

1. ⇒ (Therefore), also denoted by ∴, is used when the preceding statement implies the succeeding state-

ment

A T T F F

B T F T F

A ⇒ B T F T T

2. ⇐ (Because), also denoted by ∵, is used when the succeeding statement implies the preceding statement

3. ⇔ (Equivalently) stands for ⇒ and ⇐, means the preceding and the succeeding statement both imply

each other

Solution Solution to a linear system or inequality is the set of all n-tuples (x1, x2, · · · , xn) ∈ Rn which

satisfy the system or inequality.

Mathematical Induction Given statements P (n) one for each n ∈ N. To prove P (n) for all n ∈ N, it is

suffice to prove:

1. Base: P (0) is true, and

2. Inductive Step: P (n) ⇒ P (n + 1) ∀ n ∈ N. In other words, assume P (n) is true (called induction

hypothesis), then P (n+ 1) is true.

1.2 Definitions

Cartesian Product Given sets A and B, their Cartesian product, or product, is a set, denoted A×B,

whose elements are all ordered pairs (a, b) with a a ∈ A and b ∈ B, or

A×B := {(a, b) : a ∈ A, b ∈ B}

Function Given sets A and B, a function from A to B is a subset f ⊂ A×B with the property that

∀ a ∈ A, ∃! b ∈ B : (a, b) ∈ f
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Injective, Surjective, and Bijective

A function f : A→ B is said to be one-to-one, or injective if

∀ x, y ∈ A, f(x) = f(y)⇒ x = y

It is onto, or surjective if

∀ b ∈ B, ∃ a ∈ A : f(a) = b

And it is bijective if it is both injective and surjective.

1.3 Systems of Linear Equations

Linear Equations n linear equations in n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b1
... =

...

am1x1 + am2x2 + · · ·+ amnxn = bm

The system is homogeneous if b1 = b2 = · · · = bm = 0.

Linear Combination Selecting m scalars c1, · · · , cm, multiply the j-th equation by cj and then add, we

obtain the linear combination of the equations:

c1(A11x1 + · · ·+A1nxn) + · · ·+ cm(Am1x1 + · · ·+Amnxn) = c1y1 + · · ·+ cmym

Equivalent System Two systems of linear equations are equivalent if each equation in each system is a

linear combination of the equations in the other system.

Solutions between equivalent linear systems

Equivalent systems of linear equations have exactly the same solutions.

1.4 Matrices and Elementary Row Operations

We can abbreviate the system by AX = Y where

A =


a11 · · · a1n
...

...
...

am1 · · · amn

 , X =


x1
...

xn

 , and Y =


y1
...

ym


A is called the matrix of coefficients, and the entries of the matrix A are the scalars A(i, j) = Aij .

Elementary Row Operations

1. Ri ↔ Rj
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2. Ri → cRi where c ∈ R∗

3. Ri → Ri + cRj where j 6= i and c ∈ R

Inverse operation of elementary Row operations

To each elementary row operation e there corresponds an elementary row operation e1, of the same

type as e, such that e1(e(A)) = e(e1(A)) = A for each A. In other words, the inverse operation

(function) of an elementary row operation exists and is an elementary row operation of the same

type.

Row-Equivalent If A and B are m× n matrices over the field F , we say that B is row-equivalent to

A if B can be obtained from A by a finite sequence of elementary row operations.

Solutions between systems formed by row-equivalent matrix of coefficients

If A and B are row-equivalent m×n matrices, the homogeneous systems of linear equations AX = 0

and BX = 0 have exactly the same solutions.

Row-Reduced Matrix An m× n matrix R is called row-reduced if:

(a) The first non-zero entry in each non-zero row of R is equal to 1;

(b) Each column of R which contains the leading non-zero entry of some row has all its other entries

0.

Matrix is row-equivalent to a row-reduced matrix

Every m× n matrix over the field F is row-equivalent to a row-reduced matrix.

1.5 Row-Reduced Echelon Matrices

Row-Reduced Echelon Matrix An m× n matrix R is called a row-reduced echelon matrix if:

(a) R is row-reduced;

(b) Every row of R which has all its entries 0 occurs below every row which has a non-zero entry;

(c) If rows 1, · · · , r are the non-zero rows of R, and if the leading nonzero entry of row i occurs in

column ki, i = 1, · · · , r, then k1 < k2 < · · · < kr

Matrix is row-Equivalent to a row-Reduced echelon matrix

Every m× n matrix A is row-equivalent to a row-reduced echelon matrix.
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Non-trivial solution for homogeneous system

If A is an m× n matrix and m < n, then the homogeneous system of linear equations AX = 0 has a

non-trivial solution.

Identity coefficient matrix produces trivial solution

If A is an n× n (square) matrix, then A is row-equivalent to the n× n identity matrix if and only if

the system of equations AX = 0 has only the trivial solution.
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2 Fields and Polynomials

2.1 Fields

Notation of F F denote either the set of real numbers (R) or the set of complex numbers (C).

Field A field is a set F together with two binary operations:

1. Addition: ∀ a, b ∈ F, a+ b ∈ F

2. Multiplication: ∀ a, b ∈ F, ab ∈ F

with the following properties:

1. F is a commutative group for addition:

(a) Commutativity: a+ b = b+ a ∀ a, b ∈ F
(b) Associativity: (a+ b) + c = a+ (b+ c) ∀ a, b, c ∈ F
(c) Identity/Neutral Element: ∃ 0 ∈ F : a+ 0 = a ∀ a ∈ F
(d) Inverse: ∀ a ∈ F, ∃ b ∈ F : a+ b = 0 (Notation: b = −a)

2. F ∗ = F\{0} is a commutative group for multiplication:

(a) Commutativity: a · b = b · a ∀ a, b ∈ F
(b) Associativity: (a · b) · c = a · (b · c) ∀ a, b, c ∈ F
(c) Identity/Neutral Element: ∃ 1 ∈ F : 1 · a = a ∀ a ∈ F
(d) Inverse: ∀ a ∈ F ∗, ∃ b ∈ F : a · b = 1 (Notation: b = a−1 = 1/a)

3. Distributive Property: a · (b+ c) = a · b+ bċ ∀ a, b, c ∈ F

Subfield A subfield of the field C is a set F of complex numbers which is itself a field under the usual

operations of addition and multiplication of complex numbers.

Characteristic If a finite number of unit 1 sum to 0 in F , then the least n such that the sum of n1 ’s is 0 is

called the characteristic of the field F . If it does not happen in F, then F is called a field of characteristic

zero.

2.2 Polynomials

2.2.1 Complex Conjugate and Absolute Value

Re z, Im z Suppose z = a+ bi, where a and b are real numbers. The real part of z, denoted Re z,

is defined by Re z = a. The imaginary part of z, denoted Im z, is defined by Im z = b.
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Complex conjugate z̄, Absolute value |z| The complex conjugate of a complex number z ∈ C,

denoted z̄, is defined by

z̄ = Re z − (Im z)i.

The absolute value of a complex number z, denoted |z|, is defined by

|z| =
√

(Re z)2 + (Im z)2.

2.2.2 Uniqueness of Coefficients for Polynomials

Polynomial, P(F) A function p : F → F is called polynomial with coefficients in F is there exist

a0, a1, · · · am ∈ F such that
p(z) = a0 + a1z + a2z

2 + · · ·+ amz
m

for all z ∈ F.

P(F) is the set of all polynomials with coefficients in F.

Degree of a Polynomial, deg p A polynomial p ∈ P(F) is said to have degree m if there exist

scalars a0, · · · am ∈ F with am 6= 0 such that

p(z) = a0 + a1z + · · ·+ amz
m

for all z ∈ F. If p has degree m, we write deg p = m.

The polynomial that is identically 0 is said to have degree −∞.

Pm(F) For m a non-negative integer, Pm(F) denotes the set of all polynomials with coefficients in F

and degree at most m

If a polynomial is the zero function , then all coefficients are 0

Suppose a0, a1, · · · , am ∈ F. If

a0 + a1x+ · · ·+ amz
m = 0

for every z ∈ F, then a0 = a1 = · · · = am = 0.

2.2.3 The Division Algorithm for Polynomials

Division Algorithm for Polynomials

Suppose that p, s ∈ P(F), with s 6= 0. Then there exist unique polynomials q, r ∈ P(F) such that

p = sq + r

and deg r < deg s.
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2.2.4 Zeros of Polynomials

Zero of Polynomial A number λ ∈ F is called a zero (or root) of a polynomial p ∈ P(F) if

p(λ) = 0

Factor A polynomial s ∈ P(F) is called a factor of p ∈ P(F) if there exists a polynomial q ∈ P(F)

such that p = sq.

Each zero of a polynomial corresponds to a degree-1 factor

Suppose p ∈ P(F) and λ ∈ F. Then p(λ) = 0 if and only if there is a polynomial q ∈ P(F) such that

p(z) = (z − λ)q(z)

for every z ∈ F.

A polynomial has at most as many zeros as its degree

Suppose p ∈ P(F) is a polynomial with degree m ≥ 0. Then p has at most m distinct zeros in F.

2.2.5 Factorization of Polynomials over C

Fundamental Theorem of Algebra

Every non-constant polynomial with complex coefficients has a zero.

Factorization of a polynomial over C

If p ∈ P(C) is a non-constant polynomial, then p has a unique factorization (except for the order of

the factors) of the form

p(z) = c(z − λ1) · · · (z − λm)

where c, c1, · · · cm ∈ C.

2.2.6 Factorization of Polynomials over R

Polynomials with real coefficients have zeros in pairs

Suppose p ∈ P(C) is a polynomial with real coefficients. If λ ∈ C is a zero of p, then so is λ̄.
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Factorization of a quadratic polynomial

Suppose b, c ∈ R. Then there is a polynomial factorization of the form

x2 + bx+ x = (x− λ1)(x− λ2)

with λ1, λ2 ∈ R if and only if b2 < 4c.

Factorization of a polynomial over R

Suppose p ∈ P is a non-constant polynomial. Then p has a unique factorization (except for the order

of the factors) of the form

p(x) = c(x− λ1) · · · (x− λm)(x2 + b1x+ c1) · · · (x2 + bMx+ xM )

where x, λ1, · · · , λm, b1, · · · , bM , c1, · · · cM ∈ R with b2j < 4cj for each j
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3 Matrix Multiplication and Vector Spaces

3.1 Matrix Multiplication and Invertible Matrix

3.1.1 Matrix Multiplication

Matrix Multiplication Suppose A is an m×n matrix and C is an n×p matrix. Then AC is defined

to be the m-by-p matrix whose entry in row j , column k, is given by

(AC)jk =

n∑
r=1

AjrCrk

Matrix is defined if and only if the number of columns in the first matrix coincides with the number of rows

in the second matrix, and matrix multiplication is not commutative.

Multiplicative associativity holds for matrix multiplication.

Elementary Matrix An m× n matrix is said to be an elementary matrix if it can be obtained from

the m×m identity matrix by means of a single elementary row operation.

Elementary Row Operation is Equivalent to Multiplication with Elementary Matrix

Let e be an elementary row operation and let E be the m ×m elementary matrix E = e(I). Then,

for every m× n matrix A,

e(A) = EA

3.1.2 Invertible Matrix

Invertible Let A be an n× n (square) matrix over the field F .

− An n× n matrix B such that BA = I is called a left inverse of A;

− An n× n matrix B such that AB = I is called a right inverse of A.

− If AB = BA = I, then B is called a two-sided inverse of A. A is said to be invertible, and the

inverse is denoted as A−1.

Elementary Matrices are Invertible

Elementary matrices are invertible.
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The Inverse and The Product of Invertible Matrices are Invertible

Let A and B be n× n matrices over F .

1. If A is invertible, so is A−1 and (A−1)−1 = A.

2. If both A and B are invertible, so is AB, and (AB)−1 = B−1A−1.

Properties of Invertible Matrix

If A is an n× n matrix, the following are equivalent.

1. A is invertible.

2. A is row-equivalent to the n× n identity matrix.

3. A is a product of elementary matrices.

4. The homogeneous system AX = 0 has only the trivial solution X = 0.

5. The system of equations AX = Y has a solution X for each n× 1 matrix Y .

3.2 Rn and Cn

F F stands for either R or C.

List A list of length n : n ∈ Z is an ordered collection of n elements separated by commas and

surrounded by parentheses.

Two lists are equal if and only if they have the same length and the same elements in the same order.

Fn Fn is the set of all lists of length n of elements of F:

Fn = {(x1, · · · , xn) : xj ∈ F for j = 1, · · · , n}

For (x1, · · · , xn) ∈ Fn and j ∈ {1, 2, · · · , n}, xj denotes j-th coordinate of (x1, · · · , xn).

Addition in Fn Addition in Fn is defined by adding corresponding coordinates:

(x1, · · · , xn) + (y1, · · · , yn) = (x1 + y1, · · · , xn + yn)

Commutativity of Addition in Fn

If x, y ∈ Fn, then x+ y = y + x.

12



0 List 0 denote the list of length n whose coordinates are all 0:

0 = (0, · · · , 0)

Additive Inverse in Fn For x ∈ Fn, the additive inverse of x, denoted −x, is the vector −x ∈ Fn

such that
x+ (−x) = 0

In other words, if x = (x1, · · · , xn), then −x = (−x1, · · · ,−xn).

Scalar Multiplication in Fn The product of a scalar λ and a vector in Fn is computed by multiplying

each coordinate of the vector by λ:

λ(x1, · · · , xn) = (λx1, · · · , λxn)

here λ ∈ F and (x1, · · · , xn) ∈ Fn

3.3 Definition of Vector Spaces

Vector Space and Subspace Vector Space over a field F is a set V along with an addition and

a scalar multiplication on V (closed under addition and scalar multiplication) such that the following

properties hold:

1. (V,+) is a commutative group (Commutativity, Associativity, Identity, and Inverse)

2. Multiplicative Identity

3. Distributive Properties

FS If S is a set, then FS denotes the set of functions from S to F. For f, g ∈ FS , λ ∈ F the addition

f + g ∈ FS and scalar multiplication λf ∈ FS are defined by

(f + g)(x) = f(x) + g(x)

(λf)(x) = λf(x)

for all x ∈ S.

Subspace A subset U of V is called a subspace of V if U is also a vector space (using the same

addition and scalar multiplication as on V ).
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Conditions for a Subspace

A subset U of V is a subspace of V if and only if U satisfies the following three conditions:

1. Additive Identity: 0 ∈ U

2. Closed Under Addition: ∀ u, v ∈ U, u+ v ∈ U

3. Closed Under Scalar Multiplication: ∀ u ∈ U and a ∈ F, au ∈ U

Sum of Subsets Suppose U1, · · · , Um are subsets of V . The sum of U1, · · · , Um, denoted U1+ · · ·Um,

is the set of all possible sums of elements of U1, · · · , Um,

U1 + · · ·Um = {u1 + · · ·+ um : u1 ∈ U1, · · · , um ∈ Um}

Sum of Subspaces is the Smallest Containing Subspace

(Theorem 1.39) Suppose U1, · · · , Um are subspaces of V . Then U1 + · · ·+Um is the smallest subspace

of V containing U1, · · · , Um.

Direct Sum Suppose U1, · · · , Um are subspaces of V . The sum U1 + · · · + Um is called a direct

sum , denoted as U1 ⊕ · · · ⊕ Um, if each element of the sum can be written in only one way as a sum

u1 + · · ·+ um, where each uj ∈ Uj .

Proving Direct Sum To prove U ⊕W = V , we need to prove U + W = V and U + W is a direct sum

(either by definition, theorem 1.44, or theorem 1.45).

Condition for a Direct Sum

(Theorem 1.44) Suppose U1, · · · , Um are subspaces of V . Then U1 + · · ·+ Um is a direct sum if and

only if the only way to write 0 as a sum u1 + · · ·+um, where each uj ∈ Uj , is by taking each uj equal

to 0.

Direct Sum of Two Subspaces

(Theorem 1.45) Suppose U,W are subspaces of V . Then U + W is a direct sum if and only if

U ∩W = {0}
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4 Finite-Dimensional Vector Spaces

4.1 Span and Linear Independence

Linear Combination A linear combination of a list v1, · · · , vm of vectors in V is a vector of the

form
a1v1 + · · ·+ amvm

where a1, · · · , am ∈ F

Span The set of all linear combinations of a list of vectors v1, · · · , vm in V is called the span of

v1, · · · , vm, denoted span(v1, · · · , vm). In other words,

span(v1, · · · , vm) = {a1v1 + · · ·+ amvm : a1, · · · ,∈ F}

The span of the empty list () is defined to be {0}.
If span(v1, · · · , vm) equals V , we say that v1, · · · , vm spans V .

Span is the Smallest Containing Subspace

(Theorem 2.7) The span of a list of vectors in V is the smallest subspace of V containing all the

vectors in the list.

Finite-Dimensional and Infinite-Dimensional Vector Space A vector space is called finite-

dimensional if some list of vectors in it spans the space. If it is not finite-dimensional, it is called

infinite-dimensional .

Linearly Independent and Dependent A list v1, · · · , vm of vectors in V is called linearly inde-

pendent if the only choice of a1, · · · , am ∈ F that makes a1v1 + · · ·+ amvm = 0 is a1 = · · · = am = 0.

The empty list () is also declared to be linearly independent.

A list of vectors in V is called linearly dependent if it is not linearly independent.

Linear Dependence Lemma

(Theorem 2.21) Suppose v1, · · · , vm is a linearly dependent list in V . Then there exists j ∈
{1, 2, · · · ,m} such that the following hold:

1. vj ∈ span(v1, · · · , vj−1)

2. If the j-th term is removed from v1, · · · , vm, the span of the remaining list equals

span(v1, · · · , vm).
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Length of Linearly Independent List ≤ Length of Spanning list

(Theorem 2.23) In a finite-dimensional vector space, the length of every linearly independent list of

vectors is less than or equal to the length of every spanning list of vectors.

Theorem 2.23 Sketch of Proof Suppose V = span(v1, · · · , vn) and W = (u1, · · · , um) is linearly inde-

pendent. By using linear dependence lemma (theorem 2.21), we can replace the elements in the spanning

list by elements of linearly independent list W without changing the span. If m > n, u1, · · · , un spans V

and un+1 ∈ V , so the list u1, · · · , un, un+1 cannot be linearly independent. Hence, the linearly independent

list in V has at most n elements.

Finite-Dimensional Subspaces

(Theorem 2.26) Every subspace of a finite-dimensional vector space is finite-dimensional.

4.2 Bases

Basis A basis of V is a list of vectors in V that is linearly independent and spans V .

Criterion for Basis

(Theorem 2.29) A list v1, · · · , vn of vectors in V is a basis of V if and only if every v ∈ V can be

written uniquely in the form

v = a1v1 + · · ·+ anvn

Spanning List Contains a Basis

(Theorem 2.31) Every spanning list in a vector space can be reduced to a basis of the vector space.

Basis of Finite-Dimensional Vector Space

(Theorem 2.32) Every finite-dimensional vector space has a basis.

Linearly Independent List Extends to a Basis

(Theorem 2.33) Every linearly independent list of vectors in a finite-dimensional vector space can be

extended to a basis of the vector space.

Every Subspace of V is Part of a Direct Sum Equal to V

(Theorem 2.34) Suppose V is finite-dimensional and U is a subspace of V . Then there is a subspace

W of V such that V ⊕W = V .
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4.3 Dimensions

Basis Length Does Not Depend on Basis

(Theorem 2.35) Any two bases of a finite-dimensional vector space have the same length.

Dimensions, dim V The dimension of a finite-dimensional vector space is the length of any basis of

the vector space. The dimension of V (if V is finite-dimensional) is denoted by dim V .

Dimension of a Subspace

(Theorem 2.38) If V is finite-dimensional and U is a subspace of V , then dim U ≤ dim V .

Linearly Independent List of the Right Length is a Basis

(Theorem 2.39) Suppose V is finite-dimensional. Then every linearly independent list of vectors in

V with length dim V is a basis of V .

Spanning List of The Right Length is a Basis

(Theorem 2.42) Suppose V is finite-dimensional. Then every spanning list of vectors in V with length

dim V is a basis of V .

Dimension of a Sum

If U1 and U2 are subspaces of a finite-dimensional vector space, then

dim (U1 + U2) = dim U1 + dim U2 − dim (U1 ∩ U2)
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5 Linear Maps

5.1 The Vector Space of Linear Maps

5.1.1 Definition of Linear Maps

Linear Map A linear map from V to W is a function T : V →W with the following properties:

1. Additivity: T (u+ v) = Tu+ Tv ∀ u, v ∈ V

2. Homogeneity: T (λv) = λ(Tv) ∀ λ ∈ F, v ∈ V

A map T : V →W is well-defined if and only if

1. ∀ v ∈ V , Tv is defined.

2. ∀ v ∈ V , Tv ∈W .

3. ∀ v ∈ V , ∃! w ∈W : Tv = w (namely, T maps v to an unique element).

L(V,W) The set of all linear maps from V to W is denoted L(V,W ).

Linear Maps and Basis of Domain

(theorem 3.5) Suppose v1, · · · , vn is a basis of V and w1, · · · , wn ∈ W . Then there exists a unique

linear map T : V →W such that

Tvj = wj

for each j = 1, · · · , n.

5.1.2 Algebraic Operations on L(V,W )

Addition and Scalar Multiplication on L(V,W) Suppose S, T ∈ L(V,W ) and λ ∈ F. The sum

S + T and the product λT are the linear maps from V to W defined by

(S + T )(v) = Sv + Tv and (λT )(v) = λ(Tv)

for all v ∈ V .

L(V,W) is a Vector Space

(Theorem 3.7) With the operations of addition and scalar multiplication as defined above, L(V,W )

is a vector space.
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Product of Linear Maps If T, S ∈ L(V,W ), then the product ST ∈ L(V,W ) is defined by

(ST )(u) = S(Tu)

for u ∈ U .

Algebraic Properties of Products of Linear Maps

(Theorem 3.9)

1. Associativity: (T1T2)T3 = T1(T2T3)

2. Identity: TI = IT = T

3. Distributive Properties: (S1 + S2)T = S1T = S2T and S(T1 + T2) = ST1 + ST2

Note that the multiplication of linear maps is not commutative. In other words, it is not necessarily true

that ST = TS.

Linear Maps Take 0 to 0

(theorem 3.11) Suppose T is a linear map from V to W . Then T (0) = 0.

5.2 Null Space and Ranges

5.2.1 Null Space and Injectivity

Null Space, null T For T ∈ L(V,W ), the null space of T , denoted null T , is the subset of V consisting

of those vectors that T maps to 0:

null T = {v ∈ V : Tv = 0}

The Null Space is a Subspace

(Suppose 3.14) Suppose T ∈ L(V,W ). Then null T is a subspace of V .

Injective A function T : V → V is called injective (one-to-one) if Tu = Tv implies u = v.

Injectivity is Equivalent to Null Space Equals {0}

(theorem 3.16) Let T ∈ L(V,W ). Then T is injective if and only if null T = {0}.

5.2.2 Range and Surjectivity
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Range For T ∈ L(V,W ), the range of T is the subset of W consisting of those vectors that are of the

form Tv for some v ∈ V :
range T = {T : v ∈ V }

The Range is a Subspace

(Suppose 3.19) Suppose T ∈ L(V,W ). Then range T is a subspace of W .

Surjectivity A function T : V →W is called surjective (onto) if its range equals W .

5.2.3 Fundamental Theorem of Linear Maps

Rank-Nullity Theorem (Fundamental Theorem of Linear Maps)

(Theorem 3.22) Suppose V is finite-dimensional and T ∈ L(V,W ). Then range T is finite-dimensional

and
dim V = dim null T + dim range T

This theorem is called Rank-Nullity Theorem because

rank T := dim(range T )

nullity T := dim(null T )

A Map to a Smaller Dimensional Space is Not Injective

(Theorem 3.23) Suppose V and W are finite-dimensional vector spaces such that dim V > dim W .

Then no linear map from V to W is injective.

A Map to a Larger Dimensional Space is Not Surjective

(Theorem 3.24) Suppose V and W are finite-dimensional vector spaces such that dim V < dim W .

Then no linear map from V to W is surjective.

Homogeneous System of Linear Equations

(Theorem 3.26) A homogeneous system of linear equations with more variables than equations has

nonzero solutions.

Inhomogeneous System of Linear Equations

(Theorem 3.29) An inhomogeneous system of linear equations with more equations than variables

has no solution for some choice of the constant terms.
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5.3 Matrices

5.3.1 Representing a Linear Map by a Matrix

Matrix, Aj,k, A·,k, Aj,· Let m and n denote positive integers. An m-by-n matrix A is a rectangular

array of elements of F with m rows and n columns:

A =

A1,1 · · · A1,n

· · · · · ·
Am,1 · · · Am,n


− Aj,k denotes the entry in row j , column k of A.

− Aj, · denotes the 1-by-n matrix consisting of row j of A, where 1 ≤ j ≤ m.

− A·, k denotes the m-by-1 matrix consisting of column k of A, where 1 ≤ j ≤ n.

Matrix of a Linear Map,M(T) Suppose T ∈ L(V,W ) and v1, · · · , vn is a basis of V and w1, · · · , wm
is a basis of W . The matrix of T with respect to these bases is the m-by-n matrix,M(T ), whose entries

Aj,k are defined by

Tvk = A1,kw1 + · · ·Am,kwm

If the bases are not clear from the context, then the notation M(T, (v1, · · · , vn), (w1, · · · , wm)) is used.

Suppose B = (v1, · · · , vn) and C = (w1, · · · , wm). By the definition of the matrix of the linear map

M(T )·,k = (Tvk)C

In other words, the k-th column of M(T ) is the coordinate of Tvk of the basis of W .

The linear map can be represented by the matrix multiplication

[T (v)]C = c1[T (v1)]C + · · ·+ cn[T (vn)]C

[T (v)]C =M(T )(v)B

Fm,n For m and n positive integers, the set of all m-by-n matrices with entries in F is denoted by

Fm,n.

dim Fm,n = mn

(Theorem 3.40) Suppose m and n are positive integers. With addition and scalar multiplication

defined as above, Fm,n is a vector space with dimension mn.
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Matrix Addition and Scalar Multiplication

− The sum of two matrices of the same size is the matrix obtained by adding corresponding entries

in the matrices: (A+ C)j,k = Aj,k + Cj,k.
A1,1 · · · A1,n

...
...

Am,1 · · · Am,n

 +


C1,1 · · · C1,n

...
...

Cm,1 · · · Cm,n

 =


A1,1 + C1,1 · · · A1,n + C1,n

...
...

Am,1 + Cm,1 · · · Am,n + Cm,n


− The product of a scalar and a matrix is the matrix obtained by multiplying each entry in the

matrix by the scalar: (λA)j,k = λAj,k.

λ


A1,1 · · · A1,n

...
...

Am,1 · · · Am,n

 =


λA1,1 · · · λA1,n

...
...

λAm,1 · · · λAm,n



The Matrix of the Sum of Linear Maps

(Theorem 3.36) Suppose S, T ∈ L(V,W ). Then M(S + T ) =M(S) +M(T ).

The Matrix of a Scalar Times a Linear Map

(Theorem 3.38) Suppose λ ∈ F and T ∈ L(V,W ). Then M(λT ) = λM(T ).

5.3.2 Matrix Multiplication

Matrix Multiplication Suppose A is an m-by-n matrix and C is an n-by-p matrix. Then AC is

defined to be the m-by-p matrix whose entry in row j , column k, is given by the following equation:

(AC)j,k =

n∑
r=1

Aj,rCr,k

In other words, the entry in row j , column k, of AC is computed by taking row j of A and column k

of C, multiplying together corresponding entries, and then summing.

Entry of Matrix Product Equals Row Times Column

(Theorem 3.47) Suppose A is an m-by-n matrix and C is an n-by-p matrix. Then

(AC)j,k = Aj,·C·,k

for 1 ≤ j ≤ m and 1 ≤ k ≤ p.
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Column of Matrix Product Equals Matrix Times Column

(Theorem 3.49) Suppose A is an m-by-n matrix and C is an n-by-p matrix. Then

(AC)·,k = AC·,k

for 1 ≤ k ≤ p.

Linear Combination of Columns

(Theorem 3.52) Suppose A is an m-by-n matrix and c = col(c1, · · · , cn). Then

Ac = c1A·,1 + · · ·+ cnA·,n

In other words, Ac is a linear combination of the columns of A, with the scalars that multiply the

columns coming from c.

5.4 Invertibility and Isomorphic Vector Spaces

5.4.1 Invertible Linear Maps

Invertible, Inverse A linear map T ∈ L(V,W ) is called invertible if there exists a linear map

S ∈ L(W,V ) such that ST equals the identity map on V and V equals the identity map on W .

A linear map S ∈ L(W,V ) satisfying ST = I and TS = I is called an inverse of T (note that the first

I is the identity map on V and the second I is the identity map on W).

Note that the definition of invertible is not equivalent to ST = TS = I because TS = IW where ST = IV .

Inverse is Unique

(Theorem 3.54) An invertible linear map has a unique inverse.

T−1 If T is invertible, then its inverse is denoted by T−1. In other words, if T ∈ L(V,W ) is invertible,

then T−1 is the unique element of L(W,V ) such that T−1T = I and TT−1 = I.

Invertibility is Equivalent to Injectivity and Surjectivity

(Theorem 3.56) A linear map is invertible if and only if it is injective and surjective.

5.4.2 Isomorphic Vector Spaces

Isomorphism, Isomorphic An isomorphism is an invertible linear map.

Two vector spaces are called isomorphic if there is an isomorphism from one vector space onto the

other one.
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Dimension Shows Whether Vector Spaces are Isomorphic

(Theorem 3.59) Two finite-dimensional vector spaces over F are isomorphic if and only if they have

the same dimension.

L(V,W) and Fm,n are Isomorphic

(Theorem 3.60) Suppose v1, · · · , vn is a basis of V and w1, · · · , wm is a basis of W . Then M is an

isomorphism between L(V,W ) and Fm,n.

dim L(V,W) = (dim V)(dim W)

Suppose V and W are finite-dimensional. Then L(V,W ) is finite-dimensional and

dim L(V,W ) = (dim V )(dim W )

5.4.3 Linear Maps Thought of as Matrix Multiplication

Matrix of a Vector, M(v) Suppose v ∈ V and v1, · · · , vn is a basis of V . The matrix of v with

respect to this basis is the n-by-1 matrix

M(v) =


c1
...

cn

 ,

where c1, · · · , cn are the scalars such that

v = c1v1 + · · ·+ cnvn

Note the matrix of a vector is the coordinate of the vector.

M(T)·,k =M(vk)

(Theorem 3.64) Suppose T ∈ L(V,W ) and v1, · · · , vn is a basis of V and w1, · · · , wn is a basis of W .

Let 1 ≤ k ≤ n. Then the kth column of M(T ), which is denoted by M(T )·,k, equals M(vk).

Linear Maps Act Like matrix multiplication

(Theorem 3.65) Suppose T ∈ L(V,W ) and v ∈ V . Suppose v1, · · · , vn is a basis of V and w1, · · · , wn
is a basis of W . Then

M(Tv) =M(T )M(v)

5.4.4 Operators
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Operator, L(V) A linear map from a vector space to itself is called an operator .

The notation L(V ) denotes the set of all operators on V . In other words, L(V ) = L(V, V ).

Injectivity is Equivalent to Surjectivity in Finite Dimensions

(Theorem 3.69) Suppose V is finite-dimensional and T ∈ L(V ). Then the following are equivalent:

1. T is invertible;

2. T is injective;

3. T is surjective.

Theorem 3.69 Sketch of Proof Prove by Rank-Nullity Theorem.

5.5 Products and Quotients of Vector Spaces

5.5.1 Products of Vectors Spaces

Product of Vector Spaces Suppose V1, · · · , Vm are vector spaces over F, the product V1×· · ·×Vm
is defined by

V1 × · · · × Vm = {(v1, · · · , vm) : v1 ∈ V1. · · · , vm ∈ Vm}

Addition and scalar multiplication on V1 × · · · × Vm is defined by

(u1, · · · , um) + (v1, · · · , vm) = (u1 + v1, · · · , um + vm)

λ(v1, · · · , cm) = (λv1, · · · , λvm)

Product of vector spaces is a Vector space

(Theorem 3.73) Suppose V1, · · · , Vm are vector spaces over F. Then V1 × · · · × Vm is a vector space

over F.

Dimension of a Product is the Sum of Dimensions

(Theorem 3.76) Suppose V1, · · · , Vm are finite-dimensional vector spaces. Then V1 × · · · × Vm is

finite-dimensional and

dim(V1 × · · · × Vm) = dim V1 + · · ·+ dim Vm

Theorem 3.76 Sketch of Proof Construct a basis for each Vj , consider the element of the product equals

the basis vector in the jth slot and 0 in other slots. The list of all such vectors is the basis of the product.
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5.5.2 Products and Direct Sums

Products and Direct Sums

(Theorem 3.77) Suppose that U1, · · · , Um are subspaces of V . Define a linear map Γ : U1×· · ·×Um →
V1 + · · ·+ Vm by

Γ(u1, · · · , um) = u1 + · · ·+ um

Then U1 + · · ·Um is a direct sum if and only if Γ is injective.

Theorem 3.77 Sketch of Proof Γ is injective if and only null Γ = {0}, i.e., there is a unique way to

write 0 as the sum, thus the sum is a direct sum (Theorem 1.44).

A Sum is a Direct Sum If and Only If Dimensions Add Up

(Theorem 3.78) Suppose V is finite-dimensional and U1, · · · , Um are subspaces of V . Then U1 + · · ·+
Um is a direct sum if and only if

dim(U1 + · · ·+ Um) = dim U1 + · · ·+ dim Um

Theorem 3.77 Sketch of Proof Γ is surjective. By the Rank-Nullity Theorem, Γ is injective if and only

if dim(U1 × · · · × Um) = dim(U1 + · · ·+ Um), and by Theorem 3.76, we can have the equation as desired.

5.5.3 Quotients of vectors Spaces

v + U Suppose v ∈ V and U is a subspace of V . Then v + U is the subset of V defined by

v + U = {v + U : u ∈ U}

Affine Subset, Parallel

− An affine subset of V is a subset of V of the form v + U for some v ∈ V and some subspace U

of V .

− For v ∈ V and U a subspace of V , the affine subset v + U is said to be parallel to U .

Quotient Space, V/U Suppose U is a subspace of V . Then the quotient space V/U is the set of

all affine subsets of V parallel to U . In other words,

V/U = {v + U : v ∈ V }
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Two Affine Subsets Parallel to U are Equal or Disjoint

(Theorem 3.85) Suppose U is a subspace of V and v, w ∈ V . Then the following are equivalent:

(a) v − w ∈ U

(b) v + U = w + U

(c) (v + U) ∩ (w + U) 6= ∅

Addition and Scalar Multiplication on V/U Suppose U is a subspace of V . Then addition and

scalar multiplication are defined on V/U by

(v + U) + (w + U) = (v + w) + U

λ(v + U) = (λv) + U

for v, w ∈ V and λ ∈ F.

Quotient Space is a Vector Space

(Theorem 3.87) Suppose U is a subspace of V . Then V/U , with the operations of addition and scalar

multiplication as defined above, is a vector space.

Theorem 3.87 Note To show that the quotient space is a vector space, we need to show the operations

are well-defined and make sense.

Quotient Map Suppose U is a subspace of V . The quotient map π is the linear map π : V → V/U

defined by
π(v) = v + U

for v ∈ V .

Dimension of a Quotient Space

(Theorem 3.89) Suppose V is finite-dimensional and U is a subspace of V . Then

dim V/U = dim V − dim U

Theorem 3.89 Sketch of Proof By the definition of π, π is surjective, and null π = U by Theorem 3.85.

The desired equation can be derived by the Rank-Nullity Theorem.

T̃ Suppose T ∈ L(V,W ). Define T̃ : V/(null T )→W by

T̃ (v + null T ) = Tv
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Null Space and Range of T̃

(Theorem 3.91) Suppose T ∈ L(V,W ). Then

(a) T̃ is a linear map from V/(null T ) to W

(b) T̃ is injective

(c) range T̃ = range T

(d) V/(null T ) is isomorphic to range W

5.6 Duality

5.6.1 The Dual Space and the Dual Map

Linear Functional A linear functional on V is a linear map from V to F. In other words, a linear

functional is an element of L(V,F).

Dual Space, V′ The dual space of V , denoted V ′, is the vector space of all linear functionals on V .

In other words, V ′ = L(V,F).

dim V′ = dim V

(Theorem 3.95) Suppose V is finite-dimensional. Then V ′ is also finite-dimensional and dim V ′ =

dim V .

Theorem 3.95 Sketch of Proof Directly follows from 3.61.

Dual Basis If v1, · · · , vn is a basis of V , then the dual basis of v1, · · · , vn is the list ϕ1, · · · , ϕn of

elements of V ′, where each ϕj is the linear functional on V such that

ϕj(vk) =

1 if k = j

0 if k 6= j

Equivalently,
ϕj(c1v1 + · · ·+ cnvn) = cj

Dual Basis is a Basis of the Dual space

(Theorem 3.98) Suppose V is finite-dimensional. Then the dual basis of a basis of V is a basis of V ′.

Dual Map, T′ If T ∈ L(V,W ), then the dual map of T is the linear map T ′ ∈ L(W ′, V ′) defined by

T ′(ϕ) = ϕ ◦ T for ϕ ∈W ′.
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Algebraic Properties of Dual Maps

(Theorem 3.101)

− (S + T )′ = S′ + T ′ for all S, T ∈ L(V,W )

− (λT )′ = λT ′ for all λ ∈ F and T ∈ L(V,W )

− (ST )′ = T ′S′ for all T ∈ L(U, V ) and all S ∈ L(V < W )

5.6.2 The Null Space and Range of the Dual of a Linear Map

Annihilator, U0 For U ⊂ V , the annihilator of U , denoted U0, is defined by

U0 = {φ ∈ V ′ : ϕ(u) = 0 for all u ∈ U}

The Annihilator is a Subspace

(Theorem 3.105) Suppose U ⊂ V . Then U0 is a subspace of V ′.

Dimension of the Annihilator

(Theorem 3.106) Suppose V is finite-dimensional and U is a subspace of V . Then

dim U + dim U0 = dim V

Theorem 3.106 Sketch of Proof Suppose W is the complement of U on V (i.e., U ⊕W = V ). Construct

the dual basis of U , ϕ1, · · · , φn, and the dual basis of W , ψ1, · · · , ψm. Given the basis is linearly independent,

we can prove that U0 = span(ψ1, · · · , ψm), namely U0 = W ′. By the dimension of the direct sum, dim U +

dim U0 = V ′ = V .

The Null Space of T′

(Theorem 3.107) Suppose V and W are finite-dimensional and T ∈ L(V,W ). Then

(a) null T ′ = (range T )0

(b) dim null T ′ = dim null T + dim W − dim V

T Surjective is Equivalent to T′ Injective

(Theorem 3.108) Suppose V and W are finite-dimensional and T ∈ L(V,W ). Then T is surjective if

and only if T ′ is injective.
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The Range of T′

(Theorem 3.109) Suppose V and W are finite-dimensional and T ∈ L(V,W ). Then

(a) dim range T ′ = dim range T

(b) range T ′ = (null T )0

T Injective is Equivalent to T′ Surjective

(Theorem 3.110) Suppose V and W are finite-dimensional and T ∈ L(V,W ). Then T is injective if

and only if T ′ is surjective.

5.6.3 The Matrix of the Dual of a Linear Map

Transpose, At The transpose of a matrix A, denoted At, is the matrix obtained from A by inter-

changing the rows and columns. More specifically, if A is an m-by-n matrix, then At is the n-by-m

matrix whose entries are given by the equation

(At)k,j = Aj,k

The Transpose of the Product of Matrices

(Theorem 3.113) If A is an m-by-n matrix and C is an n-by-p matrix, then

(AC)t = CtAt

The Transpose of the Product of Matrices

(Theorem 3.113) Suppose T ∈ L(V,W ), then M(T ′) = (M(T ))t.

5.6.4 The Rank of a Matrix

Row Rank, Column Rank, Rank Suppose A is an m-by-n matrix with entries in F.

− The row rank of A is the dimension of the span of the rows of A in F1,n

− The column rank of A is the dimension of the span of the columns of A in Fm,1

− The rank of A is the row/column rank of A

Dimension of Range T Equals Column Rank of M(T)

(Theorem 3.117) Suppose V and W are finite-dimensional and T ∈ L(V,W ). Then dim range T

equals the column rank of M(T ).
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Row Rank Equals Column Rank

(Theorem 3.118) Suppose A ∈ Fm,n, then the row rank of A equals the column rank of A.
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6 Eigenvalues, Eigenvectors, and Invariant Subspaces

6.1 Invariant Subspaces

Invariant Subspace Suppose T ∈ L(V ). A subspace U of V is called invariant under T if u ∈ U
implies Tu ∈ U .

Eigenvalue Suppose T ∈ L(V ). A number λ ∈ F is called an eigenvalue of T if there exists v ∈ V
such that v 6= 0 and Tv = λv.

Equivalent Conditions to be an Eigenvalue

(Theorem 5.6) Suppose V is finite-dimensional, T ∈ L(V ), and λ ∈ F. Then the following are

equivalent

(a) λ is an eigenvalue of T .

(b) T − λI is not injective

(c) T − λI is not surjective

(d) T − λI is not invertible

Eigenvector Suppose T ∈ L(V ) and λ ∈ F is an eigenvalue of T . A vector v ∈ V is called an

eigenvector of T corresponding to λ if v 6= 0 and Tv = λv.

Linear Independent Eigenvectors

(Theorem 5.10) Let T ∈ L(V ). Suppose λ1, · · · , λm are distinct eigenvalues of T and v1, · · · , vm are

corresponding eigenvectors. Then v1, · · · , vm is linearly independent.

Number of Eigenvalues

(Theorem 5.13) Suppose V is finite-dimensional. Then each operator on V has at most dim V distinct

eigenvalues.
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Restriction Operator T|U and Quotient Operator T/U Suppose T ∈ L(V ) and U is a subspace

of V invariant under T . The restriction operator T |U ∈ L(U) is defined by

T |U (u) = Tu

for u ∈ U . The quotient operator T/U ∈ L(V/U) is defined by

(T/U)(v + U) = Tv + U

for v ∈ V .

6.2 Eigenvectors and Upper-Triangular Matrices

6.2.1 Polynomials Applied to Operators

Tm Suppose T ∈ L(V ) and m is a positive integer.

− Tm is defined by Tm = T · · ·T (m times).

− T 0 is defined to be the identity operator I in V .

− If T is invertible withe inverse T−1, then T−m is defined by T−m = (T−1)m.

p(T) Suppose T ∈ L(V ) and p ∈ P(F ) is a polynomial given by p(z) = a0 + a1z + · · · + amz
m for

z ∈ F. Then p(T ) is the operator defined by

p(T ) = a0I + a1T + · · ·+ amT
m

Product of Polynomials If p, q ∈ P(F), then pq ∈ P(F) is the polynomial defined by

(pq)(z) = p(z)q(z)

for z ∈ F.

Multiplicative Properties

(Theorem 5.20) Suppose p, q ∈ P(F) and T ∈ L(V ). Then

(a) (pq)(T ) = p(T )q(T );

(b) p(T )q(T ) = q(T )p(T ).

6.2.2 Existence of Eigenvalues

Operators on Complex Vector Spaces Have an Eigenvalue

(Theorem 5.21) Every operator on a finite-dimensional, nonzero, complex vector space has an eigen-

value.
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Theorem 5.21 Sketch of Proof Construct a linear-independent list v, Tv, · · · , Tnv. By the Fundamental

Theorem of Algebra, p(T ) can be factorized as c(T−λ1I) · · · (T−λmI)v, implying the existence of eigenvalue.

6.2.3 Upper-Triangular Matrices

Diagonal of a Matrix, Upper-Triangular Matrix The diagonal of a square matrix consists of

the entries along the line from the upper left corner to the bottom right corner. A matrix is called

upper triangular if all the entries below the diagonal equal 0.

Upper-triangular matrix is in the form of 
λ1 ∗

. . .

0 λn


the 0 in the matrix above indicates that all entries below the diagonal equal 0.

Conditions for Upper-Triangular Matrix

(Theorem 5.26) Suppose T ∈ L(V ) and v1, · · · , vn is a basis of V . Then the following are equivalent:

(a) the matrix of T with respect to v1, · · · , vn is upper triangular;

(b) Tvj ∈ span(v1, · · · , vj) for each j = 1, · · · , n;

(c) span(v1, · · · , vj) is invariant under T for each j = 1, · · · , n.

Theorem 5.26 Sketch of Proof (b) ⇒ (c): Obviously Tvk ∈ span(v1, · · · , vj), so span(v1, · · · , vj) is

invariant.

Over C Every Operator has an Upper-Triangular Matrix

(Theorem 5.27) Suppose V is a finite-dimensional complex vector space and T ∈ L(V ). Then T has

an upper-triangular matrix with respect to some basis of V.

Theorem 5.27 Sketch of Proof Mathematical Induction. Obviously desired result holds if dim V = 1.

(Proof 2 given in the book) For n = dim V > 1, let U = span(v1), so we can construct T/U ∈ L(V/U) where

dim V/U = n−1. Given (T/U)(vj+U) = Tvj+U by definition and (T/U)(vj+U) ∈ span(v2+U, · · · , vj+U)

by inductive hypothesis, we can prove Tvj ∈ span(v1, · · · , vj). Hence, by proving v1, · · · , vn is a basis by

complement subspace, we complete the proof.

Determination of Invertibility from Upper-Triangular Matrix

(Theorem 5.30) Suppose T ∈ L(V ) has an upper-triangular matrix with respect to some basis of V .

Then T is invertible if and only if all the entries on the diagonal of that upper-triangular matrix are

nonzero.

Theorem 5.30 Sketch of Proof ⇒ Direction: Proof by contradiction. If λ1 = 0, null T 6= {0}, so T is

not injective. If λj = 0 : j > 1, range T |Uj
6= Uj , so not surjective.
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⇒ Direction: We need to prove for each j, T (vj/λj) = c1v1 + · · · + cj−1vj−1 + vj , implying vj ∈ range T ,

followed by range T = V .

Determination of Eigenvalues from Upper-Triangular Matrix

(Theorem 5.32) Suppose T ∈ L(V ) has an upper-triangular matrix with respect to some basis of V .

Then the eigenvalues of T are precisely the entries on the diagonal of that upper-triangular matrix.

Theorem 5.32 Sketch of Proof M(T − λI) is given by

M(T − λI) =


λ1 − λ ∗

. . .

0 λn − λ


T is not invertible iff some entries in the diagonal are zero, thus λ1, · · · , λn are all eigenvalues.

6.3 Eigenspaces and Diagonal Matrices

Diagonal Matrix A diagonal matrix is a square matrix that is 0 everywhere except possibly along

the diagonal.

Eigenspace, E(λ,T) Suppose T ∈ L(V ) and λ ∈ F. The eigenspace of T corresponding to λ, denoted

E(λ, T ), is defined by
E(λ, T ) = null(T − λI)

In other words, E(λ, T ) is the set of all eigenvectors of T corresponding to λ, along with the 0 vector.

Sum of Eigenspaces is a Direct Sum

Suppose V is finite-dimensional and T ∈ L(V ). Suppose also that λ1, · · · , λm are distinct eigenvalues

of T . Then
E(λ1, T ) + · · ·+ E(λm, T )

is a direct sum. Furthermore,

dim E(λ1, T ) + · · ·+ dim E(λm, T )

Diagonalizable An operator T ∈ L(V ) is called diagonalizable of the operator has a diagonal

matrix with respect to some basis of V .
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Conditions Equivalent to Diagonalizability

(Theorem 5.41) Suppose V is finite-dimensional and T ∈ L(V ). Let λ1, · · · , λm denote the distinct

eigenvalues of T . Then the following are equivalent

(a) T is diagonalizable;

(b) V has a basis consisting of eigenvectors of T ;

(c) There exits 1-dimensional subspaces U1, · · · , Un of V , each invariant under T , such that V =

U1 ⊕ · · · ⊕ Un;

(d) V = E(λ1, T )⊕ · · · ⊕ E(λm, T );

(e) dim V = dim E(λ1, T ) + · · ·+ dim E(λm, T ).

Theorem 3.95 Sketch of Proof

− (a)⇔ (b): T has a diagonal matrix, with λ1, · · · , λn on the diagonal, with respect to a basis v1, · · · , vn
if and only if Tvj = λvj .

− (b) ⇒ (c): let Uj = span(vj) where v1, · · · , vn is a basis consisting eigenvectors of T . Hence, we can

prove V = U1 ⊕ · · · ⊕ Un
− (c)⇒ (b): choose non-zero vector vj for each Uj . Each vector in V can be written as a sum u1+ · · ·+un

where uk is in Uj and thus a scalar multiple of vj . Hence, v1, · · · , vn is a basis of V .

− (b) ⇒ (d): v1, · · · , vn is a basis consisting of eigenvectors of T , so every vector in V is a scalar

combination of the list. Note that cjvj ∈ E(λj , T ) for each j, so V = E(λ1, T )⊕ · · · ⊕ E(λm, T ).

− (d)⇒ (e): by theorem 3.78 A sum if a direct sum iff dimensions add up.

− (e) ⇒ (b): choose a basis of each E(λj , T ), and put all bases together to form a list v1, · · · , vn. The

list is linearly independent (To prove linear independence, let uj ∈ E(λj , T ) be the collection of all

akvk ∈ E(λj , T ). u1, · · · , um = 0 implies each u equals 0, implying that each a equals 0.) and thus a

basis of V

Enough Eigenvalues Implies Diagonalizability

(Theorem 5.44) Tf T ∈ L(V ) has dim V distinct eigenvalues, then T is diagonalizable.
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7 Operators on Complex Vector Spaces

7.1 Generalized Eigenvectors and Nilpotent Operators

7.1.1 Null Spaces of Powers of an Operator

Sequence of Increasing Null Spaces

(Theorem 8.2) Suppose T ∈ L(V ). Then

{0} = null T 0 ⊂ null T 1 ⊂ · · · ⊂ null T k ⊂ null T k+1 ⊂ · · ·

Theorem 8.2 Sketch of Proof Proving ∀ v ∈ null T k, v ∈ null T k+1 yields the statement.

Equality in the Sequence of Null Spaces

(Theorem 8.3) Suppose T ∈ L(V ). Suppose m is a non-negative integer such that null Tm ⊂
null Tm+1. Then

null Tm = null Tm+1 = null Tm+2 = · · ·

Theorem 8.3 Sketch of Proof We need to prove null Tm+k = null Tm+k+1. One direction is obvious.

For v ∈ null Tm+k+1, T k ∈ null Tm+1 = null Tm, which implies inclusion in another direction.

Null Spaces Stop Growing

(Theorem 8.4) Suppose T ∈ L(V ). Let n = dim V . Then

null Tn = null Tn+1 = null Tn+2 = · · ·

Theorem 8.4 Sketch of Proof Contrapositive. Suppose null Tn 6= null Tn+1, then null T 0 ( null T 1 (
· · · ⊂ null Tn ( null Tn+1, so dim Tn+1 ≥ n+ 1, which clearly false.

V is the Direct Sum of null Tdim V and range Tdim V

(Theorem 8.5) Suppose T ∈ L(V ). Let n = dim V . Then

V = null Tn ⊕ range Tn

Theorem 8.4 Sketch of Proof We first need to prove the sum is direct by null Tn ∩ range Tn = {0}.
dim null Tn ⊕ range Tn = dim V by the Rank-Nullity Theorem gives the sum is equal to V .

7.1.2 Generalized Eigenvectors
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Generalized Eigenvector Suppose T ∈ L(V ) and λ is an eigenvalue of T . A vector v ∈ V is called

a generalized eigenvector of T corresponding to λ if v 6= 0 and

(T − λI)jv = 0

for some j ∈ N+.

Generalized Eigenspace, G(λ,T) Suppose T ∈ L(V ) and λ ∈ F. The generalized eigenspace

of T corresponding to λ, denoted G(λ, T ), is defined to be the set of all generalized eigenvectors of T

corresponding to λ, along with the 0 vector.

Note there is no concept of generalized eigenvalues because all ”generalized eigenvalues” are eigenvalue of T .

Description of Generalized Eigenspaces

(Theorem 8.11) Suppose T ∈ L(V ) and λ ∈ F. Then G(λ, T ) = null (T − λI)dim V .

Theorem 8.11 Sketch of Proof By definition, G(λ, T ) is the intersection of all null (T −λI)j . ∀ j ∈ N+,

null (T − λI)j ⊂ null (T − λI)dimV by 8.2 and 8.4, implying the desired statement.

Linearly Independent Generalized Eigenvectors

(Theorem 8.13) Let T ∈ L(V ). Suppose λ1, · · · , λm are distinct eigenvalues of T and v1, · · · , vm are

corresponding generalized eigenvectors. Then v1, · · · , vm is linearly independent.

Theorem 8.13 Sketch of Proof Let k be the largest integer s.t. w := (T −λ1I)k 6= 0, then (T −λI)kw =

(λ1−λ)w. Construct S = (T −λ1I)k(T −λ2I)dimV · · · (T −λmI)dimV and apply S to a1v1 + · · ·+amvm = 0.

We obtain a1(λ1 − λ2)dimV · · · (λ1 − λm)dimV w = 0m implying a1 = 0. Repeat the procedure so a1 = · · · =
am = 0, implying v1, · · · , vm is linearly independent.

7.1.3 Nilpotent Operator

Nilpotent An operator is called nilpotent if some power of it equals 0.

Nilpotent Operator Raised to Dimension of Domain is 0

(Theorem 8.18) Suppose N ∈ L(V ) is nilpotent. Then NdimV = 0.

Theorem 8.18 Sketch of Proof V = G(0, T ) := null T dimV , implying the desired statement.
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Matrix of a Nilpotent Operator

(Theorem 8.19) Suppose N is a nilpotent operator on V . Then there is a basis of V with respect to

which the matrix of N has the form 0 ∗
. . .

0 0


here all entries on and below the diagonal are 0’s.

Theorem 8.19 Sketch of Proof First choose a basis of null N , extend it to the basis of null N2, and so

on to null Nk where k is the smallest integer s.t. Nk = 0. Suppose vm is a vector add to extend the basis

to null Nm. Then Nmvm = 0, Nvm ∈ null Nm−1, so vm is in the span of v1’s to vm−1’s (thus the entry on

the diagonal in the corresponding column is 0). Hence, the matrix is in the desired form.

7.2 Decomposition of an Operator

7.2.1 Description of Operators on Complex Vector Spaces

The Null Space and Range of p(T) are Invariant Under T

(Theorem 8.20) Suppose T ∈ L(V ) and p ∈ P(F). Then null p(T ) and range p(T ) are invariant under

T .

Theorem 8.20 Sketch of Proof Suppose v ∈ null p(T ), then p(T )(Tv) = 0, so Tv ∈ null p(T ). Suppose

w ∈ range p(T ) where p(T )v = w, then Tw = p(T )(Tv), so Tw ∈ range p(T ).

Description of Operators on Complex Vector Spaces

(Theorem 8.21) Suppose V is a complex vector space and T ∈ L(V ). Let λ1, · · · , λm be the distinct

eigenvalues of T . Then

(a) V = G(λ1, T )⊕ · · · ⊕G(λm, T );

(b) Each G(λj , T ) is invariant under T ;

(c) Each (T − λjI)|G(λj ,T ) is nilpotent.

* Theorem 8.21 (a) Sketch of Proof Mathematical Induction. For n = dimV > 1. (1) Decomposition:

suppose V = null (T −λ1I)n ⊕ range (T −λ1I)n = G(λ1, T ) ⊕ U (U is invariant). By inductive hypothesis,

U = G(λ2, T |U ) ⊕ · · · ⊕ G(λm, T |U ). (2) Prove G(λj , T |U ) = G(λj , T ): Let v := v1 + u = v1 + v2 + · · · +
vm, linearly independence implies (in particular) v1 = 0. Therefore, v ∈ U , so G(λm, T ) ⊂ G(λm, T |U ),

completing the proof.

A Basis of Generalized Eigenvectors

(Theorem 8.23) Suppose V is a complex vector space and T ∈ L(V ). Then there is a basis of V

consisting of generalized eigenvectors of T .
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Theorem 8.23 Sketch of Proof Choose a basis of each G(λj , T ), putting all bases together yields the

basis of V by (8.21).

7.2.2 Multiplicity of an Eigenvalue

Multiplicity Suppose T ∈ L(V ). The multiplicity of an eigenvalue of T is defined to be the

dimension of the corresponding generalized eigenspace G(λ, T ), equivalently dim null (T − λI)dimV .

Sum of the Multiplicities Equals dim V

(Theorem 8.26) Suppose V is a complex vector space and T ∈ L(V ). Then the sum of the multiplicities

of all the eigenvalues of T equals dimV .

Theorem 8.26 Sketch of Proof Directly follows from (8.21).

7.2.3 Block Diagonal Matrices

Block Diagonal Matrix A block diagonal matrix is a square matrix of the form
A1 0

. . .

0 Am


where A1, · · · , Am are square matrices lying along the diagonal and all the other entries of the matrix

equal 0.

Block Diagonal Matrix with Upper-Triangular Blocks

(Theorem 8.29) Suppose V is a complex vector space and T ∈ L(V ). Let λ1, · · · , λm be the distinct

eigenvalues of T , with multiplicities d1, · · · , dm. Then there is a basis of V with respect to which T

has a block diagonal matrix of the form 
A1 0

. . .

0 Am


where each Aj is a dj-by-dj upper-triangular matrix of the form

Aj =


λj ∗

. . .

0 λj


Theorem 8.29 Sketch of Proof (1) Construct Aj : Each (T − λjI)|G(λj ,T ) is nilpotent, so T |G(λj ,T ) =

(T − λjI)|G(λj ,T ) − λjI|G(λj ,T ) is in the desired form. (2) Construct block diagonal matrix with A’s: Each

G(λj , T ) is invariant. Putting all bases of G(λj , T ) together, we have the desired matrix.
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7.2.4 Square Roots

Identity Plus Nilpotent has a Square Root

(Theorem 8.31) Suppose N ∈ L(V ) is nilpotent. Then I +N has a square root.

Theorem 8.31 Sketch of Proof Guessing their is a square root of the form I + a1N + · · · am−1Nm−1

(based on Taylor series of
√

1 + x). By I +N = (I +a1N + · · · am−1Nm−1)2, we can solve for all coefficients

and verify some choice of aj ’s gives a square root.

Over C Invertible Operators Have Square Roots

(Theorem 8.33) Suppose V is a complex vector space and T ∈ L(V ) is invertible. Then T has a

square root.

Theorem 8.33 Sketch of Proof (1) Construct Rj : (T −λj) is nilpotent, so ∃ Nj : T |G(λj ,T ) = Nj−λjI =
1
λj

(I +Nj/λj). Define Rj to be the product of
√
λj and square root of I +Nj/λj (guaranteed by 8.31). (2)

Construct a square root R: Define R = R1u1 + · · · + Rmum : uj ∈ G(λj , T ), perform R on both sides we

obtain R2 = T .

7.3 Characteristic and Minimal Polynomial

7.3.1 The Carley-Hamilton Theorem

Characteristic Polynomial Suppose V is a complex vector space and T ∈ L(V ). Let λ1, · · · , λm
denote the distinct eigenvalues of T , with multiplicities d1, · · · , dm. The polynomial

(z − λ1)d1 · · · (z − λm)dm

is called the characteristic polynomial of T .

Degree and Zeros of Characteristic Polynomial

(Theorem 8.36) Suppose V is a complex vector space and T ∈ L(V ). Then

(a) the characteristic polynomial of T has degree dimV ;

(b) the zeros of the characteristic polynomial of T are the eigenvalues of T .

Theorem 8.36 Sketch of Proof Directly follows from 8.26 and the definition.

Cayley-Hamilton Theorem

(Theorem 8.37) Suppose V is a complex vector space and T ∈ L(V ). Let q denote the characteristic

polynomial of T . Then q(T ) = 0.

Theorem 8.37 Sketch of Proof (T − λjI)|G(λj ,T ) is nilpotent (8.21). Given the multiplicity dj =

dimG(λj , T ), (T −λjI)dj |G(λj ,T ) = 0, for all j. Decomposing V to the direct sum of generalized eigenspaces

(8.21), q(T )v = 0, completing the proof.
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7.3.2 The Minimal Polynomial

Monic Polynomial A monic polynomial is a polynomial whose highest degree coefficient equals

1.

Minimal Polynomial

(Theorem 8.40) Suppose T ∈ L(V ). Then there is a unique monic polynomial p of smallest degree

such that p(T ) = 0.

Theorem 8.40 Sketch of Proof I, T, · · · , Tn2

is linearly dependent, so there exists smallest m s.t.

I, · · · , Tm is linearly dependent. Then we can construct p : p(T ) := c0I + · · · + cm−1T
m−1 + Tm = 0.

Verifying p is monic, smallest degree, and unique will complete the proof.

Minimal Polynomial Suppose T ∈ L(V ). Then the minimal polynomial of T is the unique monic

polynomial p of smallest degree such that p(T ) = 0.

q(T) = 0 Implies q is a Multiple of the Minimal Polynomial

(Theorem 8.46) Suppose T ∈ L(V ) and q ∈ P(F). Then q(T ) = 0 if and only if q is a polynomial

multiple of the minimal polynomial of T .

Theorem 8.46 Sketch of Proof ⇐ direction is obvious. We can prove⇒ direction by division algorithm.

Characteristic Polynomial is a Multiple of Minimal Polynomial

(Theorem 8.48) Suppose F = C and T ∈ L(V ). Then the characteristic polynomial of T is a

polynomial multiple of the minimal polynomial of T .

Theorem 8.48 Sketch of Proof Directly follows from 8.46 and Cayley-Hamilton Theorem (8.37).

Eigenvalues are the Zeros of the Minimal Polynomial

(Theorem 8.49) Let T ∈ L(V ). Then the zeros of the minimal polynomial of T are precisely the

eigenvalues of T .

Theorem 8.49 Sketch of Proof ⇒ direction can be proven by p(T )v = (T − λI)(q(T )v) = 0 given

p(z) = (z − λ)q(z). To prove ⇐ direction, we can show T jv = λjv if v is an eigenvector correspond to λ.

Therefore, 0 = p(T )v = p(λ)v, implying p(λ) = 0.
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7.4 Jordan Form

Degree and Zeros of Characteristic Polynomial

(Theorem 8.36) Suppose N ∈ L(V ) is nilpotent. Then there exist vectors v1, · · · , vn ∈ V and

nonnegative integers m1, · · · ,mn such that

(a) Nm1v1, · · · , Nv1, v1, · · · , Nmnvn, · · · , Nvn, vn is a basis of V ;

(b) Nm1+1v1 = · · · = Nmn+1vn = 0.

Theorem 8.55 Sketch of Proof Mathematical Induction. The result holds for dimV = 1. For k =

dimN > 1,

(a) We can construct a basis of range N (by induction hypothesis),

B1 = Nm1v1, · · · , Nv1, v1, · · · , Nmnvn

(b) Given all element in B1 ∈ range N , we can extend B1 to

B2 := Nm1+1u1, · · · , Nu1, u1, · · · , Nmn+1un, · · · , Nun, un

where each uj satisfy Tuj = vj . We then can prove B2 is linearly independent.

(c) Then, we further extend B2 to a basis of V , B3 := B2, w1, · · · , wp. Clearly Nwj ∈ range N =

span(B1), so ∃ xj ∈ span(B2) : Nwj = Nxj . We can construct un+j = wj − xj , and note Nun+j =

N(wj − xj) = 0. Hence,

B4 = Nm1+1u1, · · · , Nu1, u1, · · · , Nmn+1un, · · · , Nun, un, un+1, · · · , un+p

B4 can be expressed as the linear combination of B2, thus the list spans V and is a basis of V .

Jordan Basis Suppose T ∈ L(V ). A basis of V is called a Jordan basis for T if with respect to this

basis T has a block diagonal matrix 
A1 0

. . .

0 Ap


where each Aj is an upper-triangular matrix of the form

λ1 1 0
. . .

. . .

. . . 1

0 λj



Jordan Form

(Theorem 8.60) Suppose V is a complex vector space. If T ∈ L(V ), then there is a basis of V that is

a Jordan basis for T .

Theorem 8.60 Sketch of Proof For each j, ∃ Nj = (T − λjI)|G(λj ,T ) : T |G(λj ,T ) = Nj |G(λj ,T ) + λjI and

N is nilpotent (8.21). Nilpotent operator N on vk, Nvk, · · · , Nmkvk (as described in 8.55) has the form
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0 1 0

. . .
. . .

. . . 1

0 0


for all k. Putting all lists together, the matrix of T |G(λj ,T ) has the desired form (Aj). Putting bases of each

Vj together, by V = G(λ1, T )⊕ · · · ⊕G(λp, T ), M(T ) is in the desired form.
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8 Inner Product Spaces

8.1 Multilinear Forms

Bilinear Form A bilinear form on V is a function B : V × V → F which is linear in each variable

separately, that is, if one variable is fixed, the functions is linear.

Note that we are not viewing V × V as a vector space, because a bilinear form is not linear on the vector

space V × V .

A bilinear form on Fn has the form
B(v, w) = vTAw

for a unique n × n matrix A, where v, w are column vectors and vT denotes the transpose of v (the corre-

sponding row vector).

Multilinear Form Let m be a positive integer. A m-linear form is a function B : V ×· · ·×V → F

which is separately linear in each variable. The set of m-linear forms is denoted as V ′ ⊗ · · · ⊗ V ′, or

simply V ′⊗
m

.

The sum and scalar products as for linear forms are defined by:

(B1 +B2)v = B1v +B2v

(cB)v = cBv

where v denotes a m-tuple.

Symmetric Multilinear Form A symmetric bilinear form on a vector space V is a bilinear form

B : V × V → F which has the property that B(v, w) = B(w, v) for all v, w ∈ V . More generally, a

symmetric m-linear form is one which is invariant under all permutations of its argument, and the

set of symmetric m-linear forms on V is denoted as SmV ′.

Quadratic Forms Lemma

The function qB : V → F , defined by qB(v) = B(v, v) where B ∈ S2V ′, has the following properties:

1. qB(cv) = c2qB(v) for all c ∈ F, v ∈ V .

2. The function Bq = 1
2 (qB(v+w)− qB(v)− qB(w)) is a symmetric bilinear form; in fact, it is the

bilinear form B.

A function q : V → F satisfying the above lemma is called a quadratic form .
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8.2 Inner Product and Norms

8.2.1 Inner Products

Dot Product For x, y ∈ Rn, the dot product of x and y, denoted x · y, is defined by

x · y = x1y1 + · · ·+ xnync

where x = (x1, · · · , xn) and y = (y1, · · · , yn).

Inner Product An inner product on V is a function that takes each ordered pair 〈u, v〉 of elements

of V to a number 〈u, v〉 ∈ F and has the following properties:

1. Positivity: 〈u, v〉 ≥ 0 for all v ∈ F;

2. Definiteness: 〈u, v〉 = 0 if and only if v = 0;

3. Additivity in First Slot: 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ V ;

4. Homogeneity in Fist Slot: 〈λu, v〉 = λ〈u, v〉 for all λ ∈ F and all u, v ∈ V ;

5. Conjugate Symmetry: 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

The Euclidean Inner Product on Fn is defined by 〈(w1, · · · , wn), (z1, · · · , zn)〉 = w1z1 + · · ·+ wnzn.

Inner Product Space An inner product space is a vector space V along with an inner product

on V .

Basic Properties of an Inner Product

(Theorem 6.7)

(a) For each fixed u ∈ V , the function that takes v to 〈v, u〉 is a linear map from V to F.

(b) 〈0, u〉 = 0 for every u ∈ V .

(c) 〈u, 0〉 = 0 for every u ∈ V .

(d) 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 for all u, v, w ∈ V .

(e) 〈u, λv〉 = λ〈u, v〉 for all λ ∈ F and u, v ∈ V .

8.2.2 Norms

Norm, ‖v‖ For v ∈ V , the norm of v, denoted ‖v‖, is defined by

‖v‖ =
√
〈v, v, 〉
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Basic Properties of the Norm

(Theorem 6.10) Suppose V ∈ V ,

1. ‖v‖ = 0 if and only if v = 0.

2. ‖λv‖ = |λ|‖v‖ for all λ ∈ F.

Orthogonal Two vectors u, v ∈ V are called orthogonal if 〈u, v〉 = 0.

Orthogonality and 0

(Theorem 6.12)

(a) 0 is orthogonal to every vector in V .

(b) 0 is the only vector in V that is orthogonal to itself.

Pythagorean Theorem

(Theorem 6.13) Suppose u and v are orthogonal vectors in V . Then

‖u+ v‖2 = ‖u‖2 + ‖v‖2

An Orthogonal Decomposition

(Theorem 6.14) Suppose u, v ∈ V , with v 6= 0. Set

c =
〈u, v〉
‖v‖2

and w = u− 〈u, v〉
‖v‖2

Then 〈w, v〉 = 0 and u = cv + w.

Cauchy-Schwarz Inequality

(Theorem 6.15) Suppose u, v ∈ V . Then

|〈u, v〉| ≤ ‖u‖‖v‖

This inequality is an equality if and only if one of u, v is a scalar multiple of the other.

Triangle Inequality

(Theorem 6.18) Suppose u, v ∈ V . Then

|〈u+ v〉| ≤ ‖u‖+ ‖v‖

This inequality is an equality if and only if one of u, v is a nonnegative multiple of the other.
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Parallelogram Equality

(Theorem 6.22) Suppose u, v ∈ V . Then

|〈u+ v〉2 + |〈u− v〉| = 2(‖u‖2 + ‖v‖2)

8.3 Orthonormal Bases

8.3.1 Orthonormal Bases

Orthonormal A list of vectors is called orthonormal if each vector in the list has norm 1 and is

orthogonal to all the other vectors in the list.

In other words, a list e1, · · · , em of vectors in V is orthonormal if

〈ej , ek〉 =

{
1 if j = k

0 if j 6= k

The Norm of an Orthonormal Linear Combination

(Theorem 6.25) If e1, · · · , em is an orthonormal list of vectors in V , then

‖a1e1 + · · ·+ amem‖2 = |a1|2 + · · ·+ |am|2

fo all a1, · · · , am ∈ F.

An Orthonormal List is Linearly Independent

(Theorem 6.26) Every orthonormal list of vectors is linearly independent.

Orthonormal Basis An orthonormal basis of V is an orthonormal list of vectors in V that is also a

basis of V .

An Orthonormal List of the Right Length is an Orthonormal Basis

(Theorem 6.28) Every orthonormal list of vectors in V with length dimV is an orthonormal basis of

V .

Writing a Vector as linear combination of orthonormal basis

(Theorem 6.30) Suppose e1, · · · , en is an orthonormal basis of V and v ∈ V . Then

v = 〈v, e1〉e1 + · · ·+ 〈v, en〉en

and
‖v‖2 = |〈v, e1〉|2 + · · ·+ |〈v, en〉|2
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Gram-Schmidt Procedure

(Theorem 6.31) Suppose v1, · · · , vm is a linearly independent list of vectors in V . Let e1 = v1/‖v‖.
For j = 2, · · · ,m, define ej inductively by

ej =
vj − 〈v, e1〉e1 + · · ·+ 〈v, ej−1〉ej−1
‖vj − 〈v, e1〉e1 + · · ·+ 〈v, ej−1〉ej−1‖

Then e1, · · · , em is an orthonormal list of vectors in V such that

span(v1, · · · , vj) = span(e1, · · · , ej)

for j = 1, · · · ,m.

Existence of Orthonormal Basis

(Theorem 6.34) Every finite-dimensional inner product space has an orthonormal basis.

Orthonormal List Extends to Orthonormal Basis

(Theorem 6.35) Suppose V is finite-dimensional. Then every orthonormal list of vectors in V can be

extended to an orthonormal basis of V .

Upper-triangular Matrix With Respect to Orthonormal Basis

(Theorem 6.37) Suppose T ∈ L(V ). If T has an upper-triangular matrix with respect to some basis

of V , then T has an upper-triangular matrix with respect to some orthonormal basis of V .

Schur’s Theorem

(Theorem 6.38) Suppose V is a finite-dimensional complex vector space and T ∈ L(V ). Then T has

an upper-triangular matrix with respect to some orthonormal basis of V .

8.3.2 Linear Functional on Inner Product Spaces

Riesz Representation Theorem

(Theorem 6.42) Suppose V is finite-dimensional and ϕ is a linear functional on V . Then there is a

unique vector u ∈ V such that

ϕ(v) = 〈v, u〉

for every v ∈ V .

The vector u in above theorem is given by

u = ϕ(e1)e1 + · · ·+ ϕ(en)en
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8.4 Orthogonal Complements and Minimization Problems

8.4.1 Orthogonal Complements

Orthogonal Complement, U⊥ If U is a subset of V , then the orthogonal complement of U , denoted

U⊥, is the set of all vectors in V that are orthogonal to every vector in U :

U⊥ = {v ∈ V : 〈v, u〉 = 0 for every u ∈ U}

Basic Properties of Orthogonal Complement

(Theorem 6.46)

(a) If U is a subset of V , then U⊥ is a subspace of V.

(b) {0}⊥ = V .

(c) V ⊥ = {0}.

(d) If U is a subset of V , then U ∩ U⊥ ⊂ {0}.

(e) If U and W are subsets of V and U ⊂W , then W⊥ ⊂ U⊥.

Direct Sum of a Subspace and Its Orthogonal Complement

(Theorem 6.47) Suppose U is a finite-dimensional subspace of V . Then

V = U ⊕ U⊥

Dimension of the Orthogonal Complement

(Theorem 6.50) Suppose V is finite-dimensional and U is a subspace of V . Then

dimU⊥ = dimV − dimU

The Orthogonal Complement of the Orthogonal Complement

(Theorem 6.51) Suppose U is a finite-dimensional subspace of V . Then

U = (U⊥)⊥

8.4.2 Orthogonal Projection

Orthogonal Projection, PU Suppose U is a finite-dimensional subspace of V . The orthogonal

projection of V onto U is the operator PUv = u defined as follows: For v ∈ V , write v = u+ w, where

u ∈ U and w ∈ U . Then PUv = u.
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Properties of the Orthogonal Projection PU

(Theorem 6.55) Suppose U is a finite-dimensional subspace of V and v ∈ V . Then

(a) PU ∈ L(V );

(b) PUu = u for every u ∈ U ;

(c) PUw = 0 for every w ∈ U⊥;

(d) range PU = U ;

(e) null PU = U⊥;

(f) v − PUv ∈ U⊥;

(g) PU
2 = PU ;

(h) ‖PUv‖ ≤ ‖v‖

(i) for every orthonormal basis e1, · · · , em of U , PUv = 〈v, e1〉+ · · ·+ 〈v, em〉em.

8.4.3 Minimization Problems

Minimizing the Distance to a Subspace

(Theorem 6.56) Suppose U is a finite-dimensional subspace of V , v ∈ V , and u ∈ U . Then

‖v − PUv‖ ≤ ‖v − u‖

Furthermore, the inequality above is an equality if and only if u = PUv.

In other words, PUv is the closest point in U to v.
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9 Operators on Inner Product Spaces

9.1 Self-Adjoint and Normal Operator

9.1.1 Adjoints

Adjoint, T∗ Suppose T ∈ L(V,W ). The adjoint of T is the function T ∗ : W → V such that

〈Tv,w〉 = 〈v, T ∗w〉

for every v ∈ V and every w ∈W .

The adjoint is a linear map

(Theorem 7.5) If T ∈ L(V,W ), then T ∗ ∈ L(V,W ).

Properties of the adjoint

(Theorem 7.6)

(a) (S + T )∗ = S∗ + T ∗ for all S, T ∈ L(V,W );

(b) (λT )∗ = λT ∗ for all λ ∈ F and T ∈ L(V,W );

(c) (T ∗)∗ = T for all T ∈ L(V,W );

(d) I∗ = I where I is the identity operator on V ;

(e) (ST )∗ = T ∗S∗ for all T ∈ L(V,W ) and S ∈ L(W,U).

Null space and range of T ∗

(Theorem 7.7) Suppose T ∈ L(V,W ). Then

(a) null T ∗ = (range T )⊥;

(b) range T ∗ = (null T )⊥;

(c) null T = (range T ∗)⊥;

(d) range T = (null T ∗)⊥;

Theorem 7.7 Sketch of Proof We can first prove (a): w ∈ null T ∗ ⇔ 〈Tv,w〉 = 〈v, T ∗w〉 = 0 ⇔ w ∈
(range T )⊥. By replacing T by T ∗, and/or take orthogonal complement, we obtain the other statements.

The matrix of T ∗

(Theorem 7.10) Let T ∈ L(V,W ). Suppose e1, · · · , en is an orthonormal basis of V and f1, · · · , fm
is an orthonormal basis of W . Then M(T ∗, (f1, · · · , fm), (e1, · · · , en)) is the conjugate transpose of

M(T, (e1, · · · , en), (f1, · · · , fm)).

Theorem 7.10 Sketch of Proof Based on 6.30, Tek = 〈Tek, f1〉f1 + · · · + 〈Tek, fm〉fm ⇒ M(T )j,k =

〈Tek, fj〉. Similarly, M(T ∗)k,j = 〈T fj , ek〉. Therefore, M(T ) =M(T ∗)t.
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9.1.2 Self-Adjoint Operators

Self-adjoint An operator T ∈ L(V ) is called self-adjoint if T = T ∗. In other words, T ∈ L(V ) is

self-adjoint if and only if 〈Tv,w〉 = 〈v, Tw〉 for all v, w ∈ V .

Eigenvalues of self-adjoint operators are real

(Theorem 7.13) Every eigenvalues of a self-adjoint operator is real.

Over C, Tv is orthogonal to v for all v only for the 0 operator

(Theorem 7.14) Suppose V is a complex inner product space and T ∈ L(V ). Suppose 〈Tv, v〉 = 0 for

all v ∈ V . Then T = 0.

Over C, 〈Tv, v〉 is real for all v only for self-adjoint operator

(Theorem 7.15) Suppose V is a complex inner product space and T ∈ L(V ). Then T is self-adjoint

if and only if 〈Tv, v, 〉 ∈ R for every v ∈ V .

If T is normal and 〈Tv, v〉 for all v then T=0

(Theorem 7.16) Suppose T is a self-adjoint operator on V such that 〈Tv, v〉 = 0 for all v ∈ V . Then

T = 0.

9.1.3 Normal Operators

Normal An operator on an inner product space is called normal if it commutes with its adjoint. In

other words, T ∈ L(V ) is normal if TT ∗ = T ∗T .

T is normal if and only if ‖Tv‖=‖T ∗v‖ are equal for all v

(Theorem 7.20) An operator T ∈ L(V ) is normal if and only if

‖Tv‖ = ‖T ∗v‖

for all v ∈ V .

For T normal, T and T ∗ have the same eigenvectors

(Theorem 7.21) Suppose T ∈ L(V ) is normal and v ∈ V is an eigenvector of T with eigenvalue λ.

Then v is also an eigenvector of T ∗ with eigenvalue λ.
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Orthogonal eigenvectors for normal operators

(Theorem 7.22) Suppose T ∈ L(V ) is normal. Then eigenvectors of T corresponding to distinct

eigenvalues are orthogonal.

9.2 The Spectral Theorem

Complex Spectral Theorem

(Theorem 7.24) Suppose F = C and T ∈ L(V ). Then the following are equivalent:

(a) T is normal.

(b) V has an orthonormal basis consisting of eigenvectors of T .

(c) T has a diagonal matrix with respect to some orthonormal basis of V .

Real Spectral Theorem

(Theorem 7.29) Suppose F = R and T ∈ L(V ). Then the following are equivalent:

(a) T is self-adjoint.

(b) V has an orthonormal basis consisting of eigenvectors of T .

(c) T has a diagonal matrix with respect to some orthonormal basis of V .

Theorem 7.29 (a)⇒ (b) Sketch of Proof Mathematical Induction. For dimV > 1, assume (a)⇒ (b) for

real spaces of smaller dimension. There exists an eigenvector u : ‖u‖ = 1. [(7.27) guarantees the existence

of eigenvector for self-adjoint operator.] Then U = span(u) is invariant under T , and thus T |U⊥ is self-

adjoint [(7.28)(c) states that T is self-adjoint and U is T -invariant implies T |U⊥ is self-adjoint.] By inductive

hypothesis, there is an orthonormal basis U⊥ consisting of eigenvectors. Adjoining u to the basis gives the

desired basis.

9.3 Isometry

Isometry An operator S ∈ L(V ) is called an isometry if ‖Sv‖ = ‖v‖ for all v ∈ V . In other words,

an operator is an isometry if it preserves norms.
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Characterization of isometries

(Theorem 7.42) Suppose S ∈ L(V ). Then the following are equivalent:

(a) S is an isometry;

(b) 〈Su, Sv〉 = 〈u, v〉 for all u, v ∈ V ;

(c) Se1, · · · , Sen is orthonormal for every orthonormal list of vectors e1, · · · , en in V ;

(d) there exists an orthonormal basis e1, · · · , en of V such that Se1, · · · , Sen is orthonormal;

(e) S∗S = I;

(f) SS∗ = I;

(g) S∗ is an isometry;

(h) S is invertible and S−1 = S∗.

Description of isometries when F=C

(Theorem 7.43) Suppose V is a complex inner product space and S ∈ L(V ). Then the following are

equivalent:

(a) S is an isometry.

(b) There is an orthonormal basis of V consisting of eigenvectors of S whose corresponding eigen-

values all have absolute value 1.
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10 Trace and Determinant

10.1 Trace

10.1.1 Change of Basis

Identity Matrix, I Suppose n is a positive integer. The n-by-n diagonal matrix1 0
. . .

0 1


is called the identity matrix and is denoted I.

Invertible, Inverse, A−1 A square matrix A is called invertible if there is a square matrix B of

the same size such that AB = BA = I; we call B the inverse of A and denote it by A−1.

The matrix of the product of linear maps

(Theorem 10.4) Suppose u1, · · · , un and v1, · · · , vn and w1, · · · , wn are all bases of V . Suppose

S, T ∈ L(V ). Then

M(ST,(u1, · · · , un), (w1, · · · , wn))

=M(S, (v1, · · · , vn), (w1, · · · , wn))M(T, (u1, · · · , un), (v1, · · · , vn))

Matrix of the identity with respect to two bases

(Theorem 10.5) Suppose u1, · · · , un and v1, · · · , vn are bases of V . Then the matrices

M(I, (u1, · · · , un), (v1, · · · , vn)) and M(I, (v1, · · · , vn), (u1, · · · , un)) are invertible, and each is the

inverse of the other.

Change of basis formula

(Theorem 10.7) Suppose T ∈ L(V ). Let u1, · · · , un and v1, · · · , vn be bases of V . Let A =

M(I, (u1, · · · , un), (v1, · · · , vn)). Then

M(T, (u1, · · · , un))−A−1M(T, (v1, · · · , vn))A

10.1.2 Trace

Trace of an Operator Suppose T ∈ L(V ). The trace of T is the sum of the eigenvalues of T (or

TC if in real vector space) with each eigenvalue repeated according to its multiplicity. The trace of T is

denoted trace T .
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Trace and characteristic polynomial

(Theorem 10.12) Suppose T ∈ L(V ). Let n = dimV . Then trace T equals the negative of the

coefficient of zn−1 in the characteristic polynomial of T .

Trace of a Matrix The trace of a square matrix A, denoted trace A, is defined to be the sum of the

diagonal entries of A.

Trace of AB equals trace of BA

(Theorem 10.14) If A and B are square matrices of the same size, then

trace(AB) = trace(BA)

Trace of matrix of operator dies not depend on basis

(Theorem 10.15) Let T ∈ L(V ). Suppose u1, · · · , un and v1, · · · , vn are bases of V . Then

trace M(T, (u1, · · · , un)) = trace M(T, (v1, · · · , vn))

Trace of an operator equals trace of its matrix

(Theorem 10.16) Suppose T ∈ L(V ). Then trace T = trace M(T ).

Trace is additive

(Theorem 10.18) Suppose S, T ∈ L(V ). Then trace(S + T ) = trace S + trace T .

The identity is not the difference of ST and TS

(Theorem 10.19) There do not exist operators S, T ∈ L(V ) such that ST − TS = I.

10.2 Determinant

10.2.1 Determinant of an Operator

Determinant of an Operator, det T Suppose T ∈ L(V ). The determinant of T is the product

of the eigenvalues of T (or TC if in real vector space), with each eigenvalue repeated according to its

multiplicity. The determinant of T is denoted by det T .

Determinant and characteristic polynomial

(Theorem 10.22) Suppose T ∈ L(V ). Let n = dimV . Then det T equals (−1)n times the constant

term of the characteristic polynomial of T .
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Invertible is equivalent to nonzero determinant

(Theorem 10.24) An operator on V is invertible if and only if its determinant is nonzero.

Characteristic polynomial of T equals det(zI − T )

(Theorem 10.25) Suppose T ∈ L(V ). Then the characteristic polynomial of T equals det(zI − T ).

10.2.2 Determinant of a Matrix

Permutation, perm n, Sn A permutation of (1, · · · , n) is a list (m1, · · · ,mn) that contains each

numbers 1, · · · , n once. The set of all permutations of (1, · · · , n) is denoted perm n or Sn.

Sign of Permutation The sign of a permutation (m1, · · · ,mn) is defined to be 1 if the number of

pairs of integers (j, k) with 1 ≤ j < k ≤ n such that j appears after k in the list (m1, · · · ,mn) is even

and 1 if the number of such pairs is odd.

In other words, the sign of a permutation equals 1 if the natural order has been changed an even number

of times and equals −1 if the natural order has been changed an odd number of times.

Interchanging two entries in a permutation

(Theorem 10.32) Interchanging two entries in a permutation multiplies the sign of the permutation

by −1.

Determinant of a Matrix, det A Suppose A is an n-by-n matrix

A =


A1,1 · · · A1,n

...
...

An,1 · · · An,n


The determinant of A, denoted det A, is defined by

det A =
∑

(m1,··· ,mn)∈perm n

(sign(m1, · · · ,mn))Am1,1 · · ·Amn,n

Interchanging two columns in a matrix

(Theorem 10.36) Suppose A is a square matrix and B is the matrix obtained from A by interchanging

two columns. Then
det A = −det B
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Matrices with two equal columns

(Theorem 10.37) If A is a square matrix that has two equal columns, then det A = 0.

Permuting the columns of a matrix

(Theorem 10.38) SupposeA = (A·,1, · · · , A·,n) is an n-by-nmatrix and (m1, · · · ,mn) is a permutation.

Then
det(A·,m1

, · · · , A·,mn
) = (sign(m1, · · · ,mn)) det A

Determinant is a linear function of each column

(Theorem 10.39) Suppose k, n are positive integers with 1 ≤ k ≤ n. Fix n-by-1 matrices A·,1, · · · , A·,n
except A·,k. Then the function that takes an n-by-1 column vector A·,k to

det(A·,1, · · · , A·,k, · · · , A·,n)

is a linear map from vector space of n-by-1 matrices with entries F to F.

Determinant is multiplicative

(Theorem 10.40) Suppose A and B are square matrices of the same size. Then

det(AB) = (det A)(det B)

Determinant of matrix of operator does not depend on basis

(Theorem 10.41) Let T ∈ L(V ). Suppose u1, · · · , un and v1, · · · , vn are bases of V . Then

det M(T, (u1, · · · , un)) = det M(T, (v1, · · · , vn))

Determinant of an operator equals determinant of its matrix

(Theorem 10.42) Suppose T ∈ L(V ). Then detA = detM(A).

Determinant is multiplicative

(Theorem 10.44) Suppose S, T ∈ L(V ). Then

det(ST ) = det(TS) = (detS)(detT )
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