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1 Mathematical Induction, Euclid’s Division Lemma

Sections 1.1, 2.1

1.1 Principle of Mathematical Induction

Principle of Mathematical Induction

A statement about integers is true for all integers greater than or equal to 1 if

1. (base case) it is true for all integer 1, and

2. (inductive step) whenever is it true for all the in integers 1, 2, · · · , then it is true for the integer

k + 1.

Axiom: Well-Ordering Principle

Every nonempty set of positive integers has a least element.

1.2 Euclid’s Division Lemma

Theorem 2.1 (Euclid’s Division Lemma)

For any integers a and b (b > 0), there exist unique integers q and r such that 0 ≤ r < b and

a = qb+ r

Proof (Existence) Suppose

S := {a− nb |n ∈ Z, a− nb ≥ 0} ⊂ Z>0

S ̸= ∅ because since b > 0, when n is sufficiently small, a − nb can be arbitrarily large. By well-ordering

principle, S contains a least element r ≥ 0. Suppose r = a − qb for some r ∈ Z. If r ≥ b, then r − q =

a− (q + 1)b ∈ S and r − b < r, contradicting the fact that r is the least element in S. Thus, 0 ≥ r < b, and

there exists q, r where 0 ≤ r < q such that a = qb+ r.

(Uniqueness) Suppose 0 ≤ r, r′ < b, a = qb+ r = q′b+ r′. Then

(q − q′)b = r′ − r

Since r, r′ < b, |r′ − r| < b. We have q − q′ = 0 ⇔ q = q′ and thus r = r′.

Q.E.D.
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2 Divisibility, Linear Diophantine Equation, Fundamental Theo-

rem of Arithmetic

Sections 2.2 - 2.4

2.1 Divisibility

2.1.1 Divisibility

Divisibility Let a, b be integers, we say b divides a, or b is a divisor of a, if a/b is an integer.

Notation: b | a indicates b divides a, and ba indicate b ∤ a does not divide a.

Note: b can be zero by the definition above.

Proposition

Let a, b, c be integers, if a | b and a | c, then a | (mb+ nc) for all integers m,n.

Proposition Proof Suppose a | b and a | c, there exist integers q1, q2 such that b = q1a and c = q2a. Then

mb+ nc = mq1a+ nq2a = (mq1 + nq2)a

Since mq1 = nq2 ∈ Z, we have a | (mb+ nc).

Q.E.D.

2.1.2 Greatest Common Divisor

Greatest Common Divisor If a and b are integers, not both zero, then an integer d is called the

greatest common divisor of a and b if

(i) d > 0,

(ii) d is a common divisor of a and b, and

(iii) each integer f that is a common divisor of both a and b is also a divisor of d.

Notation: gcd(a, b), or simply (a, b)

Remark: (Theorem 2.2) If a, b are integers, not both zero, then gcd(a, b) always exists and is unique.

Euclidean Algorithm Suppose a, b are integers, without loss of generality, a ≥ b. Put a = qb + r for

some integers q, r such that 0 ≤ r < b. Then, by Proposition 3.1,

gcd(a, b) = gcd(qb+ r, b) = gcd(r, b) = gcd(b, r)

Repeat this process until r = 0, we find gcd(a, b), which equals to the smaller number of the two numbers

remained at the end of the Euclidean Algorithm.
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Corollary 2.1

If d = gcd(a, b), then there exist integers x and y such that ax+ by = d.

Sketch of the Proof Construct rm by Euclid’ Division Lemma: r0 = |a|, r1 = |b|, and for all m > 1,

0 ≤ rm < rm−1 and
rm−2 = cm−1rm−1 + rm

The Euclidean Algorithm implies rn = 0 for some n, and gcd(a, b) = rn−1. Using strong induction on m

yields that ∃ x, y : ax+ by = rn−1 = gcd(a, b).

Corollary 2.2

Let a, b, c be integers, and a, b are not both zero. There exist integers x and y such that ax+ by = c

if and only if d | c, where d = gcd(a, b).

2.1.3 Prime

Prime A positive integer p other than 1 is said to be a prime if its only positive divisors are 1 and

p.

Relatively Prime a and b are relatively prime (coprime) if gcd(a, b) = 1.

Theorem 2.3

If a, b, c are integers, where a and c are relatively prime, and if c | ab, then c | b.

Proof Since gcd(a, c) = 1, there exists integers x, y such that ax+ cy = 1. Then

b = b(ax+ cy) = abx+ bcy

Since c | ab, c | (abx+ bcy), followed by c | b.

Q.E.D.

Corollary 2.3 Let a, b be integers and p be a prime. If p | ab and p ∤ a, then p | b.

Sketch of the Proof : The proof relies on Theorem 2.3 and the fact that if p is a prime and a ∈ Z, then p ∤ a
iff gcd(p, a) = 1.

Corollary 2.4 Let a1, a2, · · · , an be integers, and let p be a prime. If p | a1a2 · · · an, then there exists an i

such that p | ai.

Sketch of the Proof : By induction on n.
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2.2 The Linear Diophantine Equation

Theorem 2.4

The linear Diophantine equation

ax+ by = c

has a (integer) solution if and only if d | c, where d = gcd(a, b). Furthermore, if (x0, y0) is a solution

of this equation, then the set of solutions of the equation consists of all integer pairs (x, y), where

x = x0 + t
b

d
and y = y0 − t

a

d
(for all t ∈ Z) (2.2.1)

Lemma: (First, we reduced to the case where gcd(a, b) = 1.) If gcd(a, b) = 1 and (x0, y0) is a solution to

2.2.1, then the set of all solutions is {(x, y) |x = x0 + bt, y = y0 − bt, t ∈ Z}.

Proof : For any t ∈ Z, (x0 + bt, y0 − bt) is a solution because

a(x0 + bt) + b(y0 − bt) = ax0 + by0 = c

Now let (x, y) be any solution, then ax+ by = c = ax0 + by0, implying that a(x− x0) = −b(y − y0). Recall

gcd(a, b) = 1, we have b | (x−x0) (Theorem 2.3). There exist t ∈ Z such that x−x0 = bt, namely x = x0+bt.

Substitute x back in the equation above yields

abt = −b(y − y0), so y = y0 − at.

Therefore, any solutions (x, y) = (x0 + bt, y0 − at) for some t ∈ Z. ■

Proof Suppose d = gcd(a, b) and c = kb where k ∈ Z. Dividing both sides of the equation yields

a

d
x+

b

d
y = k

Notice that gcd(a/d, b/d) = 1 (the proof is omitted). If (x0, y0) is a solution, by the lemma above, the set of

solutions is

x = x0 + t
b

d
and y = y0 − t

a

d
(for all t ∈ Z)

for all t ∈ Z.
Q.E.D.

2.3 The Fundamental Theorem of Arithmetic

Theorem 2.5 (Fundamental Theorem of Arithmetic)

For each integer n > 1, there exist primes p1 ≤ p2 ≤ · · · ≤ pr such that

n = p1p2 · · · pr

this factorization is unique.

Proof (Existence) We will use strong induction on n. For all n > 2, assume the statement holds for all

1 < i < n. If n is a prime, the itself is a prime factorization. If n is not prime, there exists a divisor d

such that 1 < d < n, and then clearly 1 < n/d < n. By inductive hypothesis, both d and n/d has a prime
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factorization. Rearranging the product of prime factorizations of d and n/d yields a prime factorization of

n. By strong induction, we have proved the existence of prime factorization for all integer n > 1.

(Uniqueness) We will prove the uniqueness by strong induction on n. Clearly, 2 has a unique factorization.

Assume the prime factorization of k is unique for all 1 < k < n. Suppose p1p2 · · · pr and p′1p
′
2 · · · p′m are two

prime factorizations of n. p1p2 · · · pr = p′1p
′
2 · · · p′m yields p1 | p′i for some i and p′1 | pj for some j (Corollary

2.4), followed by p1 = p′i and p′1 = pj , since all p and p′ are prime. Note that p′1 ≤ p′i = p1 ≤ pj = p′1, we

have p1 = p′1. The result is trivial if n = p1. If n ̸= p1, 1 < n/p1 < n, so

n

p1
= p2p3 · · · pr = p′2p

′
3 · · · p′m.

By inductive hypothesis, r = m and pi = p′i for all i. Hence two prime factorizations are identical, implying

that the prime factorization is unique.

Q.E.D.
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3 Permutations and Combinations

Sections 3.1

3.1 Permutations and Combinations

r-Permutation An r-permutation of a set S of n objects is an ordered selection of r elements from

S.

Theorem 3.1

If nPr denotes the number of r-permutations of a set of n objects, then

nPr = n(n− 1) · · · (n− r + 1)

Sketch of the Proof We can make our first selection in n ways, second selection in n − 1 ways, and

generally, i-th selection in n− r + 1 ways.

Notation: r!, r factorial, is defined as r! = r(r − 1) · · · 1 =r Pr, and we specify 0! = 1.

r-Combination An r-combination of a set S of n objects is a subset of S having r elements.

Theorem 3.2

If
(
n
r

)
denotes the number of r-combinations taken from a set S of n elements, then(

n

r

)
=

n(n− 1) · · · (n− r + 1)

r!

Sketch of the Proof To each r-combinations, we may give rPr different orderings. Thus
(
n
r

)
= nPr/rPr,

followed by the desired result.

Corollary The product of any n consecutive positive integers is divisible by n!.

Proof :
N(N − 1) · · · (N − n+ 1)

n!
=

(
n

r

)
∈ Z
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4 Congruence, Residue Systems

Sections 4.1, 4.2

4.1 Congruence

Congruence Let a, b, n be integers. If n | (a − b), a is congruent to b modulo n, denoted by a ≡
b (mod n).

Note that n can be 0, and m ≡ n (mod 0) if and only if m = n.

Theorem 4.1

Let a, b, c, n be integers, the following statements hold:

1. Reflexive: a ≡ a (mod n).

2. Symmetric: if a ≡ b (mod n), then b ≡ a (mod n).

3. Transitive: if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).

In other words, congruence modulo n is an equivalence relation.

Proof (1) (a− a)/n = 0 ∈ Z.

(2) Since (a− b)/n ∈ Z, we have (b− a)/n = −(a− b)/n ∈ Z.

(3) Since (a− b)/n, (b− c)/n ∈ Z, we have (a− c)/n = (a− b)/n+ (b− c)/n ∈ Z.

Q.E.D.

Theorem 4.2

Suppose a ≡ a′ (mod n) and b ≡ b′ (mod n), then

a± b ≡ a′ ± b′ (mod n), ab ≡ a′b′ (mod n)

Proof Since (a− a′)/n, (b− b′)/n ∈ Z, so are

(a± b)− (a′ ± b′)

n
=

a− a′

n
± b− b′

n
and

ab− a′b′

n
= a

b− b′

n
+ b′

a− a′

n

Q.E.D.

Theorem 4.3 (Cancellation Law)

If ab ≡ ab′ (mod n) and if gcd(a, n) = 1, then b ≡ b′ (mod n).

Proof Since n | a(b − b′) by congruence and a, n are relatively prime, n | (b − b′) (2.3), followed by b ≡
b′ (mod n).

Q.E.D.
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4.2 Residue System

Residue If a, b ∈ Z and a ≡ b (mod n), then b is a residue of a modulo n.

Note that it is not necessary that 0 ≤ b < n.

Complete Residue System A set of integers {r1, · · · , rs} is called a complete residue system

modulo n if

1. ri ̸≡ rj (mod n) for all i ̸= j, and

2. for all m ∈ Z, there exists an ri such that m ≡ ri (mod n).

Corollary 4.1 Let n be a positive integer, then {0, 1, · · · , n− 1} is a complete residue system modulo n.

Proof : Condition (1): If i ≡ j (mod n) for some 0 ≤ i, j ≤ m− 1, then m | (i− j). Since |i− j| ≤ m− 1, so

i = j.

Condition (2): For all m ∈ Z, by Euclid’s Division Lemma, m = qn + r where q, r ∈ Z and 0 ≤ r < n thus

r ∈ S. Since m− r = qn, m ≡ r (mod n) for some r. ■

Theorem 4.4

If s different integers r1, · · · , rs form a complete residue system modulo n, then s = n.

Proof Let S = {r1, · · · , rs} ve a complete residue system modulo n. For each ri, there exists ki ∈
{0, 1, · · · ,m − 1} such that ri ≡ ki (mod n) by Euclid’s Division Lemma. If ki = kj , ri ≡ ki ≡ kj ≡
rj (mod m). Therefore, ri ̸≡ rj (mod n) whenever i ̸= j, namely ki is unique. Therefore, we deduce s ≤ m.

Without loss of generality, we can show m ≤ s. Hence s = m.

Q.E.D.

Reduced Residue System A set of integers {r1, · · · , rs} is called a reduced residue system modulo

n if

1. gcd(ri, n) = 1 for all 1 ≤ i ≤ s,

2. ri ̸≡ rj (mod n) for all i ̸= j, and

3. for allm ∈ Z such thatm is relatively prime to n, there corresponds an ri such thatm ≡ ri (mod n).

Proposition Suppose S is a complete residue system modulo n. Then {r ∈ S | gcd(r, n) = 1} is a reduced

residue system modulo n.

Sketch of the Proof : The first two conditions are clearly met. Let m ∈ Z be coprime to n. Since S is a

complete residue system modulo n, there exists a unique x ∈ S such that m ≡ x (mod n). Note that since

x ≡ m (mod n), gcd(x, n) = gcd(m,n) = 1, so x ∈ {r ∈ S | gcd(r, n) = 1}. ■
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Euler ϕ-function The Euler ϕ-function ϕ(m) is defined to be the number of positive integers less

than or equal to m that are relatively prime to m.

Theorem 4.5

If s integers r1, · · · , rs form a reduced residue system modulo m, then s = ϕ(m).

Proof Denote S = {n ∈ Z | 0 ≤ n ≤ m − 1, gcd(n,m) = 1}. Let {r1, · · · , rs} be a reduced residue system

modulo m. For any ri, since gcd(ri,m) = 1, there exists unique si ∈ S such that ri ≡ si (mod m). If ri ̸= sj ,

we can show that si ̸= sj (we use the same argument as used in Theorem 4.4). Thus s ≤ ϕ(m), similarly

ϕ(m) ≤ s. Hence s = ϕ(m).

Q.E.D.
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5 Solving Congruences

Sections 5.1 - 5.4

5.1 Linear Congruence

5.1.1 Solving Linear Congruences

Problem: Let a, c be non-zero integers and b be an integer. Determine all integer x such that ax ≡ b (mod c).

Remark: Equivalently, there exists y ∈ Z such that ax− b = cy. Therefore, the congruence equation has a

solution if and only if gcd(a, c) | c. Now assume d = gcd(a, c) | b and let x0 be a solution to the congruence.

Then a(x− x0) ≡ 0 (mod c) ⇔ c | a(x− x0) ⇔ c
d | a

d (x− x0), followed by

x = x0 +
c

d
t = x0 +

c

gcd(a, c)
t

where t ∈ Z.

Note that the integers x0, x0 + c/d, · · · , x0 + (c/d)(d − 1) are mutually incongruent modulo c because the

distance of any two of them is less than |b|. Moreover, x0 + (b/d)t is congruent to one of these integers. In

fact, if t = qd + r where q, r ∈ Z and 0 ≤ r < d, then x0 + (c/d)t ≡ x0 + (c/d)r (mod c). Therefore, the

congruence equation has d mutually incongruent solutions.

Theorem 5.1

Let a, c be non-zero integers, let c be an integer, and denote d = gcd(a, c). Then the congruence

ax ≡ b (mod c)

has a solution if and only if d | b. If d | b, then the equation has d mutually incongruent solutions.

Finding a Solution To find a solution of the linear congruence ax ≡ b (mod c), we can

− Euclidean algorithm on a, c, and back substitution

− Exhaust x = 0,±1,±2, · · ·

− Use the properties of congruence to simplify the congruence. For instance, a ≡ a−c (mod c), divisibility,

etc.

5.1.2 Inverse

If a, c are relatively prime, then all the solutions of ax ≡ b (mod c) are congruence modulo c. In this case,

we say a solution n of a congruence is unique modulo c.

Inverse If aā ≡ 1 (mod c), then ā is called the inverse of a modulo c.

Finding the Inverse Performing Euclidean algorithm on a and m will yield ax+my = 1 for some x, y ∈ Z.
Since m | my, ax ≡ 1 (mod m), so ā = x is the desired inverse.
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Corollary 5.1

If gcd(a, c) = 1, then a has an unique inverse modulo c.

Proof Theorem 5.1 implies that an ≡ 1 (mod c) has a solution n, and it is unique.

5.2 The Theorems of Euler, Fermat, and Wilson

Theorem 5.2 (Euler’s Theorem)

If gcd(a,m) = 1, then aϕ(m) ≡ 1 (mod m).

Proof Let {r1, · · · , rϕ(m)} be a reduced residue system modulo m. We can show that {ar1, · · · , arϕ(m)} is

also a reduced residue system modulo m:

1. Given gcd(a,m) = 1, so gcd(ari,m) = 1 for all i.

2. If for some i ̸= j, ari ≡ arj (mod m), then since gcd(a,m) = 1, ri ≡ rj (mod m) by cancellation law

(Theorem 4.3), contradicting that {r1, · · · , rϕ(m)} is a reduced residue system. Hence ri ̸≡ rj (mod m)

whenever i ̸= j.

3. Let ā be an inverse of a modulo m. For any n ∈ Z such that gcd(n,m) = 1, there exists an ri such that

ān ≡ ri (mod m), since ān is relatively prime to m and {r1, · · · , rϕ(m)} is a reduced residue system.

Thus, n ≡ a · ān ≡ ari (mod m) for some i.

Therefore, there is a bijection f : {r1, · · · , rϕ(m)} → {ar1, · · · , arϕ(m)} such that f(ri) ≡ ri (mod m) for all

i. Thus,
ϕ(m)∏
i=1

ri ≡
ϕ(m)∏
i=1

ari ≡ aϕ(m)

ϕ(m)∏
i=1

ri (mod m)

Note that gcd(
∏ϕ(m)

i=1 ri,m) = 1 since
∏ϕ(m)

i=1 ri is a product of integers that are relatively prime to m. By

the cancellation law,

aϕ(m) ≡ 1 (mod m)

Q.E.D.

Corollary 5.2 (Fermat’s Little Theorem)

If p is a prime, then np ≡ n (mod p).

Proof If p ∤ n, by Euler’s theorem, since ϕ(p) = p−1, we have np−1 ≡ 1 (mod p) and thus np ≡ n (mod p).

If p | n, np ≡ 0 ≡ n (mod p).

Q.E.D.

Theorem 5.3 (Wilson’s Theorem)

Let m > 1 be an integer. Then the congruence (m − 1)! ≡ −1 (mod m) holds if and only if m is a

prime.

Proof Suppose m is a prime. For any integer 1 ≤ a < m, since gcd(a,m) = 1, there exists an inverse of a

modulo m, namely an unique 1 ≤ ā < m such that aā ≡ 1 (mod n). Note that if a = ā, a2 ≡ 1 (mod m).
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In this case, m | (a − 1)(a + 1), and since m is a prime, we have a = 1 or a = m − 1. Therefore, for each

1 < a < m− 1, we can pair it with its inverse modulo m, thus,
∏m−2

a=2 a ≡ 1 (mod m). Then,

(m− 1)! ≡ (m− 1) ·

(
m−2∏
a=2

a

)
· 1 ≡ m− 1 ≡ −1 (mod m)

Conversely, suppose m is not a prime. Then there exists an a (1 < a < m) such that a | m. If (m − 1)! ≡
−1 (mod m), then a | (m − 1)! + 1. However, a | (m − 1)!, thus a | 1, resulting in a contradiction. Hence

(m− 1)! ̸≡ −1 (mod m).

Q.E.D.

5.3 The Chinese Remainder Theorem

Theorem 5.4

Suppose m1, · · · ,ms be pairwise relatively prime nonzero integers. Let M = m1m2 · · ·ms, and

suppose that a1, · · · , as are integers such that gcd(ai,mi) = 1 for each i. The the system of s

congruences 

a1x ≡ b1 (mod m1)

a2x ≡ b2 (mod m2)
...

asx ≡ bs (mod ms)

has a simultaneous solution that is unique modulo M .

Remark The condition, m1, · · · ,ms are pairwise relatively prime integers, is natural. If mi,mj are not

relatively prime, we can reduce each congruence into multiple congruences in the form of ax ≡ b (mod peii )

where pi’s are distinct primes.

Proof (Existence) For each 1 ≤ i ≤ s, we can find a solution x = xi foraixi ≡ bi (mod mi)

ajxj ≡ 0 (mod mj) ∀ j ̸= i
(5.3.1)

and then x =
∑s

i=1 xi is a solution to the system of congruences [since for all i, ai
∑s

i=1 xi ≡ aixi + 0 ≡
bi (mod mi)]. Since gcd(aj ,mj) = 1 and mj ’s are pairwise coprime, so (5.4.1) is equivalent toaixi ≡ bi (mod mi)

xi ≡ 0 (mod M/mi)
(5.3.2)

Let ni := M/mi. By the second congruence in (5.3.2), xi = niki for some ki ∈ Z. Since gcd(aini,mi) = 1,

the congruence
ainiki ≡ bi (mod mi)

has a solution, followed by (5.3.2) has a solution.

(Uniqueness) Suppose x = z1, x = z2 are both solutions to the system, the for all i,

ai(z2 − z1) ≡ 0 (mod mi).

Since gcd(ai,mi) = 1, mi | (z2 − z1) for all i; and because mi’s are pairwise coprime, so M | (z2 − z1).

13



Q.E.D.

5.4 Polynomial Congruences

Theorem 5.5

If f(x) = anx
n + an−1x

n−1 + · · ·+ a0 (an ̸= 0) is a polynomial of degree n with integral coefficients.

If p is a prime such that p ∤ an, then the congruence f(x) ≡ 0 (mod p) has at most n mutually

incongruent solutions modulo p.

Proof We shall use induction on the degree n. If n = 0, the f(x) = a0 ̸= 0, so the congruence has no

solution since p ∤ an. If n = 1, the congruence becomes a1x ≡ −a0 (mod p), which has a unique solution.

For n ≥ 1, suppose the statement holds for all polynomials of degree n. Suppose f(x) is a degree n + 1

polynomial. If f(x) ≡ 0 (mod p) has no solution, then we are done. Otherwise, let x = x0 be a solution,

then f(x)− f(x0) ≡ 0 (mod p), so

g(x) · (x− x0) ≡ 0 (mod p)

where

g(x) = an · x
n − xn

0

x− x0
+ an−1 ·

xn−1 − xn−1
0

x− x0
+ · · ·+ a1

is a polynomial with integral coefficients of degree n − 1 and its coefficient of xn−1 is an. By the inductive

hypothesis, g(x) ≡ 0 (mod p) has at most n mutually incongruent solutions. Hence f(x) has at most n+ 1

incongruent solutions.

Q.E.D.
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6 Arithmetic Function

6.1 Euler’s Totient Function

Convention: All the integers are going to be considered and assumed to be positive.

Proposition

Suppose p is a prime and n is a positive integer then ϕ(pn) = pn − pn−1.

Proof An integer is coprime to pn if and only if it is not a multiple of p. Then ϕ(pn) = |{1, · · · , pn} \
{p, 2p, · · · , pn}| = pn − pn−1.

Q.E.D.

Theorem 6.1∑
d|n ϕ(d) = n.

Proof For each d |n, denote

Td(n) := {k ∈ Z | 1 ≤ k ≤ n, gcd(k, n) = d}

then
∑

d|n |Td(n)| = n (because Td is a partition). We want to show that |Td(n)| = ϕ(n/d). In fact,

for 1 ≤ k ≤ n, gcd(k, n) = d iff k = dq for some 1 ≤ q ≤ n/d where gcd(q, n/d) = 1. Note that

|{q | gcd(q, n/d) = 1}| = ϕ(n/d), so |Td(n)| = ϕ(n/d). It follows that∑
d|n

ϕ(d) =
∑
d|n

ϕ
(n
d

)
=
∑
d|n

|Td(n)| = n

Q.E.D.

Theorem

Let m,n ∈ Z≥1 be coprime. Then ϕ(mn) = ϕ(m)ϕ(n)

Proof Let {r1, · · · , rϕ(m)}, {s1, · · · , sϕ(n)} be reduced residue systems modulo m, n, respectively. It suffices

to show that {nri +msj | 1 ≤ i ≤ ϕ(m), 1 ≤ j ≤ ϕ(n)} form a reduced residue system modulo mn.

1. We want to show gcd(nri +msj) = 1. If p is a prime such that p | gcd(nri +msj ,mn), then p | mn.

Without loss of generality, suppose p | m, then p ∤ n sincem and n are coprime. Note that p | (nri+msj)

implies p | nri, thus p | ri. Then p | gcd(m, ri), contradiction. Therefore, gcd(nri +msj) = 1 for all

i, j.

2. We want to show that nri+msj ̸≡ nrk+msl (mod mn) whenever (i, j) ̸= (k, l). In fact, if nri+msj ≡
nrk +msl (mod mn), n(ri− rk)+m(sj − sl) ≡ 0 (mod mn). In particular, m | n(ri− rk)+m(sj − sl),

so m | n(ri − rk). Since gcd(m,n) = 1, m | (ri − rk) thus ri ≡ rk (mod m), contradiction. Therefore,

nri +msj ̸≡ nrk +msl (mod mn) whenever (i, j) ̸= (k, l).

3. We want to show that for all t ∈ Z such that gcd(t,mn) = 1, there exists (i, j) such that r ≡
nri+msj (mod mn). Since gcd(m,n) = 1, there exists an inverse n̄ of nmodulom. Since gcd(t,m) = 1,

gcd(n̄t,m) = 1. There exists n̄t ≡ ri (mod m) thus t ≡ nri (mod m) for some ri by reduced residue

15



system. Without loss of generality, t ≡ msj (mod n). Now we have t ≡ nri + msj (mod m) and

t ≡ nri +msj (mod n). Given that gcd(m,n) = 1, t ≡ nri +msj (mod mn).

Then ϕ(mn) = |{nri +msj | 1 ≤ i ≤ ϕ(m), 1 ≤ j ≤ ϕ(n)}| = ϕ(m)ϕ(n).

Q.E.D.

Theorem 6.2

ϕ(n) = n
∏

p |n

(
1− 1

p

)
where p are primes.

Proof For n = 1, ϕ(1) = 1. For n ≥ 2, let n =
∏k

i=1 p
ni
i where pi’s are pairwise distinct primes and ni’s

are positive integers. By the previous theorem and the proposition,

ϕ(n) =

k∏
i=1

ϕ(pni
i ) =

k∏
i=1

pni
i − pni−1

i =

k∏
i=1

pni
i

(
1− 1

pi

)
= n

k∏
i=1

(
1− 1

pi

)
Q.E.D.

6.2 Divisors

d(n), σ(n) For n ∈ Z≥1, denote by d(n) the number of positive divisors of n and denote by σ(n) the

sum of these divisors.

Proposition

If p is a prime and n ∈ Z≥1, then d(pn) = n+ 1 and σ(pn) = (pn+1 − 1)/(p− 1).

Sketch of the Proof The divisors of pn are 1, p, 2p, · · · , pn. Clearly d(pn) = n+1, and σ(pn) follows from

geometric series.

Corollary 6.1

Let m,n ∈ Z≥1 be coprime. Then d(mn) = d(m)d(n) and σ(mn) = σ(m)σ(n).

Sketch of the Proof Since gcd(m,n) = 1, a positive divisor of mn can be written as the product of a

positive divisor of m and a positive divisor of n in a unique way (prime factorization). Therefore,

d(mn) =
∑
d|mn

1 =

∑
d1|m

1

∑
d2|n

1

 = d(m)d(n)

σ(mn) =
∑
d|mn

d =

∑
d1|m

d1

∑
d2|n

d2

 = σ(m)σ(n).
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Theorem 6.3

For n = pr11 · · · prkk where p’s are distinct primes and ni ∈ Z for all i. We have

d(n) = (r1 + 1)(r2 + 1) · · · (rk + 1)

σ(n) =
pr1+1
1 − 1

p1 − 1
· · ·

prk+1
k − 1

pk − 1

Remark m is a positive divisor of n if and only if m = p
r′1
1 · · · pr

′
k

k where 0 ≤ r′i ≤ ri. d(n) is obvious from

the combinatorial view. Let n′ = pr22 · · · prkk , note that

σ(n) =

r1∑
i=0

 ∑
1≤r′i≤ri

p
r′i
i

 =

r1∑
i=0

σ(n′)

so σ(n) follows from the induction.

Remark: Here we first prove Corollary 6.1 as a theorem, and then deduced Theorem 6.3 as the corollary.

6.3 Multiplicative Arithmetic Function

Multiplicative An arithmetic function is a map f : Z≥1 → C. It is multiplicative if f(mn) =

f(m)f(n) whenever gcd(m,n) = 1.

Möbius Function

µ(n) =


1, if n = 1

0, if p2 | n for some prime p

(−1)r, if p = p1, · · · , pr where pi are distinct primes

Theorem 6.4

ϕ(n), d(n), σ(n), and µ(n) are multiplicative arithmetic functions.

Proof We have already shown that ϕ(n), d(n), and σ(n) are multiplicative arithmetic functions. Suppose

gcd(m,n) = 1. We will show µ is multiplicative by cases:

1. If m = 1 or n = 1. WLOG, suppose n = 1, then µ(mn) = µ(m) = µ(m) · 1 = µ(m)µ(n).

2. If m,n > 1 and any of the exponents of the prime factorization exceeds 1, then µ(mn) = 0 = µ(m)µ(n).

3. If m,n > 1 and all exponents are 1. Suppose n is the product of r primes and m is the product of s

primes, then µ(n) = (−1)r and µ(m) = (−1)s. Also, since primes are distinct (since m,n are coprime),

mn is the product of r + s primes, namely µ(mn) = (−1)r+s = (−1)r(−1)s = µ(n)µ(m).

Q.E.D.
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6.4 The Möbius Inversion Formula

Theorem 6.5 ∑
d|n

µ(d) =

{
1 if n = 1

0 if n > 1

Proof Suppose n = 1, µ(1) = 1. Suppose n > 1, let n = pn1
1 · · · pnk

k where p’s are distinct primes and

ni ∈ Z≥1. For all positive divisors d | n, µ(d) ̸= 0 if and only if d = pm1
1 · · · pmk

k where mi ∈ {0, 1} for all i.

Incomplete!

Theorem 6.6 (Möbius Inversion Formula)

Let f(n) and g(n) be arithmetic functions. The following conditions are equivalent.

(1) f(n) =
∑
d|n

g(d) ⇔ (2) g(n) =
∑
d|n

µ(d)f
(n
d

)

Proof We first assume (1), then∑
d|n

µ(d)f
(n
d

)
=
∑

dd′=n

µ(d)f(d′) =
∑

dd′=n

µ(d)
∑
e|d′

g(e)

=
∑

deh=n

µ(d)g(e) =
∑
e|n

g(e)
∑

d|(n/e)

µ(d)

where the second equality in line 1 comes from (1). By Theorem 6.5,
∑

µ(d) = 1 if and only if d = 1 and∑
µ(d) = 0 otherwise. All other terms with d ̸= 1, namely e ̸= n, vanishes, so the summation is equal to

g(n). Hence ∑
d|n

µ(d) = g(n).

Conversely, we assume (2), then∑
d|n

g(d) =
∑
d|n

∑
d′|d

µ(d′)f

(
d

d′

)
=

∑
dd′e=n

µ(d′)f(e)

=
∑
e|n

f(e)
∑

d′|(n/e)

µ(d′)

where the first equality in the first line comes from (2). Similar to the argument above,
∑

d′|(n/e) µ(d
′) = 1

if and only if n/e = 1, i.e., e = n. Hence the summation is equal to f(n), followed by∑
d|n

g(d) = f(n).

Q.E.D.

Remark We say that (f(n), g(n)) is a Möbius pair if f and g satisfy the condition in the above theorem.

Möbius pair is not symmetric, i.e., (f(n), g(n)) is a Möbius pair does not imply (g(n), f(n)) is a Möbius pair.
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Theorem 6.8

(n, ϕ(n)), (d(n), 1), and (σ(n), n) are all Möbius pairs.

Proof n =
∑

d|n ϕ(n) by Theorem 6.1, d(n) =
∑

d|n 1 and σ(n) =
∑

d|n d by definition.

Q.E.D.

Theorem 6.7

If one of the functions in the Möbius pair (f(n), g(n)) is multiplicative, so is the other.

Proof Suppose f is multiplicative and gcd(m,n) = 1.

g(mn) =
∑
d|mn

µ(d)f
(mn

d

)
=
∑
e|m

∑
h|n

µ(eh)f
(mn

eh

)
=
∑
e|m

∑
h|n

µ(e)µ(h)f
(m
e

)
f
(n
h

)

=

∑
e|m

µ(e)f
(m
e

)∑
h|n

µ(h)f
(n
h

)
= g(m)g(n)

Hence g is multiplicative. The proof of the other direction is similar.
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7 Primitive Roots

7.1 Properties of Reduced residue Systems

Multiplicative Order Let m ∈ Z+ and a ∈ Z. Suppose gcd(a,m) = 1, the (multiplicative) order of

a modulo m is the smallest positive integer d such that ad ≡ 1 (mod m).

Theorem 7.2

If d is the order of a modulo m, and an ≡ 1 (mod m) for some positive integer n, then d | n.

Proof By Euclid’s division lemma, there exists q ∈ Z≥0 and 0 ≤ r < d such that n = qd+ r. Then,

1 ≡ an = (ad)q · ar ≡ ar (mod m).

Since d is the smallest positive integer such that ad ≡ 1 (mod m), r = 0, thus n = qd.

Q.E.D.

Corollary

If d is the order of a modulo m, then d | ϕ(m).

Primitive Root If ϕ(m) is the order of a modulo m, then a is called a primitive root modulo m.

Theorem 7.3

If a is a primitive root modulo m, then a, a2, aϕ(m) are mutually incongruent and form a reduced

residue system modulo m.

Sketch of Proof Assume there exist 1 ≤ i < j ≤ ϕ(m) such that ai ≡ aj (mod m). Then m | ai(aj−i − 1),

so m | (aj−i − 1) since m and ai are coprime, followed by aj−i ≡ 1 (mod m). Note that j − i < ϕ(m), this

contradicts that a is primitive root of m, so a, a2, · · · , aϕ(m) are mutually incongruent.

All conditions for reduced residue system are satisfied: (1) holds because gcd(ai,m) = 1 for all i since

gcd(a,m) = 1; (2) holds because a, · · · , aϕ(m) are mutually incongruent; (3) is automatically satisfied by

|{a, a2, · · · , aϕ(m)}| = ϕ(m). Hence a, a2, · · · , aϕ(m) is a reduced residue system.

Theorem 7.4

If h is the order of a modulo m and k is a positive integer such that gcd(k, h) = d, then h/d is the

order of ak modulo m.

Proof Denote by j the order of ak modulo m. Let k = k′d, h = h′d, then gcd(k′, h′) = 1. We need to show

j = h′.
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Since ah ≡ 1 (mod m),

(ak)h
′
= ak

′d·h′
= (ah)k

′
≡ 1 (mod m)

so j | h′ (Theorem 7.2). Note that by the definition of j, akj ≡ 1 (mod m), so h | kj, namely h′ | k′j. Note

that gcd(h′, k′) = 1, we have h′ | j (Theorem 2.3). Hence h/d = h′ = j is the order of ak modulo m.

Q.E.D.

Corollary 7.1

If a is a primitive root modulo m, then ar is a primitive root modulo m if and only if gcd(r, ϕ(m)) = 1.

Proof The order of a modulo m is ϕ(m), while the order of ar modulo m is ϕ(m)/ gcd(r, ϕ(m)) (Theorem

7.4), which equals ϕ(m) if and only if gcd(r, ϕ(m)) = 1. Therefore, ar is a primitive root if and only if

gcd(r, ϕ(m)) = 1.

Q.E.D.

Theorem 7.5

If there exists a primitive root modulo m, then there are exactly ϕ(ϕ(m)) mutually incongruent

primitive roots modulo m.

Proof Suppose a is a primitive root modulo m, then {a, a2, · · · , aϕ(m)} is a reduced residue system modulo

m. ar is a primitive root if and only if gcd(r, ϕ(m)) = 1 (Corollary 7.1), so there are exactly ϕ(ϕ(m))

primitive roots by the definition of ϕ-function.

Q.E.D.

7.2 Primitive Roots Modulo p

Theorem 7.6

For each prime p there exist primitive roots modulo p.

Proof For each d | p− 1, denote by N(d) the number of elements in {1, · · · , p− 1} whose order modulo m

equals d (we want to prove N(p− 1) ≥ 1). Clearly by the definition of N , p− 1 =
∑

d|p−1 N(d).

Lemma 7.6.1 N(d) = 0 or N(d) = ϕ(d) for all d | p− 1.

By Lemma 7.6.1, we see that N(d) ≤ ϕ(d), followed by

p− 1 =
∑
d|p−1

N(d) ≤
∑
d|p−1

ϕ(d) = p− 1,

where the last equality holds by Theorem 6.1. Therefore, N(d) = ϕ(d) for all d | p − 1. In particular,

N(p− 1) = ϕ(p− 1) ≥ 1.

Proof of Lemma 7.6.1 If N(d) > 0, let a be of order d. Then a, a2, · · · , ad are mutually incongruent solutions

of xd ≡ 1 (mod m), and they are all of the mutually incongruent solutions since the congruence has at most

d solutions (Theorem 5.5). The order of ah modulo m is d if and only gcd(h, d) = 1 (Corollary 7.1), thus

there are exactly ϕ(d) elements. It implies that N(d) = ϕ(d).

Q.E.D.
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8 Prime Numbers

π For x ∈ R>0, denote by π(x) the number of primes less than or equal to x.

Theorem 8.1

limx→∞ π(x) = +∞; that is, there exist infinitely many primes.

Proof Assume for the sake of contradiction there are only finitely many primes, p1, · · · , pn. Let M =

p1 · · · pn + 1. Clearly pi ∤ M for all i, so we deduce that M has no prime factorization, contradicting the

fundamental theorem of arithmetic. Hence there are infinitely many primes.

Q.E.D.

Notation : For x ∈ R, denote by [x] the largest integer less than or equal to x.

Prime Number Theorem

lim
x→+∞

π(x)

x/ log x
= 1

Theorem 8.2

(Lemma of Theorem 8.4) If k is a positive integer,

π(x)

x
≤ ϕ(k)

k
+

k

x

Proof Suppose [x] = qk + r, where 0 ≤ r < k. Consider the partition

{1, · · · , [x]} = {1, · · · , k} ∪ {k + 1, · · · , 2k} ∪ · · · ∪ {kq + 1, · · · , kq + r}.

Among {1, · · · , k}, there are at most k primes. Among {mk+1, · · · , (m+1)k} (where 1 < k < q), there are at

most ϕ(k) primes, since only the number coprime to k can be a prime and we know gcd(ik+ j, k) = gcd(j, k)

for all i, j. Similarly, among {kq + 1, · · · , kq + r}, there are at most ϕ(k) primes. Consequently,

π(x) ≤ k + qϕ(k) ≤ k +
x

k
ϕ(k)

Hence,
π(x)

x
≤ ϕ(k)

k
+

k

x
Q.E.D.

Theorem 8.3

(Lemma of Theorem 8.4) If M > 1 and p1, · · · , ps are all primes less than or equal to M , then

M∑
n=1

1

n
<

1(
1− 1

p1

)
· · ·
(
1− 1

ps

)
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Proof By the geometric series, for each p,

1

1− 1
p

= 1 +
1

p
+

1

p2
+ · · · ,

so we express the right hand side of the inequality as

1∏s
i=1

(
1− 1

pi

) =

s∏
i=1

(
1 +

1

pi
+

1

p2i
+ · · ·

)
=

∑
m∈{Z>0}s

1

pm1
1 · · · pms

s
=
∑
n∈Λ

1

n
<
∑
n≤M

1

n

where Λ is the set of positive integers whose prime factors are p1, · · · , ps. Note that the last inequality holds

because the prime factors of n are less or equal to M , that is p1, · · · , ps, for all n ≤ M .

Q.E.D.

Theorem 8.4

lim
x→∞

π(x)

x
= 0

Proof For any ε > 0. Since
∑∞

n=1 1/n diverges, there exists M such that
∑M

n=1 1/n > 2/ε. Let p1, · · · , ps
be primes less than M , and let k = p1 · · · ps. Therefore,

π(x)

x
≤ ϕ(k)

k
+

k

x
=

k
∏s

i=1

(
1− 1

pi

)
k

+
k

x
<

(
M∑
n=1

1

n

)−1

+
k

x
.

where the first inequality holds by Theorem 6.2 and the second inequality holds by Theorem 8.3. For

x > 2k/ε,

π(x)

x
<

(
2

ε

)−1

+
k

2k/ε
=

ε

2
+

ε

2
= ε.

Since π(x)/x ≥ 0 for x ≥ 0, we conclude that limx→∞
π(x)

x
= 0.

Q.E.D.

Theorem 8.6

If p is a prime, then
∑∞

j=1

[
n

pj

]
is the exponent of p appearing in the prime factorization of n!.

Proof If p > n, the statement is trivial. Suppose p ≤ n. For j > 0, there are [n/pj ] integers divisible by p

a j-th time, namely

pj , 2pj , · · · ,
[
n

pj

]
pj .

After finitely many repetitions, we see the total number of time p divides numbers in {1, · · · , n} is precisely∑
j = 1∞[n/pj ].

Q.E.D.
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9 Quadratic Residues

9.1 Euler’s Criterion

Quadratic Residue Let p be a prime and a ∈ Z. If p ∤ a and

x2 ≡ a (mod p)

has a solution, then we say that a is a quadratic residue modulo p.

Corollary 9.1

Let p be an odd prime and a ∈ Z such that p ∤ a. Let g be a primitive root and r ∈ Z such that

gr ≡ a (mod p). Then a is a quadratic residue modulo p if and only if r is even.

Proof (⇐) If r is even, then x2 ≡ a (mod p) has a solution x = gr/2.

(⇒) Suppose x2 ≡ a (mod p) has a solution. Since x ≡ gs, a ≡ gr (mod p) for some s, r ∈ Z (Theorem 7.3),

we have gr ≡ g2s (mod p), i.e., gr−2s ≡ 1 (mod p). By Theorem 7.2, (p− 1) | (r − 2s) since p is a primitive

root. Since p− 1 is even, r − 2s is even, thus r is even.

Q.E.D.

Theorem 9.1 (Euler’s Criterion)

The integer a is a quadratic residue modulo p if and only if

a(p−1)/2 ≡ 1 (mod p)

Proof (⇒) Suppose x2 ≡ a (mod p) has a solution. By p ∤ a, p ∤ x, so

a(p−1)/2 ≡ (x2)(p−1)/2 ≡ xp−1 ≡ 1 (mod p)

where the last equality holds by Euler’s Theorem.

(⇐) Suppose a(p−1)/2 ≡ 1 (mod p), and a ≡ gr (mod p) for some r where g is a primitive root. Then

gr(p−1)/2 ≡ 1 (mod p). By Theorem 7.2, (p − 1) | r(p − 1)/2, so r/2 ∈ Z, i.e., r is even. Therefore, putting

x = gr/2 results in x2 ≡ gr ≡ a (mod p), so a is a quadratic residue modulo p.

Q.E.D.

9.2 The Legendre Symbol

Legendre Symbol If p is an odd prime, then define the Legendre Symbol as

(
a

p

)
=


1 if a is a quadratic residue modulo p

0 if p | a
−1 if p is a quadratic non-residue modulo p
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Theorem 9.2

If p is an odd prime and a and b are relatively prime to p, then(
a

p

)
=

(
b

p

)
, if a ≡ b (mod p) (9.2.a)(

ab

p

)
=

(
a

p

)(
b

p

)
(9.2.b)

a(p−1)/2 ≡
(
a

p

)
(mod p) (9.2.c)

Proof (a) holds directly from the definition.

(b): If p | ab,
(
ab
p

)
= 0 =

(
a
p

)(
b
p

)
. If p ∤ ab, let g be a primitive root modulo p. Suppose gr ≡ a (mod p)

and gs ≡ b (mod p). By the Corollary 9.1,
(
a
p

)
= 1 if and only if r is even; that is,

(
a
p

)
= (−1)r. Similarly,(

b
p

)
= (−1)s, and

(
ab
p

)
= (−1)r+s because ab ≡ gr+s (mod p). Thus,

(
ab
p

)
=
(
a
p

)(
b
p

)
.

(c) If p | a, then a(p−1)/2 ≡ 0 ≡
(
a
p

)
(mod p). If a is a quadratic residue modulo p, a(p−1)/2 ≡ 1 ≡

(
a
p

)
(mod p) by Euler’s Criterion. Otherwise, ap−1 ≡ 1 (mod p) by Fermat’s Little Theorem, thus

(a(p−1)/2 + 1)(a(p−1)/2 − 1) ≡ 0 (mod p)

However, a(p−1)/2 ̸≡ 1 by Euler’s Criterion, so p | (a(p−1)/2 + 1). Therefore, a(p−1)/2 ≡ −1 ≡
(
a
p

)
(mod p).

Q.E.D.

9.3 The Quadratic Reciprocity Law

Least Residue If p be an odd prime, the least residue modulo p, denoted by r(n), is the unique

integer x ∈ (−p/2, p/2] such that n ≡ x (mod p).

Signum (Sign) We define signum of x, denoted by sgn(x) by sgn(x) equals 1 if x > 0, 0 if x = 0,

and −1 if x < 0.

Theorem 9.3 (Gauss’s Lemma)

Let gcd(a, p) = 1 where p is an odd prime, let m be the number of integers in the set{
a, 2a, · · · , p− 1

2
a

}
whose least residues modulo p are negative. Then(

a

p

)
= (−1)m

Proof Note that all integers in {a, 2a, · · · , 1
2 (p− 1)a} are coprime to p. For any n ∈ {1, · · · , (p− 1)/2}, we

have na ≡ r(na) = sgn(r(na))|r(na)| (mod p). Let m denotes the number of integers in the set whose least

residue is negative, then
∏

sgn(r(na)) = (−1)m. We deduce that
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(
p− 1

2

)
! · a(p−1)/2 ≡ (−1)m

(p−1)/2∏
n=1

|r(na)| (mod p)

Note that 1 ≤ |r(na)| ≤ (p − 1)/2 for all n. For any integers 1 ≤ n1 < n2 ≤ (p − 1)/2, note that

p ∤ (n1 ± n2)a, so |r(n1a)| ̸= |r(n2a)|. That is, {1, · · · , (p − 1)/2} = {|r(na)| : 1 ≤ n ≤ (p − 1)/2}, then∏(p−1)/2
n=1 |r(na)| = (p−1

2 )!. By the cancellation Law (since (p−1
2 )! is coprime to p) and Theorem 9.2(c),(

a

p

)
≡ a(p−1)/2 ≡ (−1)m. (mod p)

and
(
a
p

)
= (−1)m because both side are in {±1} and p > 2.

Q.E.D.

Theorem 9.5

If p is an odd prime, then (
−1

p

)
= (−1)(p−1)/2 and (9.5.a)(

2

p

)
= (−1)(p

2−1)/8 (9.5.b)

Remark The theorem above is equivalent to(
−1

p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)
and

(
2

p

)
=

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)

Proof (a) By Gauss’s Lemma, with a = −1, we see that m = (p − 1)/2 (since all integers in the set

{a, 2a, · · · , (p− 1)a/2} have negative least residue); this establishes (9.5.a).

(b) The number of integer in {2, 4, · · · , p− 1} whose least residues modulo p are negative, which is denoted

by m, is equal to the number of even integers in [(p+ 1)/2, p− 1]. That is,

m =



2k if p = 8k + 1

2k + 1 if p = 8k + 3

2k + 1 if p = 8k + 5

2k + 2 if p = 8k + 7

where k ∈ Z. Note that m is even when m ≡ ±1 (mod 8) and m is odd when m ≡ ±3 (mod 8). By Gauss’s

Lemma, (
2

p

)
= (−1)m =

{
1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)

which is equivalent to the desired result.

Q.E.D.
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Theorem 9.4 (Quadratic Reciprocity Law)

If p and q are distinct odd primes, then(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4

That is,
(
p
q

)
=
(
q
p

)
unless p ≡ q ≡ 3 (mod 4), in which case

(
p
q

)
= −

(
q
p

)
.

Proof Let m1, m2 denotes the number of integers in {q, 2q, · · · , 1
2 (p − 1)q}, {p, 2p, · · · , 1

2 (q − 1)p} with

negative least residues modulo p. By Gauss’s Lemma,
(
p
q

)
= (−1)m1 and

(
q
p

)
= (−1)m2 . (We want to show

that m1 +m2 is odd if and only if p ≡ q ≡ 3 (mod 4).)

Consider the following figure, where AD ∥ BC ∥ EF ,

A : (0, 0) B : ( 12 , 0)

C

D : (p2 ,
q
2 )E

F : (0, 1
2 )

q
2

p
2

It is not hard to find C =

(
p

2
,
q(p− 1)

2p

)
and E =

(
p(q − 1)

2q
,
q

2

)
. The theorem results from the following

two statements:

Lemma 1 : m1, m2 are the number of lattice points in the quadrilateral ADEF , ABCD.

Lemma 2 : The number of lattice points in the hexagon ABCDEF is odd if and only if p ≡ q ≡ 3 (mod 4).

Proof of Lemma 1: If (x, y) is a lattice point in ADEF , then
y >

q

p
x y <

q

p
x+

1

2

y <
q

2
x > 0

=⇒


0 < x <

p

2

−p

2
< xq − py < 0

(9.1)

Therefore, xq has a negative least residue modulo p, so xq has a negative least residue modulo p.

Conversely, if xq ∈ {q, 2q, · · · , 1
2 (p− 1)q} and xq has a negative least residue modulo p, there exists a unique

y ∈ Z such that −p/2 < xq − py < 0. Since

y <
q

p
x+

1

2
≤ q(p− 1)

2p
+

1

2
<

q + 1

2

and y ∈ Z, we have y < q/2. Thus we get the left hand side of (9.1), namely (x, y) is a lattice point in

ADEF .

In this way, we establish a bijection between the set of lattice points in ADEF and the set of integers in

{q, 2q, · · · , (p− 1)q/2} with negative negative least residues modulo p. ■
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Proof of Lemma 2:

ABDCDEF :


0 < x < p/2

0 < y < q/2

q

p

(
x− 1

2

)
< y <

q

p
x+

1

2

(9.2)

In fact, if (x, y) satisfies (9.2), then

(
p+ 1

2
− x,

q + 1

2
− y

)
satisfies (9.2) by verifying the inequalities in

(9.2). This gives a pairing of lattice points in ABCDEF . However, (x, y) =

(
p+ 1

2
− x,

q + 1

2
− y

)
is a

lattice point if and only if q ≡ p ≡ 3 (mod 4). ■

Q.E.D.

Proof (Alternative)

Lemma 1 : (Corollary of Gauss’s Lemma) If a is odd, then
(
a
p

)
= (−1)

∑(p−1)/2
k=1 [ka/p].

By Lemma 1,
(
p
q

)(
q
p

)
= (−1)

∑(p−1)/2
k=1 [kq/p]+

∑(q−1)/2
k=1 [kp/q], thus proving

(p−1)/2∑
k=1

[
kq

p

]
+

(q−1)/2∑
k=1

[
kp

q

]
=

p− 1

2

q − 1

2

completes the proof. Consider the following figure.

O : (0, 0)

C : (p2 ,
q
2 )

1

1 p−1
2

q−1
2

B : (p2 , 0)

A : (p2 , 0)x = k

Clearly, there are p−1
2

q−1
2 lattice points inside

OACB, and there are no lattice points on OC (proof

by contradiction).

For all k s.t. 1 ≤ k ≤ p−1
2 , consider x = k

between OA and OC. It contains [kq/p] lattice

points, namely (k, 1), (k, 2), · · · , (k, [kq/p]). There-

fore, there are
∑(p−1)/2

k=1 [kq/p] lattice points inside

△OAC. WLOG, there are
∑(q−1)/2

k=1 [kp/q] lattice

points inside △OBC.

Hence by the number of lattice points
∑(p−1)/2

k=1

[
kq
p

]
+
∑(q−1)/2

k=1

[
kp
q

]
= p−1

2
q−1
2 , and thus(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Proof of Lemma 1 : Let m denotes the number of integers with negative least residue described in Gauss’s

Lemma. By Euclid’s Division Lemma, for all 1 ≤ k ≤ (p− 1)/2, we have ka = pqk + rk, where qk = [ka/p].

Let
∑

i ai and
∑

j bj denotes the sum of rk’s whose least residue is less than, greater than p/2, respectively,

then

(p−1)/2∑
k=1

ka = p

(p−1)/2∑
k=1

qk +

(p−1)/2∑
k=1

rk = p

(p−1)/2∑
k=1

qk +

r∑
i=1

ai +

s∑
j=1

bj

p2 − 1

8
a =

(p−1)/2∑
k=1

qk +

r∑
i=1

ai +

s∑
j=1

(p− bj)−mp+ 2

s∑
j=1

bj
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p2 − 1

8
a = p

(p−1)/2∑
k=1

qk +
p2 − 1

8
−mp+ 2

s∑
j=1

bj

where the last equality holds because
∑r

i=1 ai+
∑s

j=1(p− bj) is equivalent to
∑

k |LR(ka)| and is thus
∑

k 1.

Taking module 2 of the above equality yields

p2 − 1

8
≡

(p−1)/2∑
k=1

qk +
p2 − 1

8
−m (mod 2)

m ≡
(p−1)/2∑

k=1

qk =

(p−1)/2∑
k=1

[
ka

p

]
(mod 2)

and the result holds directly by Gauss’s Lemma.

Q.E.D.

9.4 Application of Quadratic Reciprocity

Theorem 9.6

If p is an odd prime and gcd(a, p) = 1, then the congruence x2 ≡ a (mod pn) has a solution if and

only if
(
a
p

)
= 1.

Proof (⇒) If x2 ≡ a (mod pn), then x2 ≡ a (mod p), so a is a quadratic residue, namely
(
a
p

)
= 1.

(⇐) Suppose
(
a
p

)
= 1. We proceed by induction on n. The base case n = 1 is trivial by the definition of

Legendre symbol. Assume x0 is a solution to x2
0 ≡ a (mod pn). We want to find k ∈ Z such that

(x0 + kpn)2 ≡ a (mod pn+1) (9.3)

Note that

(x0 + kpn)2 ≡ x2
0 + 2x0kp

n + k2p2n ≡ x2
0 + 2x0kp

n (mod pn+1)

By inductive hypothesis, there existsm ∈ Z such that x2
0−a = mpn. Then (9.3) is equivalent to pn+1 | pn(m+

2x0k), namely p | (m + 2x0k). Since gcd(p, 2x0) = 1, the linear congruence has solution. Hence the desired

k exists and thus x2 ≡ a (mod pn) has a solution.

Q.E.D.

9.5 Sums of Two Squares

Theorem 11.1 (Fermat)

Let p be an odd prime, there exist integers x, y ∈ Z such that p = x2+y2 if and only if p ≡ 1 (mod 4).

Proof (⇒) For any x ∈ Z, x2 ≡ 0 or 1 (mod 4). Thus x2 + y2 ≡ 0 or 1 or 2 (mod 4). Since p is odd,

p = x2 + y2 ≡ 1 (mod 4).

(⇐) Suppose p ≡ 1 (mod 4). Since
(−1

p

)
= 1, there exists x ∈ Z such that x2 ≡ −1 (mod p). Let k ∈ Z>0 be

integer such that k2 < p < (k+1)2 (i.e., k = [
√
q]). Consider integers of the form a+ bx, where 0 ≤ a, b ≤ k.

By the pigeonhole principle, there exists two different pairs (a, b) and (a′, b′) such that a + bx ≡ a′ + b′x

(mod p). Then a− a′ ≡ (b′ − b)x (mod p), thus squaring both sides yields
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(a− a′)2 ≡ −(b′ − b)2 (mod p).

We have p | (a− a′)2 + (b′ − b)2. Since 0 < (a− a′)2 + (b′ − b)2 ≤ 2k2 < 2p, then (a− a′)2 + (b′ − b)2 = p.

Q.E.D.
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