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Chapter 1 Preliminaries

Introduction

h Naive Set Theory and Functions

h Morphisms

h Category

h Universal Properties

1.1 Functions

1.1.1 Functions

Function The function f : A → B is a subset of A × B for which (∀ a ∈ A)(∃! b ∈ B), f(a) = b. The notation
BA denotes collection of all functions from the set A to B.

If S is a subset of A, we denote by f(S) the subset of B defined by f(S) = {b ∈ B | (∃ a ∈ A) b = f(a)}; in
particular, f(A) is the image of f , denoted by im f . We denote by f |S the restriction of f to S, f |S : S → B is
defined by f |S(x) = f(x) for all x ∈ S.

Composition If f : A→ B and g : B → C, the composition g ◦ f : A→ C is defined by (g ◦ f)(x) := g(f(x)).
Note that composition is associative, and the identity function idA is the identity element in composition.

Definition 1.1 (Injection, Surjections, Bijection)

♣

A function f : A→ B is

injective (one-to-one) if a ̸= a′ ⇒ f(a) ̸= f(a′), or equivalently, f(a) = f(a′) ⇒ a = a′;

surjective (onto) if (∀ b ∈ B)(∃ a ∈ A) b = f(a), or equivalently, im f = B;

bijective (one-to-one correspondence) if f is both injective and surjective.

Proposition 1.1

♠

Assume f : A → B where A ̸= ∅, then f has a left inverse if and only if it is injective, and f has a right
inverse if and only if it is surjective.

Proof For sufficiency, suppose there is g : B → A such that g(f(a)) = a for all a ∈ A. Suppose f(a) = f(a′),
then g(f(a)) = g(f(a′)), implying that a = a′. Then f is injective. For necessity, suppose f is injective. Choose
an arbitrary element a0 ∈ A. Let g : B → A be defined by g(b) = a if f(a) = b for some a ∈ A, and otherwise
g(b) = a0. It is not hard to show g is well-defined by the injectivity of f . For all a ∈ A, g(f(a)) = a by the
construction of g, so f has a left inverse. The proof of right inverse is analogous. ■

Remark If f is injective but not surjective, it will have more than one left-inverse, and the similar statement holds
if f is surjective but not injective.



1.1 Functions

Corollary 1.1

♡A function f : A→ B is a bijection if and only if it has a inverse, denoted by f−1.

For f : A → B not bijective, we denote by f−1(T ), where T ⊂ B, the subset of A of all elements that map to T ,
namely f−1(T ) = {a ∈ A | f(a) ∈ T}.

Consider the equivalence relation ∼ on A as follows: for a, a′ ∈ A, a ∼ a′ if and only if f(a) = f(a′), we obtain
the canonical decomposition:

Proposition 1.2 (Canonical Decomposition)

♠

Let f : A→ B be a function and define ∼ as above. Then f decomposes as the composition of the canonical
projection A → A/ ∼ (surjection), followed by a bijection f̄ : A/ ∼→ im f defined by f̄([a]∼) = f(a),
followed by the inclusion function im f → B (injection).

Remark The commutative diagram of the canonical decomposition is shown as:

A (A/ ∼) im f B

f

∼
f̄

1.1.2 Monomorphisms and Epimorphisms

Definition 1.2 (Monomorphism, Epimorphism)

♣

A function f : A→ B is a monomorphism if for all sets Z and all functions α, α′ : Z → A, f ◦α = f ◦α′ ⇒
α = α′; and f is an epimorphism if for all sets Z and all functions α, α′ : B → Z, α ◦ f = α′ ◦ f ⇒ α = α′.

Proposition 1.3

♠

A function is injective if and only if it is a monomorphism. A function is surjective if and only if it is a
epimorphism.

Remark This proposition holds only when f is a set-function.

Proof For sufficiency, suppose f is injective. Let Z be a set, α, α′ : Z → A, and f ◦ a = f ◦ a′. For all x ∈ Z,
f(α(x)) = f(α′(x)), so α(x) = α′(x) by the injectivity of f . That is, α = α′.

For necessity, suppose f is a monomorphism and f(x) = f(x′). Let Z = {p} and define α, α′ : Z → A by
α(p) = x and α′(p) = x′. Then (f ◦ α)(p) = f(x) = f(x′) = (f ◦ α′)(p), so f ◦ α = f ◦ α′, followed α = α′

since f is a monomorphism. Therefore, x = α(p) = α′(p) = x′, it follows that f is injective.

The proof for surjective functions is analogous. ■
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1.2 Category

1.2 Category

Definition 1.3 (Category)

♣

A category C consists of (i) a class Obj(C) of objects of the category and (ii) for every two objects A,B of C,
a set homC(A,B) of morphisms, together with the following data:

identities: for every object A of C, there exists (at least one) morphism 1A ∈ homC(A,A), the identity
(idA) on A, and

composition: two morphisms f ∈ homC(A,B) and g ∈ homC(B,C) determine a morphism gf ∈
hom C(A,C), the composite of g with f ,

such that the following laws holds:

associativity: composition is associative,

unit: the identity morphism is identity with respect to composition.

Remark One further requirement is that the sets homC(A,B), homC(C,D) is disjoint unless A = C, B = D.

The morphism of an object A ∈ C to itself is called an endomorphism; homC(A,A) is denoted by EndC(A).

Example 1.1 The sets (as objects), together with set-functions (as morphisms), form a category, and we denote by
Set this category. The vector spaces together with linear maps form a category Vect.

Example 1.2 Consider the set Z and the relation ≤, the preorder on Z, which is reflexive and transitive. We can
encode this data into a category C: for x, y ∈ Z, the morphism is hom(x, y) = {(x, y)} if x ≤ y and hom(x, y) = ∅
otherwise. The identity is defined as (x, x) ∈ hom(x, x), and the composition is defined as (y, z) ◦ (x, y) = (x, z).

Similarly, every set S along a reflexive and transitive relation forms a category. These are examples of small
categories, since the objects in this category is a set.

Example 1.3 Let C be a category, and A ∈ ob(C). We define the slice category, denoted by CA, by the category for
which:

the objects of CA are morphisms f ∈ homC(Z,A) for some Z ∈ ob(C), and

the morphisms between f1 ∈ homC(Z1, A) and f2 : homCA(Z2, A) is defined by the triple (Z1, Z2, σ) where
σ : Z1 → Z2 satisfies that g1 = g2σ.
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1.3 Morphisms

1.3 Morphisms

Definition 1.4 (Isomorphism)

♣

A morphism f ∈ homC(A,B) is an isomorphism if it has an inverse under composition: that is, if there exists
g ∈ homC(B,A) such that gf = 1A and fg = 1B .

We say A and B are isomorphic, denoted by A ≃ B, if there exists an isomorphism f : A→ B.

Remark In general, isomorphisms are not the morphisms that are both monomorphism and epimorphism.

Example 1.4

In the category of Set, the isomorphisms are precisely the bijections.

In the preorder category (P,≤), the isomorphisms are (x, x) where x ∈ P , namely the set of identities.

In the category of matrices Mat, the isomorphisms are square matrices whose determinant is nonzero, this is
also known as the general linear group GL(R).

Proposition 1.4

♠The inverse of an isomorphism is unique.

Proof Suppose f ∈ homC(A,B) is an isomorphism, and g1, g2 are the inverses of f . Then g1 = g1 ◦ (f ◦ g2) =
(g1 ◦ f) ◦ g2 = g2. ■

Proposition 1.5

♠

Each identity 1A is an isomorphism and is its own inverse.

If f is an isomorphism, the f−1 is an isomorphism and further (f−1)−1 = f .

If f ∈ homC(A,B) and f ∈ homC(B,C) are isomorphisms, then the composition gf is an isomorphism
and (gf)−1 = f−1g−1.

An automorphism of an objectA of a category C is an isomorphism fromA to itself. The category of automorphisms
of A is denoted AutC(A), endowed with the following structures:

the composition of f, g ∈ AutC(A) is an element gf ∈ AutC(A), and

the identity is the identity morphism 1A : A→ A in C.

(Notice that AutC(A) is a group.)

8



1.3 Morphisms

Definition 1.5 (Monomorphism, Epimorphism)

♣

Let C be a category. A morphism f ∈ hom(A,B) is a monomorphism if for all objects Z ∈ ob(C) and
all morphisms α′, α′′ ∈ hom(Z,A), f ◦ α′ = f ◦ α′′ ⇒ a′ = a′′; f is an epimorphism if for all objects
Z ∈ ob(C) and all morphisms β′, β′′ ∈ hom(B,Z), β′ ◦ f = β′′ ◦ f ⇒ β′ = β′′.

Remark If a morphism f is an isomorphism, then f is monic and epic. However, the converse does not necessarily
holds.

Example 1.5 In Set, monomorphism is equivalent to injection, and epimorphism is equivalent to surjection.
However, in the category (Z,≤) as described in example 1.2, every morphism is both a monomorphism and an
epimorphism, but the only isomorphisms are the identities.
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1.4 Universal Property

1.4 Universal Property

Introduction The universal property generalize constructions, such as cartesian product and quotient, uniquely up
to isomorphism. Although the constructions may not exists for arbitrary objects in a general category, it is a more
flexible notion.

Definition 1.6 (Initial Objects, Final Objects)

♣

Let C be a category. An object I of C is said to be initial if for every object A ∈ ob(C), there exists an unique
morphism in homC(I, A); F is said to be final if for all for every object A ∈ ob(C), there exists an unique
morphism in homC(A,F ).

Example 1.6 Initial and final objects do not necessarily exists in a category, consider (Z,≤).

In Set, the empty set ∅ is the unique initial object, and every singleton is final in Set.

Proposition 1.6

♠

Let C be a category.

If I1, I2 are both initial objects in C, then I1 ∼= I2.

If F1, F2 are both final objects in C, then F1
∼= F2.

Further, these isomorphisms are uniquely determined.

Proof Since I1 and I2 are initial, f : I1 → I2 and g : I2 → I1 are unique. Notice that g ◦f ∈ hom(I1, I1) = {idI1}
since I1 is initial, so g ◦ f = idI1 . Without loss of generality, f ◦ g = idI2 . It follows that f is an isomorphism
because g is its inverse, so I1 ∼= I2. The proof for final objects is analogous. ■

Example 1.7 Let A/ ∼ be a quotient set of a set A by equivalence relation ∼. Define the category as follows:

The objects are (Z,φ)whereφ : A→ Z is a morphism in C such that for all a, a′ ∈ A, a ∼ a′ ⇒ φ(a) = φ(a′).

The morphisms α : (Z1, φ1) → (Z2, φ2) are morphisms α : Z1 → Z2 such that

A

Z1 Z2

φ2φ1

α

Let π : A→ A/ ∼ be the canonical projection, then (A/ ∼, π) define an initial object. In other word, (A/ ∼, π) is
universal with the property with respect to the property of mapping A to a set in such a way that equivalent elements
have the same image.

A

A/ ∼ Z

φπ

φ̄

Remark The universal property defines the universal morphisms unique up to a unique isomorphism. For instance,

10



1.4 Universal Property

in the above example, suppose Z1, Z2 both satisfy the universal property,

A

Z1 Z2 Z1

φ1
φ2

φ1

α1 α2

Then composition α1 ◦ α2 is unique since Z1 is an initial object, so α1 ◦ α2 = idZ1 , hence Z1
∼=α1 Z2.

Example 1.8 The product of two sets can also be constructed using the universal property.

A A×B B

Z

πA πB

fBfA
σ

In other words, products of sets together with projection, namely (A × B, πA, πb), are final objects in the category
CA,B .

11



Chapter 2 Group Theory I

Introduction

h Group

h Free Groups and Subgroups

h Lagrange Theorem

h Group Actions

h Group Homomorphisms

h Normal Subgroup and Quotient Group

h Isomorphism Theorems

2.1 Definition of Group

2.1.1 Group

Let G be a nonempty set, the binary operation endowed in G is a “multiplication” map: · : G × G → G. We
commonly denote g · h or gh by the mapping of (g, h) by ·.

Definition 2.1 (Group (G, ·))

♣

The set, endowed with the binary operation ·, denoted (G, ·), is a group if

(a) Associativity: the operation · is associative, that is, for all g, h, k ∈ G, (g · h) · k = g · (h · k).
(b) Identity: there exists an identity element eG for ·, that is, for all g ∈ G, eG · g = g = g · eG.

(c) Inverse: every element in G has an inverse with respect to ·, that is, for all g ∈ G, there exists h ∈ G

such that h · g = eG = g · h. We usually denote g−1 by the inverse of g.

A group (G, ·) is abelian (commutative group) if (G, ·) is forms a group and the operation · is commutative.

Example 2.1 (Z,+), (Q,+), (R,+), (C,+) are common examples of group; indeed, they are abelian groups
(commutative group).

The set of n × n invertible matrices with real entries, denoted by GLn(R) (general linear group), is an example of
non-commutative group.

Proposition 2.1

♠The identity element and inverse are unique.

Proof (1) Suppose eG and e′G are identity elements, then eG = eGe
′
G = e′G.

(2) Suppose g and g′ are inverses of f ∈ G, then g = g(fg′) = (gf)g′ = g′. ■

In addition, the cancellation holds in groups, that is, ga = ha⇒ g = h and ag = ah⇒ g = h.



2.1 Definition of Group

2.1.2 Order

Definition 2.2 (Order)

♣

An element of g if a group G has finite order if gn = e for some n ∈ Z>0. In this case, the order |g| is the
least positive n such that gn = e. If g does not have finite order, we write |g| = ∞.

If G is a finite set, its order |G| is the number of its element, we write |G| = ∞ if G is infinite.

Proposition 2.2

♠Let g ∈ G be an element of finite order, then gn = e if and only if |g| divides n.

Proof Suppose |g| ∤ n. We can write n = q · |g|+ r for some q, r ∈ Z≥0 such that 0 < r < |g|. Then

gr = gn−q·|g| = gn · (g|g|)−q = e · e−q = e

contradicting that |g| is the order of g. The converse is obvious. ■

Proposition 2.3

♠

Let g ∈ G be an element of finite order, then gm has finite order for all m ≥ 0, and in fact |gm| =

|g|/ gcd(m, |g|) = lcm(m, |g|)/m.

Proof Let d = gcd(m, |g|). By the definition of |gm|, gm·|gm| = e, so |g| | (m·|gm|), thus (|g|/d) | |gm|. Conversely,
since d |m, then (gm)|g|/d = (g|g|)m/d = em/d = e , so |gm| | (|g|/d). Hence |gm| = |g|/d. ■

�

Note Proposition: If gh = hg, then |gh| | lcm(|g|, |h|).

2.1.3 Examples of groups

Symmetric Group Let A be a set. The symmetric group, or group of permutation of A, denoted SA, is the group
AutSet(A). The group of permutation of the set {1, · · · , n} is denoted by Sn.

The groups SA are large, for instance, |Sn| = n!. It worth to note that the multiplication fg is defined to be the
composition g ◦ f . In other words, we adopt the convention of writing functions after the element, for instance,
(p)(fg) = (g ◦ f)(p) for p ∈ A. In addition, the commutativity does not necessarily hold.

Dihedral Groups A “symmetry” is a transformation which preserves a structure. The dihedral groups may be
defined as the groups of symmetries for the regular polygons. The dihedral group for regular n-sided polygon,
denoted D2n, includes n rotations by 2π/n radians and n reflections.

Cyclic Groups and Modular Arithmetic Define the congruence modulo n on Z by a ≡ b (mod n) if and only
if n | (b− a). The equivalence classes is Zn.

13



2.1 Definition of Group

By defining [x] + [y] = [x + y], the structure (Zn,+) becomes an abelian group. The abelian group we obtained
is called cyclic groups, denoted Cn, which is the group generated by one element x with the relation xn = e. In
(Z+,+), a generator is [1]n. It follows immediately from Proposition (2.3) that |[m]n| = |m · [1]n| = n/ gcd(m,n),
and thus [m]n generated Zn if and only if gcd(m,n) = 1.

By defining [x] · [y] = [xy], and let Z×
n = {[m]n ∈ Zn | gcd(m,n) = 1}. We recognize the structure (Z×

n , ·) as an
abelian group.

14



2.2 The Category of Grp

2.2 The Category of Grp

For two groups (G, ·) and (H, ∗), a group homomorphism φ : (G, ·) → (H, ∗) is a function between groups that
preserves the structure, and in this case the diagram below commutes.

G×G H ×H

G H

·

φ×φ

∗
φ

Definition 2.3 (Group Homomorphism)

♣The set function φ : (G, ·) → (H, ∗) is a group homomorphism if for all a, b ∈ G, φ(a · b) = φ(a) ∗ φ(b).

Definition 2.4 (Grp)

♣

The category of Grp is a category whose (a) objects of Grp are groups, and (b) for every pair of groupsG,H ,
the morphisms homGrp(G,H) are the set of group homomorphisms G→ H .

We now need to verify Grp is well-defined. Suppose G,H,K are groups and φ : G → H , ψ : H → K are group
homomorphisms, then the composition ψ ◦ φ : G→ K is a group homomorphism:

(ψ ◦ φ)(a ·G b) = ψ(φ(a) ·H φ(b)) = (ψ ◦ φ)(a) ·K (ψ ◦ φ)(b).

It is obvious that composition is associative and that the identity function idG : G → G is a group homomorphism.
Therefore, Grp is indeed a category.

Proposition 2.4

♠

Let φ : G→ H be a group homomorphism. Then

(a) φ(eG) = eH ;

(b) ∀ g ∈ G, φ(g−1) = φ(g)−1.

Remark The group homomorphism preserves the structure, in particular, the identity element e and the inverse.

Proof (a) φ(eG) = φ(eG · eG) = φ(eG) · φ(eG), implying that φ(eG) == eH by the cancellation.

(b) φ(g−1) · φ(g) = φ(g−1 · g) = eH = φ(g)−1 · φ(g), implying that φ(g−1) = φ(g)−1 by the cancellation. ■

Proposition 2.5

♠With operation defined componentwise, G×H is a product in Grp.

The category of abelian groups Ab is a category whose objects are abelian groups and whose morphisms are group
homomorphism.

15



2.3 Group Homomorphisms

2.3 Group Homomorphisms

Example 2.2 Suppose G is a group, the conjugation γg : G → G, a 7→ gag−1, is a group homomorphism and
indeed an isomorphism. The left translation λg : G → G, a 7→ ga, is a bijection but not a group homomorphism.
The group action λ : G→ SG, λ : g 7→ λg, is a group homomorphism.

Proposition 2.6

♠

Let φ : G → H be a group homomorphism, and let g ∈ G be an element of finite order. Then |φ(g)| divides
|g|.

Proof Note that φ(g)|g| = φ(g|g|) = φ(eG) = eH , then |φ(g)| divides |g|. ■

Example 2.3 There is no nontrivial homomorphism φ : C4 → C7. The orders of elements in C4 divide 4 and the
order of elements in C7 divide 7, so φ(g) divides both 4 and 7, implying that φ(g) = e for all g ∈ C4.

Definition 2.5 (Isomorphisms, Isomorphic)

♣

An isomorphism of groups φ : G → H is an isomorphism in Grp, i.e., a group homomorphism admitting an
inverse φ−1 : H → G.

Two groups G,H are isomorphic in Grp if there is an isomorphism G→ H .

Proposition 2.7

♠Let φ : G→ H be a group homomorphism. Then φ is an isomorphism of groups if and only if it is a bijection.

Proof Suppose φ is an isomorphism, then it is a bijection. Conversely, suppose φ is a bijective homomorphism.
There exists an inverse φ−1 : H → G of φ in Set. For all h1, h2 ∈ H , h1 = φ(g1) and h2 = φ(g2) for some g1, g2,
then

φ−1(h1 · h2) = φ−1(φ(g1) · φ(g2)) = φ−1(φ(g1 · g2)) = g1 · g2 = φ−1(h1) · φ−1(h2).

Thus, φ−1 is a homomorphism, so φ is an isomorphism. ■

Definition 2.6 (Cyclic Group)

♣A group G is cyclic if it is isomorphic to Z or to Cn = Z/nZ for some n.

Remark Equivalently, G is a cyclic group if and only if G = {gn |n ∈ Z} for some g ∈ G.

Example 2.4 For example, C2 × C3 is cyclic of order 6, since C2 × C3 ≃ C6. More generally, Cm × Cn is cyclic
if gcd(m,n) = 1.

If p is prime, the group (Z∗
p, ·) is cyclic.

16



2.3 Group Homomorphisms

Proposition 2.8

♠

Let φ : G→ H be an isomorphism,

For all g ∈ G, |φ(g)| = |g|.
G is abelian if and only if H is abelian.

Proof The first assertion follows from |φ| divides |g| and |g| = |φ−1(φ(g))| divides |φ(g)| by Proposition (2.6).
For the second assertion, suppose h1 = φ(g1) and h2 = φ(g2), then h1h2 = φ(g1g2) = φ(g2g1) = h2h1 if and only
if g1g2 = g2g1. ■

Remark “Homomorphism” in Grp correspond to “continuous” map in topology, and “isomorphism” corresponds
to “homeomorphism”. Two groups being isomorphic means that the underlying structure of the groups is identical.

17



2.4 Free Groups

2.4 Free Groups

2.4.1 Universal Property

Motivation The motivation of free groups is that given a set A, we want to construct a smallest group F (A)
containing A such that the elements of A have no special group-theoretic property. For instance, if A = {a} is a
singleton, F (A) = ⟨a⟩ = {an |n ∈ Z} is the infinite cyclic group generated by a.

Universal Property Consider the coslice category FA whose objects are pairs (j,G) and the morphisms are group
homomorphisms.

In the language of universal property, F (A) is a free group on set A if there is a set-function j : A → F (A) such
that for all G ∈ Grp and f : A→ G, there exists a unique group homomorphism φ : F (A) → G such that

F (A) G

A

φ

j
f

That is, the free group F (A) on A is an initial object in FA, up to isomorphism.

Example 2.5 Infinite cyclic groups Z satisfies the universal property for free groups over a singleton. Indeed, define
j : a→ 1, for all G and f : a 7→ g, homomorphism condition forces φ(n) = gn.

2.4.2 Free Group Construction

Let A be a set, thought as an alphabet consisting of letters a ∈ A. Let A′ = {a−1 | a ∈ A} be the set of formal
inverses, we have A ∼= A′ and A ∩ A′ = ∅. A word over A is a juxtaposition of letters w = a1a2 · · · an where
ai ∈ A ∪A′, and the empty word is ε = (). We call l(w) = n the length of n, and W (A) the set of (finite) words w
over A.

Let r : W (A) → W (A) be the elementary reduction map: suppose w ∈ W (A), r searches and remove the first
occurrence of a pair aa−1 or a−1a in w. Note that r(w) = w if and only if w cannot be reduced, we called w a
reduced word.

Proposition 2.9

♠If w ∈W (A) has length n, then r⌊n/2⌋(w) is a reduced word.

We may define the reduction R : W (A) → W (A) by R(w) = r⌊n/2⌋(w) where n is the length of w. Then the
binary operation on F (A) by juxtaposition and reduction can be defined, as w ·w′ = R(ww′). It is not hard to verify
(F (A), ·) is a group if F (A) = im W (A).

18



2.4 Free Groups

Proposition 2.10

♠

Let j : A→ F (A) be defined by sending the element a ∈ A to the word w = a ∈W (A). The pair (j, F (A))
satisfies the universal property for free groups on A.

Proof We can extend ε : F (A) → G to the set-function φ̃ :W (A) → G such that φ̃(a) = f(a) for a ∈ A∪A′ and
compatible with juxtaposition φ̃(ww′) = φ̃(w)φ̃(w′), and the reduction is invisible φ̃(R(w)) = φ̃(w). Note that φ
agrees with φ̃ on reduced words, we have φ(w · w′) = φ̃(R(ww′)) = φ̃(ww′) = φ̃(w)φ̃(w′) = φ(w)φ(w′). ■

Remark We need to extend φ to φ̃ because the reduction inside φ is not well-defined, so we cannot conclude
φ(R(ww′)) = φ(w)φ(w′).

Remark Therefore, we can define the set of all reduced words in W (A) to be the free group of set A (up to
isomorphism).

2.4.3 Free Abelian Group

Suppose A = {1, · · · , n}, denote by Z⊕n the direct sum Z ⊕ · · · ⊕ Z. We view Z⊕n as the coproduct where
j : A→ Z⊕ is defined by j(i) = (0, · · · , 0, 1, 0, · · · , 0) (1 is on the i-th index).

Proposition 2.11

♠For A = {1, · · · , n}, Z⊕n is a free abelian group on A.

Proof Note that every element of Z⊕n can be written uniquely in the form ∼n
i=1 mij(i). Define φ : Z⊕n → G by

φ(
∑
mij(i)) =

∏
f(i)mi . This definition is unique because of the commutativity of the diagram

Z⊕n G

A

φ

j
f

and by the homomorphism condition, as desired. ■

For the general case: if A is a set, define H⊕A := {α : A → H |α(a) = eH for all but finitely many elements a ∈
A}, that is, H⊕A is an A-indexed finite tuple. For H = Z, the natural function j : A→ Z⊕A is obtained by sending
a ∈ A to ja : A→ Z such that

ja(x) :=

{
1 if x = a

0 if x ̸= a

making H⊕A as a coproduct.

Corollary 2.1

♡For every set A, F ab(A) ∼= Z⊕A.
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2.5 Subgroups

2.5 Subgroups

2.5.1 Subgroups

Definition 2.7 (Subgroup)

♣

Let (G, ·) be a group and (H, ·) be another group whose underlying set H is a subset of G. (H, ·) is a
subgroup of G, denoted by H ≤ G, if the inclusion function i : H → G is a group homomorphism.

Remark The operation of a subgroup H is induced by the operation · in G (by the property of homomorphism). In
addition, (H, ·) is a subgroup of (G, ·) if and only if

(a) H contains the identity element, namely 1 ∈ H , and

(b) H is closed under multiplication and inverse.

Theorem 2.1

♡A nonempty subset H of a group G is a subgroup if and only if ab−1 ∈ H for all a, b ∈ H .

Proof (⇒) This direction is obvious because a subgroup is closed under multiplication and inverse.

(⇐) Suppose ab−1 ∈ H for all a, b ∈ H . The associativity in H follows immediately from the associativity in
G. H contains the identity element since for an arbitrary h ∈ H , eG = hh−1 ∈ H . Inverse is closed: if h ∈ H ,
then h−1 = eGh

−1 ∈ H for all h. In addition, multiplication is closed: if h1, h2 ∈ H , then h−1
2 ∈ H , so

h1h2 = h1(h
−1
2 )−1 ∈ H . Hence H is a subgroup. ■

Proposition 2.12

♠

Arbitrary intersections of subgroups is a subgroup. In other words, if {Hα}α∈A is a family of subgroups of a
group G, then H =

⋂
α∈AHα is a subgroup of G.

Proof H is nonempty because 1 ∈ H . The proposition follows immediately from Proposition 2.1 since for all
α ∈ A and a, b ∈ H , a, b ∈ Hα, so ab−1 ∈ Hα for all α ∈ A, thus ab−1 ∈ H . ■

Proposition 2.13

♠

Let φ : G→ G′ be a group homomorphism, and let H ′ be a subgroup of G′. Then φ−1(H ′) is a subgroup of
G.

Proof For all a, b ∈ φ−1(H ′), φ(a), φ(b) ∈ H ′, so does φ(a)φ(b)−1 = φ(ab−1), thus ab−1 ∈ φ−1(H ′). The
statement therefore follows from Proposition 2.1. ■
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2.5 Subgroups

Definition 2.8 (Subgroup Generated by a Subset)

♣

If A ⊂ G is a subset, there exists a unique homomorphism φA : F (A) → G by the universal property of free
groups, compatible with the inclusion map. Then im φA is the subgroup generated by A, denoted by ⟨A⟩.

�

Note Equivalently, the subgroup generated by A is the intersection of all subgroups of G containing A, namely
⟨A⟩ =

⋂
A⊂H≤GH .

If A = {g} is a singleton, then ⟨A⟩ = {gn |n ∈ Z}.

Example 2.6 G is a subgroup of Z if and only G = dZ for some d ∈ N. The proof involves using Euclid division
lemma to prove that G is can be generated by a singleton.

Let G be a subgroup of Zn for some n ∈ Z>0, then G is a cyclic subgroup generated by d+ nZ for some d |n.

2.5.2 Kernel and Image

Definition 2.9 (Kernel, Image)

♣

The kernel of group homomorphism φ : G → G′ is a subset of G consisting of elements mapping to the
identity in G′: kerφ := {g ∈ G |φ(g) = eG′} = φ−1(eG′).

The image is defined to be im φ = {g′ ∈ G′ | ∃ g ∈ G, φ(g) = g′}.

Proposition 2.14

♠

Let φ : G → G′ be a homomorphism. Then the inclusion i : kerφ ↪→ G is final in the category of group
homomorphism α : K → G such that φ ◦ α is the trivial map.

That is, there exists a unique α̃ such that the below diagram commutes:

K kerφ

G

G′

0

α

α̃

i

0φ

Proof If α : K → G us such that φ ◦ α = 0, then im(φ ◦ α) = {0} implies im α ⊂ kerφ. Therefore, α̃ defined by
α̃(k) = α(k) satisfies the commutativity of the diagram, and it is the only map such that α̃ ◦ i = α. ■

Proposition 2.15

The following are equivalent:

(a) φ is a monomorphism;
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2.5 Subgroups

♠

(b) kerφ = {eG};

(c) φ : G→ G′ is injective (as a set-function).

Remark For analogous statement of epimorphism, see Proposition 2.25.

Proof (a) ⇒ (b): Consider i : kerφ→ G be the inclusion map and e : kerφ→ G be the trivial homomorphism,

kerφ G G′

i

e

φ

then φ ◦ i = φ ◦ e since both are trivial homomorphisms. The monomorphism condition implies that i = e, so
kerφ = im e = im i = {eG}.

(b) ⇒ (c): Suppose kerφ = {eG} and φ(g1) = φ(g2). Then

φ(g1) = φ(g2) ⇒ φ(g1g
−1
2 ) = φ(g1)φ(g2)

−1 = eG′ ⇒ g1g
−1
2 ∈ kerφ = {eG} ⇒ g1 = g2,

followed by φ is injective.

(c) ⇒ (a): Suppose φ is injective, φ is a monomorphism in Set. Since φ is a group homomorphism, and in
particular, φ ◦ α = φ ◦ α′ ⇔ α = α′ holds if α, α′ are homomorphisms, so φ is a monomorphism in Grp. ■
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2.6 Quotient Groups

2.6 Quotient Groups

2.6.1 Normal Subgroups and Cosets

Definition 2.10 (Normal Subgroups)

♣

A subgroup N of a group G is normal if for all g ∈ G and n ∈ N , gng−1 ∈ N . We denote by N ⊴ G if N is
a normal subgroup of G.

Remark Equivalently, a subgroup is normal if and only if gN = Ng for all g ∈ G.

Proposition 2.16

♠If φ : G→ G′ is a group homomorphism, then kerφ is a normal subgroup of G.

Proof Suppose n ∈ kerφ and g ∈ G, then φ(gng−1) = φ(g)φ(n)φ(g)−1 = φ(g)eG′φ(g)−1 = eG′ , so
gng−1 ∈ kerφ. ■

Proposition 2.17

♠

Suppose ∼ is an equivalence relation on G. The operation [a] · [b] = [ab] defines a group structure on G/ ∼
if and only a ∼ a′ ⇒ ga ∼ ga′ and ag ∼ a′g for all a, a′, g ∈ G.

In this case the quotient function π : G → G/ ∼ is a homomorphism and is universal with respect to
homomorphisms φ : G→ G′ such that a ∼ a′ ⇒ φ(a) = φ(a′).

We say that ∼ is compatible with the group structure of G if the condition above holds.

Proof Sketch: (a) a ∼ a′ ⇒ ga ∼ ga′ and ag ∼ a′g holds if and only the operation is well-defined, and then it is
not hard to verify the group structure.

(b) Since G/ ∼ satisfies the corresponding universal property in Set, there exists an unique function φ̃ : G/ ∼→ G′

defined by [a] → φ(a), and φ̃ is a homomorphism because φ is a homomorphism. Hence ((G/ ∼), π) is initial. ■

Definition 2.11 (Cosets)

♣

The left-cosets of a subgroupH in a group are the sets aH , for a ∈ G. The right-cosets ofH are the setsHa,
for a ∈ G.

2.6.2 Quotient Groups

We will analyze the properties of a ∼ a′ ⇒ ga ∼ ga′ and a ∼ a′ ⇒ ag ∼ a′g separately.
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2.6 Quotient Groups

Proposition 2.18

♠

Let ∼ be an equivalence relation on a group G, satisfying a ∼ b⇒ ga ∼ gb for all g, a, b ∈ G, then

the equivalence class of eG is a subgroup H of G; and

a ∼ b⇔ a−1b ∈ H ⇔ aH = bH .

Conversely, if H is a subgroup of G, the relation ∼L defined by a ∼L b ⇔ a−1b ∈ H is an equivalence
relation satisfying a ∼ b⇔ ga ∼ gb.

Proof (a) Suppose a, b ∈ H , namely a ∼ b ∼ eG. Since b−1 = eGb
−1 ∼ bb−1 = eG, then multiplying a on left

yields ab−1 ∼ aeG ∼ eG, followed by ab−1 ∈ H , so H is a subgroup.

(b) Suppose a ∼ b, multiply by a−1 on the left gives a−1b ∼ eG, so a−1b ∈ H . Since the multiplication is closed,
a−1bH ⊂ H , thus aH ⊂ bH . Without loss of generality, bH ⊂ aH , so aH = bH . Conversely, suppose aH = bH ,
then a = aeG ∈ bH , so a−1b ∈ H , thus a ∼ b.

(c) It is trivial to prove ∼L is an equivalence relation. To prove the it satisfies the given property, a ∼L b⇒ a−1b ∈
H ⇒ (ga)−1(gb) = a−1b ∈ H ⇒ ga ∼L gb. ■

Proposition 2.19

♠

There is a one-to-one correspondence between subgroups of G and equivalence relations on G satisfying
a ∼ b ⇒ ga ∼ gb; for the relation ∼L corresponding to a subgroup H , G/ ∼L may be described as the set
of left-cosets aH of H .

Proof Follows directly from Proposition 2.18. ■

The preceding two proposition for right cosets are analogous.

Proposition 2.20

♠The relations ∼L and ∼R coincides if and only if H is normal.

Definition 2.12 (Quotient Group)

♣

Let H be a normal subgroup of a group G. The quotient group of G modulo H , denoted G/H , is the group
G/ ∼ obtained from the relation ∼. In terms of cosets, the product G/H is defined by (aH)(bH) = (ab)H ,
and the identity element eG/H is the coset of the identity.
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2.6 Quotient Groups

Proposition 2.21

♠

Let H be a normal subgroup of a group G, then for every group homomorphism φ : G → G′ such that
H ⊂ kerφ there exists a unique group homomorphism φ̃ : G/H → G′ so that the diagram

G/H G′

G

φ̃

π φ

commutes.

Proof H ⊂ kerφ implies a−1b ∈ H ⇒ φ(a) = φ(b). By the definition of relation ∼ corresponding to H , then
a ∼ b⇒ a−1b⇒ φ(a) = φ(b). Hence by Proposition 2.17 there is an unique desired homomorphism φ̃. ■

G/H G′

G

φ̃

π φ
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2.7 Canonical Decomposition and Lagrange’s Theorem

2.7 Canonical Decomposition and Lagrange’s Theorem

2.7.1 Canonical Decomposition and Isomorphism Theorems

Proposition 2.22

♠

Every group homomorphism φ : G→ G′ may be decomposed as follows:

G G/ kerφ im φ G′

φ

∼
φ̃

where the isomorphism φ̃ in the middle is the homomorphism induced by φ.

Theorem 2.2 (First Isomorphism Theorem)

♡Suppose φ : G→ G′ is a surjective group homomorphism. Then G′ ∼= G/ kerφ.

Proof Since im φ = G′, it follows that φ̃ is an isomorphism between G/ kerφ and im φ = G′. ■

Proposition 2.23

♠If H1 ⊴ G1 and H2 ⊴ G2, then H1 ×H2 ⊴ G1 ×G2, and (G1 ×G2)/(H1 ×H2) ∼= (G1/H1)× (G2/H2).

Proof Define π = π1 × π2 : G1 × G2 → (G1/H1) × (G2/H2) explicitly by π(g1, g2) = (g1H1, g2H2), i.e., the
product of compositions between projection and morphism to the quotient; π̃ is a surjective homomorphism whose
kernel is H1 ×H2, the proposition follows immediately from Theorem 2.2. ■

Example 2.7 The cyclic group C6 can be identified as C2 × C3, so C6/C3
∼= (C2 × C3)/C3

∼= C2.

The cyclic group C3 can be viewed as a subgroup of the dihedral group C6. Then C3 is normal in D6 and
D6/C3

∼= C2.

Presentation Every group is a quotient of a free group, and every abelian group is a quotient of a free abelian
group. A presentation of a group G is an explicit isomorphism G ∼= F (A)/R where A ∈ Set and R is a subgroup
relations; that is, a presentation is an explicit surjection ρ : F (A) ↠ G of which R is the kernel.

A presentation is usually encoded as a pair (A |R), where A is a set and R ⊂ F (A) is a set of words such that
ker ρ = R is generated by R.

Example 2.8 The symmetry group S3 can be presents as a quotient of the free group F ({x, y}) by the smallest
normal subgroup containing x2, y3, and yx = xy2, namely S3 is (x, y |x2, y3, xyxy).
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2.7 Canonical Decomposition and Lagrange’s Theorem

Proposition 2.24

♠

Suppose H ⊴ G, then for every K ≤ G containing H , K/H may be identified with a subgroup G/H . The
function

u : {subgroups K of G containing H} → {subgroups of G/H}

defined by u(K) = K/H is a bijection preserving inclusions.

Remark In other words, every subgroup H ′ of G/N can be written as H ′ = H/N for some H ≤ G.

Proof For every subgroup K containing H , K/H = {aH | a ∈ K} ⊂ G/K, then it is not hard to verify
K/H ≤ G/H since aH, bH ∈ K/H ⇒ a, b ∈ H ⇒ ab−1 ∈ H ⇒ (aH)(bH)−1 ∈ K/H .

u preserves inclusions: if H ⊂ K ⊂ K ′, u(K) = K/H ⊂ K ′/H = u(K ′). Define v(K ′) = {a ∈ G | aH ∈ K ′}
for every K ′ ≤ G/H . It is not hard to show v(K ′) is a subgroup and v is the inverse of u. Hence u is a bijection
preserving inclusions. ■

Theorem 2.3 (Second Isomorphism Theorem)

♡

Denote by AB the subset AB := {ab | a ∈ A, b ∈ B}. Let H ⊴ G and K ≤ G. Then

(a) HK is a subgroup of G, and H is normal in HK;

(b) H ∩K is normal in K, and HK/H ∼= K/(H ∩K).

Proof (a) Suppose k1h1, k2h2 ∈ HK. Note that H is normal, so k1(h1h−1
2 ) = h′k1 for some h′ ∈ H . Then

(k1h1)(k2h2)
−1 = (k1h1h

−1
2 )k−1

2 = h′k1k2 ∈ HK, so HK is a subgroup of G. It is clear that H is normal in
HK ≤ G.

(b)H ∩K is clearly normal inK sinceH ⊴ G. Consider φ : K → HK/H defined by φ(k) = Hk. φ is surjective:
for all Hhk ∈ HK/H , Hhk = Hk = φ(k). The kernel of φ is kerφ = {k ∈ K |φ(k) = Hk = H} = H ∩K.
Hence K/(H ∩K) ∼= HK/H by the first isomorphism theorem. ■

Theorem 2.4 (Third Isomorphism Theorem)

♡

Let H ≤ N ≤ G for which H ⊴ G. Then N/H is normal in G/H if and only if N is normal in G, and in
this case, (G/H)/(N/H) ∼= G/N .

Proof N/H is normal if and only if for all gH ∈ G/H and nH ∈ N/H , (gH)(nH)(gH)−1 = (ghg−1)H ∈ N/H ,
which holds if and only if ghg−1 ∈ N , namely N ⊴ G by definition.

In this case, define φ : G/H → G/N by φ(gH) = gN . φ is well-defined because g1H = g2H =⇒ g1g
−1
2 ∈

H ⊂ N =⇒ g1N = g2N . φ is surjective because for all gN ∈ G/N , φ(gH) = gN . The kernel of φ is
kerφ = {gH | gN = N} = {gH | g ∈ N} = N/H . Hence (G/H)/(N/H) = (G/H)/ kerφ ∼= G/N by the first
isomorphism theorem. ■
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2.7 Canonical Decomposition and Lagrange’s Theorem

2.7.2 The Lagrange Theorem

Definition 2.13 (Index)

♣

The notation G/H denote the set of left-cosets of H , regardless of whether H is normal in G. The index of
H in G, denoted [G : H], is the number of elements |G/H| of G/H , when this is finite, and ∞ otherwise.

Theorem 2.5 (Lagrange’s Theorem)

♡

If G is a finite group and H ⊂ G is a subgroup, then |G| = [G : H] · |H|. In particular, |H| is a divisor of
|G|.

Proof For all g ∈ G, the function λg : H → gH defined by λg(h) = gh is clearly a bijection, so |H| = |gH|. Note
that G is the disjoint union of [G : H] distinct cosets gH , so |G| = [G : H] · |gH| = [G : H] · |H|. ■

Example 2.9

The order |g| if any element g of a finite group G is a divisor of |G|, indeed, |g| equals the order of subgroup
⟨g⟩ generated by g.

If |G| is a prime integer p, the necessarily G ∼= Zp.

�

Note The index is multiplicative: if H ≤ K ≤ G, then [G : H] = [G : K][K : H], provided that the indices are
finite. By second isomorphism theorem, if H ⊴ G and K ≤ G, then |HK| = (|H| · |K|)/|H ∩K|.

2.7.3 Epimorphisms and Cokernels
�

Note Define the cokernel coker φ equipped with a homomorphism π : G′ → coker φ to be the universal solution to

K coker φ

G′

G

α̃

α π

φ 00

In Ab, im φ is a subgroup and hence a normal subgroup of G′, so coker φ ∼= G′/im φ. However, im φ is not
necessarily normal in Grp. Let’s consider the abelian case:

Proposition 2.25

♠

Let φ : G→ G′ be a homomorphism of abelian groups. The following are equivalent:

(a) φ is an epimorphism;

(b) coker φ is trivial;

(c) φ : G→ G′ is surjective (as a set-function);
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2.7 Canonical Decomposition and Lagrange’s Theorem

Remark For analogous statement of monomorphisms, see Proposition 2.15.

Proof (a) ⇒ (b): Suppose φ is an epimorphism, consider π : G′ → G′/im φ defined by π(g) = g im φ and the
trivial homomorphism e. The following diagram commutes:

G G′ coker φ
e

π

so π = e, it follows that coker φ is trivial.

(b) ⇒ (c): Suppose coker φ = G′/im φ is trivial, im φ = G′, so φ is surjective.

(c) ⇒ (a): Suppose φ is surjective, it is an epimorphism in Set. In particular, α ◦ φ = α′ ◦ φ implies α = α′ if α
and α′ are homomorphisms, so φ is an epimorphism in Grp. ■
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2.8 Group Actions

2.8.1 Group Actions

Definition 2.14 (Group Action)

♣

An action of group G on an object A of a category C is a homomorphism σ : G→ AutC(A), it is faithful (or
effective) if σ : G→ AutC(A) is injective.

Definition 2.15 (Group Action on a Set)

♣

An action of a group G on a set A is a set-function ρ : G×A→ A such that

(a) ρ(eG, a) = a for all a ∈ A, and

(b) for all g, h ∈ G and for all a ∈ A, ρ(gh, a) = ρ(g, ρ(h, a)).

Remark That is, if we denote g acts on a by g • a, then (a) eG • a = a and (b) (gh) • a = g • (h • a).

We can define σ : G → SA = Aut(A) by σ(g)(a) = ρ(g, a). This function preserves the operation σ(gh)(a) =

σ(g) ◦ σ(h)(a), and the image of σ consists of invertible set-functions since σ(g−1) acts as the inverse of σ(g).
Hence σ : G→ SA is a desired homomorphism. Indeed, there is a bijection between the set of actions and the set of
actions on a set, implying that the two definitions are equivalent.

�

Note The action is faithful if and only if the identity eG is the only element g of G such that g • a = a for all a ∈ A.

Example 2.10

The left translation ρ : G×G→ G defined by ρ(g, h) = gh is a group action of G on itself.

The conjugation action defined by ρ(g, h) = ghg−1 is another action of G on itself.

The left translation of left cosets ρ(g, aH) = (ga)H is an action of G on G/H .

Proposition 2.26 (Cayley’s Theorem)

♠

Every group acts faithfully on some set. That is, every group may be realized as a subgroup of a permutation
group.

Proof The action of left-multiplication σ : G→ AutGrp(G) defined by σ(g)(h) = gh is a faithful group action. ■

Definition 2.16 (Transitive Action, Free Action)

♣

An action of a group G on a set A is transitive if for all a, b ∈ A, there exists g ∈ G such that b = g • a.

An action is free if eG is the only element fixing any element of A.
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Definition 2.17 (Orbit, Stabilizer)

♣

The orbit of a ∈ A under an action of group G is the set OG(a) := {g • a | g ∈ G}. The stabilizer subgroup
of a ∈ A consists of element of G which fix a, i.e., StabG(a) := {g ∈ G | g • a = a}.

2.8.2 The Category of G-Set

The Category of G-Set For every group G, sets endowed with a G-action form a category G-Set: the objects
are pairs (ρ,A) where ρ : G × A → A is an action, and morphisms between objects are set-functions which are
compatible with the actions. That is, a morphism (ρ,A) → (ρ′, A′) in G-Set amounts to a set-function φ : A→ A′

such that the diagram

G×A G×A′

A A′

idG×φ

ρ ρ′

φ

commutes. That is, g • φ(a) = φ(g • a) (such functions are called equivariant). The isomorphisms of G-Set are
indeed the equivariant bijections.

Proposition 2.27

♠

Every transitive left-action of G on a set A is isomorphic to the left-multiplication of G on G/H for
H = StabG(a) of any a ∈ A.

Proof Define φ : G/H → A by φ(gH) = g • a. φ is well-defined: g1H = g2H ⇒ g1g
−1
2 ∈ H ⇒ g1g

−1
2 • a =

a⇒ g1 •a = g2 •a. Since φ(g′(gH)) = g′ •φ(gH), φ is equivariant. To verify φ is bijective, define ψ : A→ G/H

by ψ(g • a) = gH , this is well-defined because the action is transitive, and it is clear that ψ and φ are inverse of each
other, so φ is bijective. ■

Remark The above proposition implies thatOG(a) andG/StabG(a) are bijective. Then the Orbit-Stabilizer theorem
|G| = |OG(a)| · |StabG(a)| follows immediately.

Proof : Define φ : G/H → Oa (where H = StabG(a)) by φ(g) = g • a. Note that

x1H = x2H ⇔ x−1
1 x2 ∈ H ⇔ x−1

1 x2 • a = a⇔ φ(x1H) = x1 • a = x2 • a = φ(x2H),

thus, the mapping φ is well-defined and injective. It is clearly surjective. Hence φ is a bijection. ■

Corollary 2.2

♡If OG(a) is an orbit of the action of a finite group G in a set A, then OG(a) is finite and |OG(a)| divides |G|.
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2.8 Group Actions

Proposition 2.28

♠Suppose a group acts on a set A, and let a ∈ A, g ∈ G, b = g • a. Then StabG(b) = gStabG(a)g−1.

Proof Suppose h ∈ StabG(a), note that a = g−1 • b, then (ghg−1) • b = gh • a = g • a = b, so gStabG(a)g−1 ⊂
StabG(b). The inclusion of other direction follows without loss of generality. ■

Remark In other words, the stabilizers of an action are isomorphic if they are in the same class (i.e., they have the
same orbit).
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Chapter 3 Group Theory II

Introduction

h Center, Centralizer, and Normalizer

h Sylow Theorems

h Class Formula

h Semidirect Product

h Symmetric Group, Alternating Group

h Classification of Finite Abelian Group

3.1 The Conjugation Action

3.1.1 Center, Centralizer, Conjugacy Classes

Definition 3.1 (Center)

♣

The center of G, denoted Z(G), is the subgroup kerσ of G, where σ is the conjugate action. In other words,
Z(G) := {g ∈ G | ∀ a ∈ G : ga = ag}.

Remark For conjugate action, the center Z(G) fixes every element g ∈ G when acting on itself, and they are fixed
points G acts on them. That is, for all a ∈ G, g • a = a and a • g = g.

Remark Z(G) is abelian and thus normal in G.

Lemma 3.1

♡Let G be a finite group, if G/Z(G) is cyclic, then G is commutative and hence G/Z(G) is trivial.

Proof SupposeG/Z(G) is generated by xZ(G). For all g1 ∈ G, g1 ∈ xmZ(G) so g1 = xnh1 for some h1 ∈ Z(G).
Similarly, g2 = xmh2 for h2 ∈ Z(G). Then

g1g2 = (xnh1)(x
mh2) = xn+mh1h2 = (xmh2)(x

nh1) = g2g1,

so G is commutative. ■

Definition 3.2 (Centralizer of a)

♣

The centralizer of a ∈ G is its stabilizer under conjugation, namely ZG(a) = {g ∈ G | gag−1 = a} = {g ∈
G | ga = ag}.

Remark The centralizer ZG(a) fixes a when acting as conjugate action on itself, and they are fixed when a acts on
them. That is, g • a = a and a • g = g



3.1 The Conjugation Action

Definition 3.3 (Conjugacy Class)

♣

The conjugacy class of g ∈ G is the orbit [g] of g under the conjugation action. Two elements g, h ∈ G are
conjugate if they belong to the same conjugacy class.

Remark Normal subgroup of a group is a disjoint union of conjugacy classes.

3.1.2 Class Formula

Proposition 3.1 (Class Formula)

♠

Let G be a group acting on a finite set S, and Z be the fixed points of the action. Then |S| = |Z|+
∑

a∈A[G :

Ga], where A ⊂ G is a set containing one representative for each nontrivial orbit in G.

In particular, when considering the conjugation action of G on itself, we have

|G| = |Z(G)|+
∑
a∈A

[G : ZG(a)]

as known as the class formula.

Proof The orbit form a partition of S, and Z collects the trivial orbits, so |S| = |Z| +
∑

a∈A |Oa|. Note that
|Oa| = |G/Ga| = [G : Ga] by Proposition 2.27, this yields the desired formula. ■

Definition 3.4 (p-group)

♣A p-group, where p is prime, is a finite group G such that |G| = pn for some n ∈ Z.

Corollary 3.1

♡

(a) Let G be a p-group acting on a finite set A, and let Z be the fixed point set, then |Z| ≡ |S| (mod p).

(b) Let G is be a nontrivial p-group, then Z(G) is nontrivial.

Proof (a) Since Oa ∼= G/Ga is a nontrivial subgroup of S, so p divides [G : Ga]. Then |S| = |Z| +
∑

a∈A[G :

Ga] ≡ |Z| (mod p).

(b) By part (a) and the class formula, |Z(G)| ≡ |G| ≡ 0 (mod p), so Z(G) is nontrivial. ■

3.1.3 Conjugation of Subsets and Subgroups

The conjugation of A is the subset gAg−1, and it is not hard to verify that A ∼= gAg−1.

Definition 3.5 (Centralizer and Normalizer of A)

The normalizer NG(A) of A is its stabilizer under conjugation, i.e., NG(A) := {g ∈ G | gA = Ag}. The
centralizer of A is the subgroup ZG(A) ⊂ NG(A) fixing each element of A, i.e., ZG(A) := {g ∈ G | ∀ a ∈
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3.1 The Conjugation Action

♣A : ga = ag}.

Remark Centralizer and normalizer of a subgroup A of G are subgroups of G, and ZG(A) is a normal subgroup of
NG(A).

In addition, if A is a subgroup of G, then A is the largest normal subgroup in NG(A).

Lemma 3.2

♡

Let H ⊂ G be a subgroup. Then (if finite) the number of subgroups conjugate to H equals the index
[G : NG(H)] of the normalizer of H in G.

Proof Consider the group action defined by g • A = gAg−1. Note that StabG(H) = {g ∈ G | gAg−1 = A} =

NG(H), then the orbit-stabilizer theorem gives that |{gAg−1 | g ∈ G} = ||OA| = [G : NG(G)]. ■
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3.2 Symmetric Group

3.2.1 Cycles and Types

Definition 3.6 (Cycle Notation)

♣

A (nontrivial) cycle is an element Sn with exactly one nontrivial orbit. For distinct a1, · · · , ar, the notation
(a1a2 · · · ar) denotes the cycle inSn with nontrivial orbit {a1, · · · , ar}, acting as a1 7→ a2 7→ · · · 7→ ar 7→ a1.
In this case, r is the length of the cycle, and the cycle is called an r-cycle.

That is, σ(ar) = a1, σ(ai) = ai+1 for i < r, and σ(a) = a for all a /∈ {a1, · · · , ar}. Note that (a1a2 · · · ar) =

(a2 · · · ara1), so the notation is determined up to a cyclic permutation.

Property Disjoint cycles, i.e., cycles whose nontrivial orbits are disjoint, commute.

Proposition 3.2

♠

Every σ ∈ Sn, σ ̸= e, can be written as a product of disjoint nontrivial cycles, in a unique way up to
permutation of the factors.

Proof Every σ ∈ Sn determines a partition into orbits under ⟨σ⟩, and ⟨σ⟩ has nontrivial orbits. As σ acts as cycles
on each orbit, σ may be written as a product of cycles. The proof for uniqueness is omitted. ■

Definition 3.7 (Type)

♣The type of σ ∈ Sn is the partition of n given by the sizes of the orbits of the action of ⟨σ⟩ on {1, · · · , n}.

Example 3.1 Suppose σ = (18632)(47) ∈ S8, then σ has type [5, 2, 1].

Lemma 3.3

♡

Let τ ∈ Sn and let (a1, · · · , ar) be a cycle. Then τ(a1, · · · , ar)τ−1 = (a1τ
−1, · · · , arτ−1), where a1τ−1

denotes the right action of permutation τ−1 on a1.

Proof For 1 ≤ i < r, (aiτ−1)(τ(a1, · · · , ar)τ−1) = ai(a1, · · · , ar)τ−1 = ai+1τ
−1; and (arτ−1)(τ(a1, · · · , ar)τ−1)

= a1τ
−1 similarly. On the other hand, for a′ /∈ {aiτ−1}, a′ = aτ−1 for some a /∈ {ai}, so a′(τ(a1, · · · , ar)τ−1) =

a(a1, · · · , ar)τ−1 = aτ−1 = a′. ■

Remark This formula extends to the product of cycles, regardless whether they are disjoint or not, by inserting
identity factors τ−1τ . That is, τ(a1 · · · an)(b1 · · · bm)τ−1 = (a1τ

−1 · · · anτ−1)(b1τ
−1 · · · bmτ−1).

Proposition 3.3

♠Two elements of Sn are conjugate in Sn if and only if they have the same type.
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3.2 Symmetric Group

Proof The forward direction follows immediately from Lemma 3.3. Conversely, suppose σ and σ′ have the same
type, consider their cycle decomposition. For each cycle (a1 · · · an) in σ, there is a corresponding cycle (a′1 · · · a′n)
in σ′we define τ(a′i) = ai. τ is well-defined and bijective because orbits form a partition. Then it is clear that
τστ−1 = σ′. ■

Corollary 3.2

♡The number of conjugacy classes in Sn equals the number of partitions of n.

3.2.2 Transposition, Parity, Alternating Group

For n ≥ 1, define the polynomial ∆n by ∆n =
∏

1≤i≤j≤n(xi − xj). We can acts with any σ on ∆n, by permuting
the indices according to σ:

∆nσ =
∏

1≤i≤j≤n
(xiσ − xjσ),

and ∆nσ = ±∆n.

Definition 3.8 (Transposition, Sign)

♣

A transposition is a cycle of length 2. The sign of a permutation σ ∈ Sn, denoted (−1)σ, is determined by the
action of σ on ∆n: ∆nσ = (−1)σ∆n. We say σ is even if (−1)σ = +1 and odd if (−1)σ = −1.

Remark The sign function ϵ : Sn → {±1} defined by ϵ(σ) = (−1)σ is a homomorphism since ∆n(σr) = (∆nσ)r

so that (−1)σr = (−1)σ(−1)r.

Lemma 3.4

♡Transpositions, namely cycles of length 2, generate Sn.

Proof For all cycles (a1 · · · an), (a1 · · · an) = (a1a2)(a1a3) · · · (a1an), so the assertion follows immediately from
Proposition 3.2. ■

Proposition 3.4

♠

Let σ = τ1 · · · τr be a product of transpositions. Then σ if even, resp., odd, according to whether r is even,
resp., odd.

Proof For each transposition τ , ϵ(τ) = −1. Suppose σ = τ1 · · · τr, the homomorphism implies that (−1)σ =

ϵ(τ1 · · · τr) = (−1)r. ■

Definition 3.9 (Alternating Groups)

♣The alternating group on {1, · · · , n}, denoted An, consists of all even permutation σ ∈ Sn.
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3.2 Symmetric Group

�

Note The alternating group An is a normal subgroup of Sn, and [Sn : An] = 2. Indeed, consider the sign function
ϵ : Sn → {±1}, the alternating group An is the kernel of ϵ.

�

Note The cycle is even, resp., odd, if it has odd, resp., even length. Then a permutation σ belongs to An if and only
if n and the number of rows in the Young diagram have the same parity, namely n and len(type(σ)) have the same
parity.

3.2.3 Conjugacy, Simplicity, and Solvability

Denote by [σ]Sn , resp., [σ]An , the conjugacy class of an even permutation σ in Sn, resp., An.

Lemma 3.5

♡

Let n ≥ 2 and σ ∈ An. Then [σ]An = [σ]Sn or the size of [σ]An is half the size of [σ]Sn , according to whether
the centralizer ZSn(σ) is not or is contained in An.

Proof Suppose ZSn(σ) ⊂ An. Note that ZSn(σ) = ZAn(σ), then |[σ]Sn | = [Sn : ZSn(σ)] = 2 · [An : ZAn(σ)] =

2 · |[σ]An |. Conversely, suppose ZSn(σ) ∩ (Sn \ An) ̸= ∅, let τ be such an element. Then for all φ /∈ An,
ασα−1 = (φτ)σ(φτ)−1 ∈ [σ]An , so [σ]Sn ⊂ [σ]An , it follows that [σ]An = [σ]Sn . ■

Remark Alternatively, by the second isomorphism theorem, [ZSn : ZSn ∩ An] = [AnZSn : An]. Since AnZSn ≤
Sn. Also note that ZAn = ZSn ∩ An, then [ZSn : ZAn ] = [ZSn : ZSn ∩ An] divides [Sn : An] = 2, so the index
can only be 1 or 2. The index is one if and only if ZSn ⊂ An. Then the assertion follows from the orbit-stabilizer
theorem, i.e., |[σ]An | = [An : ZAn ] and |[σ]Sn | = [Sn : ZSn ].

Conjugacy classes of even permutations either are preserved from Sn toAn or they split into two distinct, equal-sized
classes. The conjugacy class [σ]Sn splits into [σ]An and [σ′]An if σ′ /∈ [σ]An and σ′ = τστ−1 for some τ /∈ An.

Proposition 3.5

♠

Let σ ∈ An, n ≥ 2. Then the conjugacy class of σ in Sn splits into two conjugacy classes in An if and only if
the type of σ consists of distinct odd numbers.

Proof It suffices to prove the type of σ contains distinct odd numbers if and only if ZSn(σ) ⊂ An, namely
τστ−1 = σ implies that τ ∈ An, by Lemma 3.5.

(⇒) Suppose the type of σ contains distinct odd numbers and τστ−1 = σ. Then every cycle (a1 · · · am) in the
cycle decomposition must preserved under σ. That is, σ must be a cyclic permutation on (a1 · · · am), so σ contains
(a1 · · · am)r, which is clearly even given that m is odd. Thus, σ is even as a product of even permutations.

(⇐) Conversely, suppose the type contains an even number, i.e., σ contains (a1 · · · am) for some even m. Consider
τ = (a1 · · · am) and identity elsewhere. Then τστ−1 = σ and τ is odd. On the other hand, suppose two cycles have
the same odd length, i.e., (a1 · · · am) and (b1 · · · bm). Consider τ defined by τ = (a1b1)(a2b2) · · · (ambm). Then
τστ−1 = σ and τ is odd. ■
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3.2 Symmetric Group

Corollary 3.3

♡

The alternating groupA5 is a simple (a group is simple if the only normal subgroups are trivial subgroup and
itself) non-commutative group of order 60.

Proof The class formula forA5 is 60 = 1+15+20+12+12 (note that the conjugacy class splits for the type [5]).
Consider subgroups ofA5, their order must be one of 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 by Lagrange theorem. Excluding
the identity element, the subgroup has order of 1, 2, 3, 4, 5, 9, 11, 14, 19, 29. We see that none can be written as the
sum of orders of conjugacy classes, so they cannot be written as the union of conjugacy classes, so none of them are
normal. It implies that A5 is simple. ■
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3.3 Sylow Theorems

Theorem 3.1 (Cauchy’s Theorem)

♡Let G be a finite group, and let p be a prime divisor of |G|. Then G contains an element of order p.

Proof Proceed by induction on |G|. The case is trivial for |G| = 1. Suppose |G| > 1. Assume G is abelian, we let
H = ⟨g⟩ for some g ̸= eG.

(1) If p | |H|, then |g|H|/p| = p.

(2) If p ∤ |H|, then p | |G/H| and G/H is a subgroup with order less than |G|. By inductive hypothesis, there
exists xH ∈ G/H such that |xH| = p. Note that (xH)|x| = H , so p | |x|. Then |x|x|/p| = p.

On the other hand, assume |G| is not abelian, we therefore consider the class formula |G| = |Z(G)|+
∑

[G : Ga].

(1) If p | |Z(G)|, then the desired result follows immediately from the fact that Z(G) is abelian.

(2) If p ∤ |Z(G)|, then p ∤ [G : Ga] for some a ∈ G, so p | |Ga|. Note that Ga ≤ G, so by inductive hypothesis,
there exists x ∈ Ga such that |x| = p.

Hence there exists x ∈ G such that |x| = p. ■

Remark By the class formula, p divides the order of either (i) a stabilizer Ga or (ii) the center Z(G). In the later
case, we let H := ⟨g⟩ ⊴ G for some g ∈ Z(G). Since p divides |H| · |G/H| = |G|, then p divides the order of (ii.1)
H or (ii.2) G/H . In either cases, we may proceed by induction.

Proof Sketch of Alternative Proof: Let H = {(a1, · · · , ap) | a1 · · · ap = e}, then |H| = |G|p−1 is is divisible by
pp−1 because a1, · · · ap−1 can be chosen arbitrarily. Consider Z/pZ acts on H by left translation, it is well-defined
because ak · · · apa1 · · · ak−1 = e for all k. Note that [H : Hx] is divisible by p since |Hx| divides p, so then the class
formula implies that |Z(H)| ≡ |H| ≡ 0 (mod p), and Z is nonempty. Then Z is nontrivial, i.e., there exists x ∈ G

such that (x, · · · , x) ∈ Z, and hence |x| = p. ■

Definition 3.10 (Simple Group)

♣A group G is simple if its only normal subgroups are {e} and G itself.

Definition 3.11 (p-Sylow group)

♣

Let p be a prime integer. A p-Sylow subgroup of a finite group G is a subgroup of order pr where |G| = prm

and gcd(p,m) = 1.

Theorem 3.2 (First Sylow Theorem)

♡Every finite group contains a p-Sylow subgroup, for all primes p.
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The first Sylow theorem follows from the stronger statement

Proposition 3.6

♠If pk divides the order of G, then G has a subgroup of order pk.

Proof We may assume p | |G| and k ≥ 1. We proceed by induction on k. The k = 1 case follows immediately
from Theorem 3.1. Suppose k > 1. Assume p |Z(G), then there exists x ∈ Z(G) such that |x| = p, so N := ⟨x⟩
is a normal subgroup that has order of p. Consider the quotient group G/N . Since pk−1 | |G/N |, the inductive
hypothesis implies that there exists H ′ ≤ G/N such that |H ′| = pk−1. By the structure of subgroups of a quotient
(Theorem 2.24), H = H ′/N for some H ≤ G. Then |H| = |H/N ||N | = pk.

On the other hand, assume p ∤ Z(G), the class formula implies that p ∤ [G : Ga] for some a /∈ Z(G), so pk | |Ga|.
By inductive hypothesis, there exists a subgroup H ≤ Ga ≤ G such that |H| = pk. ■

Remark Suppose |G| = prn. If p |Z(G), then |G/N | = pr−1n using quotient group by setting N = ⟨g⟩ for p | |g|.
On the other hand, if p ∤ Z(G), then |Ga| = prm (m < n) for some Ga, since p ∤ [G : Ga] by class formula.

Theorem 3.3 (Second Sylow Theorem)

♡

Let G be a finite group, let P be a p-Sylow subgroup, and let H ⊆ G be a p-group. Then H is contained in a
conjugate of P , i.e., there exists g ∈ G such that H ⊆ gPg−1.

Proof Consider the left multiplication action by H on the left cosets G/P . Suppose Z ⊂ G/P is the set of fixed
points, then |G/P | = |Z| +

∑
[H : HgP ] ≡ |Z| (mod p) by Corollary 3.1. Since P is a p-Sylow subgroup, p

does not divide |G/P |, so |Z| is nonempty. Suppose gP ∈ Z, then HgP = gP , followed by g−1Hg ⊂ P , hence
H ⊂ gPg−1. ■

Corollary 3.4 (Weaker Form of Theorem 3.3)

♡

(a) All p-Sylow subgroups are conjugate of each other.

(b) Every maximal p-group in G is a p-Sylow subgroup.

Remark The first Sylow theorem implies that some maximal p-group in G attains the largest size (i.e., p-Sylow
subgroup), and the second Sylow theorem extends that every maximal p-group is a p-Sylow subgroup.

Proposition 3.7

♠Let H be a p-group contained in a finite group G. Then [NG(H) : H] ≡ [G : H] (mod p).

Proof Consider the left multiplication action of H on G/H . Corollary 3.1 implies that |G/H| = |Z| +
∑

[H :

HgH ] ≡ |Z| (mod p). Notice that Z = {gH |HgH = gH} = {gH |Hg = gH} = NG(H)/H . Then
[G : H] ≡ |Z| = [NG(H) : H] (mod p). ■
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Proposition 3.8

♠

Let H be a p-subgroup of a finite group G, and assume H is not a p-Sylow subgroup. Then there exists a
p-subgroup H ′ of G containing H , such that [H ′ : H] = p and H is normal in H ′.

Remark This proposition, combined with first and second Sylow theorem, implies that for every G such that
|G| = prm and every H , there exists a chain {e} ⊂ H1 ⊂ H2 · · ·Hr containing H , and for which |Hk| = pk and
Hk ⊴ Hk+1 for all k.

Proof Since H is a p-subgroup which is not p-Sylow, p divides [G : H] and thus divides [NG(H) : H] by
above proposition, so there exists gH ∈ NG(H)/H such that |gH| = p by Cauchy Theorem. The subgroup
⟨gH⟩ ≤ NG(H)/H is of order p, and ⟨gH⟩ = H ′/H for some H ′ ≤ NG(H) by the structure of quotient group.
Then [H ′ : H] = |⟨gH⟩| = p, and H ⊴ H ′ because H ′ ⊂ NG(H). ■

Theorem 3.4 (Third Sylow Theorem)

♡

Let p be a prime integer, and let G be a finite group of order |G| = prm. Assume that p does not divide m.
Then the number of p-Sylow subgroups of G divides m and is congruent to 1 modulo p.

Proof Suppose Kp denotes the number of p-Sylow subgroups. According to second Sylow theorem (3.3), assume
P is a p-Sylow subgroup, thenQ is a p-Sylow subgroup if and only if it is conjugate to P , followed byKp is precisely
[G : NG(P )] by the orbit-stabilizer theorem.

It follows that m = [G : P ] = [G : NG(P )][NG(P ) : P ] = Kp[NG(P ) : P ], so Kp divides m.

Indeed, m = Kp[NG(P ) : P ] ≡ Kp[G : P ] = Kpm (mod p) by Proposition 3.7. Since gcd(m, p) = 1, the
cancellation law implies that Kp ≡ 1 (mod p). ■
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3.4 Products of Groups

3.4.1 Direct Product, Exact Sequence

Definition 3.12 (Commutator)

♣

The commutator [A,B] of two subsets A,B of G is the subgroup generated by all commutators [a, b] :=

aba−1b−1.

Proposition 3.9

♠Let N,H be normal subgroups of a group G, then [N,H] ⊆ N ∩H .

Proof It suffices to verify this on generators [n, h]: note that [n, h] = (nhn−1)h−1 ∈ Hh−1 = H and [n, h] =

n(hn−1h−1) ∈ nN = N , then [n, h] ∈ N ∩H . ■

Corollary 3.5

♡

LetN,H be normal subgroups of a groupG. IfN ∩H = {e}, thenN,H commute with each other: nh = hn

for every n ∈ H , h ∈ H .

Proof It follows immediately from the above proposition that [N,H] = {e}, so [n, h] = nhn−1h−1 = e, followed
by nh = hn, for every n ∈ H,h ∈ H .

Proposition 3.10

♠Let N,H be normal subgroups of G, such that N ∩H = {e}, then NH ∼= N ×H .

Proof Considerφ : N×H → NH defined byφ(n, h) = nh. It is a homomorphism becauseφ((n1, h1)·(n2, h2)) =
φ(n1n2, h1h2) = n1n2h1h2 = n1h1n2h2 = φ(n1, h1)φ(n2, h2). φ is clearly surjective by the definition of NH; φ
is injective since φ(n, h) ∈ kerφ if and only if nh = e, followed by h = n−1 ∈ N ⇒ h ∈ N ∩H = {e} ⇒ h = e,
and n = e without loss of generality. Hence φ is an isomorphism. ■

Definition 3.13 (Short Exact Sequence, Group Extension)

♣

A (short) exact sequence of groups is a sequence of groups and group homomorphisms

1 −→ N
φ−→ G

ψ−→ H −→ 1

where φ is injective, ψ is surjective, and im φ = kerψ. That is, the sequence is exact ifN ⊴ G and ψ induces
an isomorphism G/N → H .

Given an (short) exact sequence, we say that G is an extension of H by N .
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Remark In the general case, a sequence G1
φ1−→ G2 · · ·

φn−→ Gn+1 is exact at Gi if im(φi) = ker(φi+1) by
definition, and the sequence is an exact sequence if it is exact at every Gi.

In particular, consider the short sequence 1 −→ N
φ−→ G

ψ−→ H −→ 1. Then the sequence is exact if and only if
φ is injective, ψ is surjective, and im(φ) = ker(ψ).

Hence every short exact sequence of groups is equivalent to a short exact sequence of the form 1 −→ kerφ ↪→ G↠

G/ kerφ −→ 1.

Example 3.2 For example, 1 −→ N −→ N ×H −→ H −→ 1 is an exact sequence by defining φ : n → (n, eH)

and ψ : (n, h) → (eN , h). However, G is not necessarily isomorphic to N ×H , for instance, 1 −→ C3 −→ S3 −→
C2 −→ 1 is an exact sequence, yet S3 ̸∼= C3 × C2. Indeed, in this case, there are two extensions of C2 by C3:
C6

∼= C3 × C2 and S3.

Definition 3.14 (Split Extension)

♣

An exact sequence of groups 1 −→ N −→ G −→ H −→ 1 (or the corresponding extension) is said to split
if H may be identified with a subgroup of G so that N ∩H = {e}.

Lemma 3.6

♡

LetN be a normal subgroup of a groupG, and letH be a subgroup ofG such thatG = HN andN∩H = {e}.
Then G is a split extension of H by N .

Proof By the second isomorphism theorem, G/N = NH/N ∼= H/(N ∩H) ∼= H , so G is an extension of H by
N . Since H is a subgroup of G, the extension is a split extension. ■

3.4.2 Semdirect (Internal) Products

Suppose N is normal, then every subgroup H of G acts on N by conjugation, i.e., γ : H → AutGrp(N), h 7→ γh,
where γh(n) = hnh−1. The subgroup H and N commutes precisely when γ is trivial.

If the conditions in the above lemma are met, then the extension G of H by N may be reconstructed from the
conjugation action: n1h1n2h2 = (n1(h1n2h

−1
1 ))(h1h2).

In the general discussion, suppose N,H are two groups, and θ is an arbitrary homomorphism θ : H → AutGrp(N),
h 7→ θh. Define the operation ·θ on the set N ×H as follows:

(n1, h1) ·θ (n2, h2) := (n1, θ(h1, n2), h1h2).

�

Note The resulting structure (N ×H, ·θ) is a group, with identity element (eN , eH).

Definition 3.15 (Semidirect product)

♣The group (N ×H, ·θ) is a semidirect product of N and H and is denoted by N ⋊θ H .
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Proposition 3.11

♠

LetN ,H be groups, and let θ : H → AutGrp(N) be a homomorphism; letG = N ⋊θH be the corresponding
semidirect product. Then

(i) G contains isomorphic copies of N and H;

(ii) the natural projection G → H is a surjective homomorphism, with kernel N ; thus N is normal in G,
and the sequence 1 −→ N −→ N ⋊θ H −→ H −→ 1 is (split) exact.

(iii) N ∩H = {eG};

(iv) G = NH;

(v) the homomorphism θ is realized by conjugation in G; that is, for h ∈ H and n ∈ N we have
θh(n) = hnh−1 in G.

Proof (i) Consider the inclusion function iN : N → N ⋊ H defined by iN (n) = (n, eH). iN is obviously an
injective homomorphism, so we may identifies N with N ⋊ {e} ≤ N ⋊H . The analogous statement holds for H .

(ii)-(iv) By identifying N,H ≤ G, it is clear that N ∩H = {eG}, and G = NH since (n, eH) ·θ (eN , h) = (n, h).
Define the projection πH : G → H by (n, h) 7→ h. It is naturally a surjective homomorphism, and the kernel is
given by kerπH = N . Therefore, 1 −→ N −→ G −→ H −→ 1 is split exact.

(v) Note that hnh−1 ↔ (eN , h) ·θ (n, eH) ·θ (eN , h−1) = (θh(n)θh(eN ), hh
−1) = (θh(n), eH) ↔ θh(n), so θ is

realized by conjugation. ■

Proposition 3.12

♠

Let N,H be subgroups of a group G, with N normal in G. Assume that N ∩H = {e}, and G = NH . Let
γ : H → AutGrp(N) be defined by conjugation: for h ∈ H , n ∈ N , γh(n) = hnh−1. Then G ∼= N ⋊γ H .

Proof Consider the function φ : N ⋊θ H → G defined by φ(n, h) = nh. φ is clearly a bijection by definition, and
it is a homomorphism since

φ((n1, h1)(n2, h2)) = φ(n1γh1(n2), h1h2) = n1(h1n2h
−1
1 )h1h2 = n1h1n2h2 = φ(n1, h1)φ(n2, h2).

Therefore, N ⋊γ H ∼=φ G. ■

Remark Proposition 3.11 implies that every (external) semi-direct product gives rise to a short exact sequence that
splits, and Proposition 3.12 implies that a split extension can be realize through a (internal) semi-direct product.
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3.5 Finite Abelian Groups

Note that we will denote the operation by “+”, the identity by 0, and the direct product (direct sums) by ⊕.

Proposition 3.13

♠

Let G be an abelian group, and let H,K be abelian subgroups such that |H|, |K| are relatively prime. Then
H +K ∼= H ⊕K.

Proof By Lagrange’s theorem, H ∩ K = {0}. The statement follows immediately from Proposition 3.10 since
subgroups are normal in an abelian group. ■

Corollary 3.6

♡Every finite abelian group is the direct sum of its nontrivial Sylow subgroups.

Proof Suppose |G| = pr11 · · · prnn . The Sylow theorems states that for each pi, there is an unique pi-Sylow subgroup
Hi, i.e., |Hi| = prii . The above proposition implies that

⊕n
i=1Hi

∼=
∑n

i=1Hi. Since |
⊕n

i=1Hi| = |G| and⊕n
i=1Hi

∼=
∑n

i=1Hi ⊂ G, hence G = H1 ⊕ · · · ⊕Hn. ■

Proposition 3.14

♠

Let p be a prime integer and r ≥ 1. Let G be a noncyclic abelian group of order pr+1, and let g ∈ G be an
element of order pr. Then there exists an element h ∈ G, h /∈ ⟨g⟩ such that |h| = p.

Proof Denote by N = ⟨g⟩. By Cauchy’s theorem, there exists hN = G/N such that |hN | = p, it is obvious that
h /∈ N and ph ∈ N so that ph = m′g. Notice that |ph| divides pr and does not equal to pr because otherwise
G = ⟨h⟩ is cyclic, thus we can write ph = pmg for some m. Consider h′ = h −mg, it is obvious that h′ /∈ N .
Since h−mg divides p since p(h−mg) = 0 and |h−mg| ≠ 1, it follows that |h′| = p. ■

Proposition 3.15

♠

Let G be an abelian p-group, and let g ∈ G be an element of maximal order. Then the exact sequence
1 −→ ⟨g⟩ −→ G −→ G/⟨g⟩ −→ 1 splits.

Remark In other words, there is a subgroup L of G such that L ∼= G/⟨g⟩ via canonical projection, that is, such that
⟨g⟩ ∩ L = {0} and ⟨g⟩+ L = G.

Proof We proceed by strong induction on |G|. The case |G| = p0 = 1 is trivial. For nontrivial groupG, assume the
statement holds for every p-group smaller than G. Suppose g ∈ G such that |g| = pr is the maximal order, consider
K = ⟨g⟩ ⊴ G. The statement is obvious if G = K, so we therefore assume G ̸= K. There is element in G/K of
order p by Cauchy’s theorem, it then generatesG′/K for someG′ ≤ Gwhere |G′| = pr+1. The previous proposition
(3.14) implies that there exists h ∈ G′ \K such that |h| = p. Let H = ⟨h⟩, then G′ = H ⊕K since |hK| = p.
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Apply inductive hypothesis using the fact that g + H has the maximal order in G/H , there is a split extension
0 −→ G′/H −→ G/H −→ L′ −→ 0 for some L′ ≤ G/H , and L′ = L/H for some L ≤ G by the structure of
quotient group. In other words, G′/H + L/H = G/H and G′/H ∩ L/H = {H}. It is clear that G′/H ∼= K. We
want to prove G = K ⊕ L by verifying the following properties:

Suppose a ∈ G, i.e., a + H ∈ G/H , then there exist mg + H ∈ G′/H and l + H ∈ L/H such that
a+H = mg + l +H . Then a ∈ mg + (l +H) ∈ K + L. It follows that G = K + L.

Suppose a ∈ K ∩ L, then a +H ∈ G′/H ∩ L/H = {H}, followed by a ∈ H . Then a ∈ H ∩K, forcing
a = 0. That is, K ∩ L = {0}.

Hence G = K ⊕ L as desired. ■

Corollary 3.7

♡

Let G be a finite abelian group, Then G is a direct sum of cyclic groups, which may be assumed to be cyclic
p-groups.

Proof It suffices to prove every p-subgroup is a direct product of cyclic groups, then the desired statement follows
immediately by Corollary 3.6. We proceed by induction on |P |. The case is trivial if P is trivial. Suppose P is a
nontrivial p-group, let g be its element with maximal order. Proposition 3.15 implies that P = ⟨g⟩ + P ′ for some
proper subgroup P ′. P ′ is a direct sum of cyclic subgroups by inductive hypothesis, concluding the proof. ■

Theorem 3.5

♡

Let G be a finite nontrivial abelian group. Then there exists prime integers p1, · · · , pr and positive integers
ni,j such that |G| =

∏
i,j p

ni,j

i and
G ∼=

⊕
i,j

Z/pni,jZ.

Equivalently, there exist positive integers 1 < d1 | · · · | ds such that |G| = d1 · · · ds and

G ∼= Z/d1Z⊕ · · ·Z/dsZ.

Furthermore, these decompositions are uniquely determined by G.

Remark The first form follows immediately from the above corollary. For the second form, the integers di are
called invariant factors. To obtain the invariant factors, collect the element divisors in a table, listing prime powers
to increasing primes in the horizontal direction and decreasing exponents in the vertical direction, then the invariant
factors are obtained as products of the factors in each row:

dr = p
n1,1

1 p
n2,1

2 · · ·
dr−1 = p

n1,1

1 p
n2,1

2 · · ·
dr−2 = p

n1,1

1 p
n2,1

2 · · ·
...

...
... . . .

Example 3.3 All abelian groups of order 360 = 23 × 32 × 5 are
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Z/360Z, Z/2Z⊗ Z/180Z, Z/2Z× Z/2Z× Z/90Z,

Z/2Z⊗ Z/6Z⊗ Z/30Z, Z/3Z⊗ Z/120Z, Z/6Z⊗ Z/60Z,

up to isomorphisms.
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Chapter 4 Ring Theory and Module Theory

Introduction

h Ring, Polynomial Ring

h Ideals and Quotient Rings

h Complexes

h Category Ring

h Module Over a Ring

4.1 Ring

4.1.1 Rings and Special Classes of Rings

Definition 4.1 (Ring)

♣

A ring is a set R equipped with two operations + and · satisfying

(1) (R,+) is an abelian group,

(2) (R, ·) is a monoid (i.e., associativity holds and identity exists), and

(3) Multiplication is distributive with respect to addition, i.e., a·(b+c) = a·b+a·c and (a+b)·c = a·c+b·c
for all a, b, c ∈ R.

Proposition 4.1

♠

(a) Absorption: For all r ∈ R, 0 · r = 0 = r · 0.

(b) For all r ∈ R, r + (−1)r = 0; that is, (−1)r = −r.

Proof (a) For all r ∈ R, 0 · r = (0 + 0) · r = 0 · r + 0 · r, then 0 · r = 0 by cancellation. The equality r · 0 = 0

holds wlog.

(b) For all r ∈ R, r + (−1)r = 1r + (−1)r = (1 + (−1))r = 0r = 0. ■

Example 4.1 Examples of rings are:

The trivial ring (zero ring) is the ring consists of one element {∗} (often denoted by 0). Note that in the trivial
ring, 0 = 1.

The integers Z.

The rational numbers Q, the real number R, the complex number C.

n× n matrices Mn(R) := R2×2 where R is a ring.

The integers Z/nZ modulo n.



4.1 Ring

Definition 4.2 (Commutative Ring)

♣A ring R is commutative if multiplication is commutative, i.e., rs = sr for all r, s ∈ R.

Example 4.2 Examples of commutative ring is Z, Q, R, C (note that Q, R, C are fields, i.e., multiplication is
commutative and inverse exists). An example of non-commutative ring is M2(R), the ring of n × n matrices with
real entries.

Definition 4.3 (Integral Domain)

♣A nonzero commutative ring R is an integral domain if rs = 0 implies r = 0 or s = 0 for all r, s ∈ R.

4.1.2 Polynomial Rings

Definition 4.4 (Polynomial, Degree)

♣

A polynomial f(x) in the indeterminate x over a ringR is a finite linear combination of nonnegative ‘powers’
of x with coefficients in R: f(x) = a0 + a1x + a2x

2 + · · · , where every coefficient ai ∈ R, and ai = 0

whenever i ≥ N for some N .

The degree of a nonzero polynomial, denoted deg f(x), is the largest integer d for which ad ̸= 0; the degree
of polynomial 0 is defined to be −∞.

�

Note Two polynomials are said to equal if all the coefficients are equal. We define the addition and multiplication
between f(x) =

∑
i≥0 aix

i and g(x) =
∑

i≥0 bix
i by

f(x) + g(x) :=
∑
i≥0

(ai + bi)x
i and f(x)g(x) :=

∑
i≥0

( ∑
j+k=i

ajbk

)
xi.

Definition 4.5 (Polynomial Ring)

♣

The set of polynomial in x over R, endowed with addition and multiplication stated above, is the polynomial
ring over R, denoted R[x].

Remark Rings of power series {
∑∞

i=0 aix
i} over a ringR is denotedR[[x]]. Polynomial rings in more indeterminates

may be obtained by iterating the above construction: R[x1, · · · , xn]= R[x1][x2] · · · [xn].
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4.2 The Category of Ring

4.2.1 The Category of Ring

Definition 4.6 (Ring homomorphism, The category of Ring)

♣

If R,S are rings, a function φ : R→ S is a ring homomorphism if

(1) φ preserves addition: φ(a+ b) = φ(a) + φ(b) for all a, b ∈ R,

(2) φ preserves multiplication: φ(ab) = φ(a)φ(b) for all a, b ∈ R, and

(3) φ preserves multiplicative identity: φ(1R) = 1S .

The Ring category is the category whose objects are rings and whose morphisms are ring homomorphisms.

Remark Equivalent, φ is a ring homomorphism if φ is a group homomorphism with respect to addition, and φ is a
monoid homomorphism with respect to multiplication.

Ring homomorphisms preserve units and inverse.

Remark The condition φ(0R) = 0S can be omitted because φ(0R) = φ(0R) + φ(0R) by definition yields the
desired statement by cancellation law.

�

Note The trivial ring {0} is final in Ring since the only ring homomorphism R→ {0} is the trivial homomorphism.
However, it is not initial because there exists no homomorphism from {0} to nonzero ringR (since 1 7→ 1R contradicts
to 1 = 0 7→ 0R).

The ring of integers Z is initial in Ring. For every ring R, the only homomorphism is defined to be φ(n) = n · 1R =

1R + · · ·+ 1R.

4.2.2 Universal property of polynomial rings

Proposition 4.2 (Universal property of polynomial ring)

♠

Suppose R and S are rings, let α : R → S be a ring homomorphism, and let s ∈ S be an element such that
α(r) · s = s · α(r) for all r ∈ R. Then there exists a unique ring homomorphism α̃ : R[x] → S such that
α̃(x) = s and α̃ extends s, i.e., α̃ ◦ j = α.

R[x] S

R

α̃

j α

Proof The commutativity of the diagram implies α̃(r) = α(r) for all r ∈ R. Since α̃ = s, the homomorphism
condition forces α̃(

∑
n≥0 anx

n) =
∑

i≥0 α(an)s
n, which proves the uniqueness if such homomorphism exists. It

suffices to verify α̃ is a homomorphism. Suppose f =
∑

n≥0 anx
n and g =

∑
n≥0 bnx

n, then
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α̃(f + g) =
∑
n≥0

α(an + bn)s
n =

∑
n≥0

α(an)s
n +

∑
n≥0

α(bn)s
n = α̃(f) + α̃(g)

α̃(fg) =
∑
n≥0

∑
i+j=n

α(aibj)s
i+j =

(∑
i≥0

α(ai)s
i

)(∑
j≥0

α(bj)s
j

)
= α̃(f)α̃(g),

so α̃ preserves addition and multiplicative. In addition, α̃ preserves multiplicative identity since α̃(1R) = α(1R) =

1S . Hence α̃ is a homomorphism. ■

Proposition 4.3

♠

LetA = {a1, · · · , an}, i : A→ Z[x1, · · · , xn] be a set-function defined by i(ai) = xi. For every commutative
ringR and set-function j : A→ R, there exists an unique homomorphismφ : R1 → R2 such that the diagram
commutes:

Z[x1, · · · , xn] R

A

φ

i
j

Remark Let RA be a category whose objects are pairs (j, R), where R is a commutative ring, and morphisms
(j1, R1) → (j2, R2) are ring homomorphisms such that φ ◦ j1 = j2:

R1 R2

A

φ

j1
j2

Then (i,Z[x1, · · · , xn]) is initial in RA.

Proof Suppose (j, R) is an object, and assume φ : Z[x1, · · · , xn] → R is a homomorphism such that the
diagram commutes. The commutativity implies that φ(xi) = j(ai), and the homomorphism condition forces that
φ(
∑
mi1,··· ,inx

i1
1 · · ·xinn ) =

∑
ı(mi1,··· ,in)j(a1)

i1 · · · j(an)in , where ı : Z → R is the unique homomorphism. It is
not hard to verify φ is a homomorphism, and it is unique as shown above, hence (i,Z[x1, · · · , xn]) is initial. ■

4.2.3 Monomorphisms and epimorphisms

Proposition 4.4

♠

Suppose φ : R→ S is a ring homomorphism, the following are equivalent

(a) φ is a monomorphism;

(b) kerφ = {0};

(c) φ : G→ G′ is injective (as a set-function).

Proof (a) ⇒ (b): Suppose φ is a monomorphism, and r ∈ kerφ. Consider homomorphism er, e0 : Z[x] → R for
which er(x) = r and e0(x) = 0.
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4.2 The Category of Ring

Z[x] R S
er

e0

φ

Notice that φ ◦ er = φ ◦ e0 because they agree on Z and x, then er = e0, namely r = er(x) = 0. (b) ⇒ (c) and
(c) ⇒ (a) are analogous to Proposition 2.15. ■

Remark Warning: It is not necessary that every epimorphism is surjective (unlike in Grp), and in addition, φ is not
necessarily an isomorphism even it is both a mono- and epi-morphism in Ring.

For instance, consider the inclusion map ı : Z ↪→ Q. It is both a monomorphism and an epimorphism in Ring, but it
is neither surjective nor an isomorphism.
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4.3 Ideals and Quotient Rings

4.3.1 Ideals and Quotient Rings

Definition 4.7 (Ideal)

♣

Let R be a ring. A subgroup I of (R,+) is a left-ideal of R if rI ⊂ I for all r ∈ R (left-absorption), it is a
right-ideal if Ir ⊂ I for all r ∈ R (right-absorption). An (two-sided) ideal is a subgroup I which is both a
left- and right-ideal.

Remark In general, an ideal I ⊂ R is not a subring of ring R: I is closed under multiplication, but it usually does
not contain 1R, otherwise I = R.

Proposition 4.5

♠Let φ : R→ S be any ring homomorphism. Then kerφ is an ideal of R.

Proof The kernel is a subgroup of (R,+). In addition, the left absorption holds because for all r ∈ R, a ∈ kerφ,
we have φ(ra) = φ(r) · 0 = 0; and the right absorption holds without loss of generality. Hence kerφ is an ideal. ■

Proposition 4.6 (Ideal generated by an element)

♠

SupposeR is a ring anda ∈ R. The setRa = {ra | r ∈ R} is a left ideal ofR, and similarlyaR = {ar | r ∈ R}
is a right ideal. If R is commutative, then (a) = Ra = aR is the ideal generated by a.

Proposition 4.7

♠

Suppose {Iα} is a family of ideals in R.

(a) The sum of the ideals
∑

α∈A Iα :=
{∑

α∈A rα | rα ∈ Iα, and rα = 0 for all but finite α
}

is the smallest
ideal containing all Iα.

(b) The intersection of the ideals
⋂
α∈A Iα is the largest ideal contained in all Iα.

(c) The product of two ideals IJ := {
∑

α∈A rαsα | rα ∈ I, sα ∈ J, and rα = sα = 0 for all but finite α}
is an ideal of R.

Definition 4.8 (Quotient ring)

♣

Suppose I be an ideal of the ring (R,+, ·). Let the quotient ring R/I be consisting of cosets r + I , endowed
with addition (r + I)(s+ I) = rs+ I and multiplication (r + I)(s+ I) = rs+ I . The ring R/I is called
the quotient ring of R modulo I .

Proof The multiplication in the quotient ring is well-defined: suppose r + I = r′ + I and s + I = s′ + I , then
r′− r, s′− s ∈ I , it follows that r′s′− rs = r′(s′− s)− s(r′− r) ∈ I by absorption property, i.e., rs+ I = r′s′+ I .
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4.3 Ideals and Quotient Rings

Then it is not hard to verify that R/I is a ring by definition. ■

Example 4.3 It is essential that I is an ideal. Consider Z as a subgroup of Q, let addition and multiplication be
defined as above, then 0 + Z = 1 + Z, whereas (0 + Z)(1/2 + Z) = 0 + Z ̸= 1/2 + Z = (1 + Z)(1/2 + Z).

Remark Similar to quotient group, suppose R is a ring and I ⊴ R, then J/I ⊴ R/I is an ideal of the quotient ring
if and only if J ⊴ R.

�

Note The canonical projection π : R→ R/I defined by r 7→ r + I is a ring homomorphism, and its kernel is I .

Remark In addition, note that every ideal I can be realized as the kernel of the canonical projection mapR→ R/I .
Hence there is an equivalence: ideal ⇐⇒ kernel of ring homomorphism.

Example 4.4 For every n ∈ Z≥0, it is not hard to verify that nZ is an ideal of the integers Z, then it follows direct
that Z/3Z is a quotient ring of Z modulo nZ.

Proposition 4.8 (Universal property of quotient ring)

♠

Let I be an ideal of a ring R. Then for every ring homomorphism φ : R→ S such that I ⊂ kerφ there exists
a unique ring homomorphism φ̃ : R/I → S such that the diagram commutes

R/I S

R

φ̃

φπ

Proof Proposition 2.21 forces φ̃(r + I) := φ(r) in order to preserve addition. It suffices to prove φ̃ preserves
multiplication and multiplicative identity, which are trivial according to the definition of multiplication in the quotient
ring.

Analogous to the group isomorphism theorem, the following theorem holds:

Theorem 4.1 (Ring isomorphism theorems)

♡

(a) First isomorphism theorem: Suppose φ : R → S is a surjective ring homomorphism, then S ≃
R/ kerφ.

(b) Second isomorphism theorem: Suppose I, J be ideals of R, then I + J and I ∩ J are ideals, and
(I + J)/I = J/(I ∩ J).

(c) Third isomorphism theorem: Let I, J be ideals of a ring R for which I ⊂ J . Then J/I is an ideal of
R/I , and (R/I)/(J/I) ≃ R/J .
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4.3.2 PIDs, Prime Ideal, Maximal Ideal

Definition 4.9 (Principle Ideal Domain (PID))

♣

An integral domain is a PID (Principal Ideal Domain) if every ideal of R is principal, i.e., every ideal is
generated by one element.

Definition 4.10 (Prime Ideal, Maximal Ideal)

♣

Let I ̸= R be an ideal of a commutative ring R,

(a) I is a prime ideal if R/I is an integral domain, i.e., ab = 0 =⇒ (a = 0 or b = 0) for all a, b ∈ R.

(b) I is a maximal ideal if R/I is a field.

Proposition 4.9 (Equivalent definition of prime and maximal ideals)

♠

(a) I is prime if and only if for all a, b ∈ I: ab ∈ I =⇒ (a ∈ I) or (b ∈ I).

(b) I is maximal if and only if for all J ⊴ R such that I ⊊ J: J = R.

(c) Every maximal ideal is prime.

Proposition 4.10 (Prime ideal is maximal in PID)

♠Let R be a PID, then a non-zero ideal I ⊴ R is maximal if and only if I is prime.

Proof Suppose I is a prime ideal, then I = (r) is generated by a prime element r. Assume there is an ideal I ′ = (r′)

s.t. I ⊊ I ′, then r = cr′ for some c ∈ R. Note that r is irreducible because it is prime, and c is not a unit, since
otherwise r ∼ r′ thus I = (r) = (r′) = I ′. Therefore, r′ is a unit, so I ′ = (r′) = R. Hence I is a maximal ideal. ■

Definition 4.11 (Characteristic)

♣

For a ring R, let f : Z → R be the unique ring homomorphism defined by a 7→ a · 1R, then ker f = nZ for
some n ∈ Z≥0. The characteristic of a ring R is defined to be n.

Remark Equivalently, the characteristic of R is n > 0 if n is the least positive integer such that n · 1R = 0, and R
is characteristic zero if the order of 1R is ∞.
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4.4 Modules Over a Ring

4.4.1 Modules

The left-module can be viewed as an abelian groupM , endowed with a left-action of a ringR, i.e., a homomorphism
of rings σ : R→ EndAb(M)

Definition 4.12 (Module)

♣

A left-R-module structure on an abelian group M consists of a map R×M →M , (r,m) 7→ rm, such that

(1) r(m+ n) = rm+ rn;

(2) (r + s)m = rm+ sm;

(3) (rs)m = r(sm); and

(4) 1m = m.

A right-R-module is defined analogously.

Remark Condition (2) and (3) corresponds to the definition of action σ (ring homomorphism), and condition (1)
and (4) corresponds to the group homomorphism σr.

Example 4.5 Every homomorphism of rings α : R→ S give arises to aR-module on S by defining ρ : R×S → S

by ρ(r, s) := α(r)s.

Proposition 4.11

♠Every abelian group is a Z-module, in exactly one way.

Proof For every EndAb(G) corresponding to the abelian group G, there exists an unique homomorphism Z →
EndAb(G) since Z is initial in Ring. Hence there exists an unique Z-module structure on G. ■

Definition 4.13 (R-Mod)

♣

A homomorphism ofR-modules is a homomorphism of (abelian) groups which is compatible with the module
structure. That is φ : M → N is a homomorphism of R-modules if φ(x + y) = φ(x) + φ(y) and
φ(rx) = rφ(x) for all r ∈ R, x, y ∈M .

R-Mod is the category whose objects areR-modules and morphisms are homomorphisms betweenR-modules.

Remark Equivalently, φ :M → N is a (R-module) homomorphism if and only if φ(m1+m2) = φ(m1)+φ(m2)

and φ(rm) = rφ(m).

Remark Let φ : L → M be an R-module homomorphism, then kerφ and im φ are R-submodule of L and M ,
resp.
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Example 4.6 IfR = k is a field, R-modules are called k-vector spaces (the corresponding category is k-Vect), and
the morphisms are called linear maps.

Example 4.7 The trivial group 0 is both initial and final in R-Mod.

�

Note The canonical decomposition and isomorphism theorem hold.

4.4.2 Submodules and Quotients, Kernel and Cokernel

Definition 4.14 (Submodule)

♣

A subset N ⊂M is a R-submodule of M if (1) N ≤M is an (additive) subgroup, and (2) N is closed under
the action of R, i.e., RN ⊂ N .

Proposition 4.12

♠

Let N be a submodule of an R-module M , then the set M/N := {m + N |m ∈ M} of cosets, endowed
with addition (m+N) + (n+N) = (m+ n) +N and multiplication (m+N)(n+N) = mn+N , is an
R-module.

Remark Suppose N is a R-submodule of M , the canonical projection π : M → M/N , x 7→ x + N , is an
R-module homomorphism, with kerπ = N . Then every R-submodule of a given module arises as the kernel of a
homomorphism.

In the category R-Mod, suppose φ :M → N is a homomorphism of R-modules, then kerφ is final with respect to
the property of factoring R-module homomorphisms α : P →M such that φ ◦ α = 0:

P M N

kerφ

α

α̃

0

φ

ı

while coker φ := N/im φ is initial with respect to the property of factoring R-module homomorphisms β : N → P

such that β ◦ φ = 0:

N M P

coker φ

φ

0

π

β

β̃
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Proposition 4.13

♠

The following hold in R-Mod:

(a) kernels and cokernels exists;

(b) φ is monomorphism ⇐⇒ kerφ is trivial ⇐⇒ φ is injective as a set-function;

(c) φ is epimorphism ⇐⇒ coker φ is trivial ⇐⇒ φ is surjective as a set-function;
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4.5 Complexes and Homology

Definition 4.15 (Complexes, Exactness)

♣

A chain complex of R-modules is a sequence of R-modules and R-module homomorphisms

· · · di+2−−−→Mi+1
di+1−−−→Mi

di−−−→Mi−1
di−1−−−→ · · ·

such that di ◦ di+1 = 0 for all i (i.e., im di+1 ⊂ ker di). The notation (M•, d•) (or M•) is used to denote a
complex.

A complex is exact at Mi if im di+1 = ker di, and a complex is exact if it is exact at all its modules.

Example 4.8 A complex · · · −→ 0 −→ L
α−→ M −→ · · · is exact at L if and only if α is a monomorphism

(injective).

A complex · · · −→ L
β−→ N −→ 0 −→ · · · is exact at N if and only if β is a epimorphism (surjective).

Definition 4.16 (Short Exact Sequence)

♣

A short exact sequence (SES) is an exact complex of the form 0 −→ L
α−→M

β−→ N −→ 0; that is, α being
injective, β being surjective, and im α = kerβ.

Example 4.9 A short exact sequence 0 −→ L
α−→ M

β−→ N −→ · · · give rise to an isomorphism N ∼=
M/ kerβ ∼=M/im α = coker α.

Definition 4.17 (Split (Short) Exact Sequence)

♣

A short exact sequence splits if it is isomorphic to a short exact sequence induced by direct sum:

0 M1 N M2 0

0 M ′
1 M ′

1 ⊕M ′
2 M ′

2 0

∼ ∼ ∼

Remark The short exact sequence splits if M2 may be identified as the submodule of N for which M1 ∩M2 = 0.

Definition 4.18 (Homology)

♣

The i-th homology of a complex

M• : · · ·
di+2−−−→Mi+1

di+1−−−→Mi
di−−−→Mi−1

di−1−−−→ · · ·

if R-modules is the R-module Hi(M•) := ker di/im di+1.
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Remark Homology measures the “difference of a complex from being exact”. Hi(M•) = 0 if and only if M• is
exact at Mi.

Example 4.10 Suppose φ :M1 →M2 is a R-module homomorphism, then it give rises to the complex M• : 0 −→
M2

φ−→M1 −→ 0 of R-modules, and H2(M•) = kerφ and H1(M•) = coker φ.

Proposition 4.14 (Snake Lemma)

♠

Suppose two short exact sequences are linked by homomorphisms

0 L1 M1 N1 0

0 L0 M0 N0 0

α1

λ

β1

µ ν

α0 β0

then there is an exact sequence

0 −→ kerλ −→ kerµ −→ ker ν
δ−→ coker λ −→ coker µ −→ coker ν.

We first construct the morphism δ : ker ν → coker λ.

Definition of δ: Suppose a ∈ ker ν, there exists b ∈ M1 such that β1(b) = a since β1 is surjective. Since
(β0 ◦ µ)(b) = (ν ◦ β1)(b) = ν(a) = 0, we have b ∈ kerβ0 = im α0, namely there exists c ∈ L0 such that
α0(c) = µ(b). Hence every a ∈ ker ν give rises to an element c ∈ L0, and we may define δ(a) = c+ im λ.

ker ν

M1 N1

L0 M0

coker λ

α1

λ

β1

µ
ν

α0

π

β0

Well-definedness: Suppose a gives rise to b′ ∈ M1. Since b′ − b ∈ kerβ1 = im α1, there exists g ∈ L1 such
that α(g) = b′ − b. The commutativity od the diagram implies λ(g) = µ(b′ − b), and the injectivity then
yields that λ(g) is the unique element lifted by b′ − b. Therefore, b′ = b+ (b′ − b) gives rise to c′ = c+ λ(g),
then π(c′) = c+ im λ = π(c). Hence δ(a) is independent of the choice of b, followed by δ is well-defined.

Homomorphism condition: Suppose a gives rise to b and c, and a′ gives rise to b′ and c′. Then β(b+b′) = a+a′

implies that a+ a′ give rise to b+ b′, and α0(c+ c′) = µ(b+ b′) implies that b+ b′ gives rises to a+ a′. It
follows that δ(a+ a′) = c+ c′ = δ(a) + δ(a′), and the statement for preserving multiplication is analogous.

The remaining proof is omitted and will be discussed later.
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Chapter 5 Irreducibility and Factorization in Integral Domains

Introduction

h Divisibility, Factorization

h Content, Gauss’s Lemma

h Irreducible polynomials

h Unique Factorization Domain (UFD)

h Factorization in Polynomial Ring

h Intro. to field extension and algebraic closure

5.1 Existence of Factorizations

Definition 5.1 (Divisibility, Associates)

♣

Let R be a commutative ring and a, b ∈ R. We say that a divides b (b is a multiple of a) if b ∈ (a), i.e., there
exists c ∈ R such that b = ac, we use the notation a | b.
Two elements are associates if (a) = (b), i.e., a | b and b | a.

Remark Equivalently, a | b holds if and only if (b) ⊂ (a).

Proposition 5.1 (Characterization for associates)

♠Let R be an integral domain and a, b ∈ R, then a, b are associates if and only if a = ub for a unit u ∈ R.

Proof Suppose a = ub where u is a unit. Then b | a, and b = u−1a implies that a | b; we therefore have a, b
are associates. Conversely, suppose a, b are associates, namely b = c1a and a = c2b for c1, c2 ∈ R. Then
b = c1a = c1c2b implies that (1 − c1c2)b = 0, followed by 1 − c1c2 = 0, namely c1c2 = 1 since R is an integral
domain. Hence c2 is a unit and a = c2b as desired. ■

Definition 5.2 (Prime Element, Irreducible Element)

♣

Let R be an integral domain.

(a) An element a ∈ R is prime if the ideal is prime, i.e., a is not a unit and a | bc =⇒ (a | b or a | c).
(b) An element a ∈ R is irreducible if a is not a unit and a = bc =⇒ either (b or c is a unit). An element

a ∈ R is reducible if it is not irreducible.

Remark Equivalently, an element a ∈ R is reducible if it is a unit or it can be written as the product a = bc of
non-unit elements.



5.1 Existence of Factorizations

Proposition 5.2 (Characterization of irreducible elements)

♠

Let R be an integral domain and let a ∈ R. The following are equivalent:

(a) The element a is irreducible.

(b) a = bc implies a is an associate of b or of c, i.e., (a) = (b) or (a) = (c).

(c) a is maximal among proper principle ideals, i.e., (a) ⊊ (b) =⇒ (b) = R.

Proof (a) ⇒ (b): Suppose a is irreducible and a = bc, then Wlog b is a unit, so a is an associate of c.

(b) ⇒ (c): Suppose (a) ⊊ (b), then a = bc for some c ∈ R. Since (a) ̸= (b), the hypothesis implies that (a) = (c), so
there exists d such that a = dc for some unit d. Then c = d−1a = d−1bc⇒ (1−d−1b)c = 0 ⇒ d−1b = 1 ⇒ b = d,
hence b is a unit.

(c) ⇒ (a): Suppose a = bc and b is not a unit. Then (a) ⊊ (c), and by the hypothesis, (c) = R, so c is a unit. ■

Proposition 5.3 (Prime elements are irreducible)

♠Let R be an integral domain and a ∈ R is a nonzero prime element, then a is irreducible.

Proof Suppose a is prime and a = bc. Wlog, a | b since a is prime, then (a) = (c), followed by a = bd for some
unit d. Then a = bc = ad−1c⇒ a(1− d−1c) = 0 ⇒ d−1c = 1 ⇒ c = d, hence c is a unit. ■

Example 5.1 The converse does not hold in general, it holds only when R is a UFD. Consider Z[
√
−5] =

{a + bi
√
5 | a, b ∈ Z} as a subring of C. Define the norm map N : Z[

√
−5] → Z, a + bi

√
5 7→ a2 + 5b2; N is

multiplicative. Using the norm map, it is not hard to prove that the units are ±1, and 3 is irreducible. Notice that
3 = (2 +

√
5i)(2 −

√
5i), but 3 ∤ (2 ±

√
5i), we conclude 3 is not prime. Therefore, a irreducible element is not

necessarily prime.
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5.2 UFDs, PIDs, Euclidean Domains

5.2.1 Unique Factorization Domains (UFDs)

Definition 5.3 (Factorizations, Unique Factorization Domain (UFD))

♣

Let R be an integral domain.

An element r ∈ R has a factorization (or decomposition) into irreducibles if there exist irreducible
elements q1, · · · , qn such that q = q1 · · · qn. The factorization is said to be unique if the qi are
determined uniquely up to the order and associates.

We say R is a domain with factorizations if every nonzero, non-unit element r ∈ R has a factorization
into irreducibles. If all such factorizations are unique, R is called the unique factorization domain
(UFD).

Remark In a UFD, we can write any nonzero element r as r = εq1 · · · qn where ε is unit.

�

Note Suppose r = q1 · · · qn is a factorization, we may assign to r a multiset {q1, · · · , qn} of its irreducible factors.
Consider an equivalence relation that modulo out permutations and associates, then the factorization is uniquely
determined up to equivalence in UFD.

Example 5.2 Supposeα is a unit. Then there is no decompositionα = xy where x is irreducible, since x(α−1y) = 1

implies x is a unit. It follows that α has no decomposition, i.e., the corresponding multiset is ∅.

Suppose x is irreducible. Then x = yz and y being irreducible implies z is a unit by the definition of irreducibility,
hence the corresponding multiset is {x} under equivalence relation.

Lemma 5.1

♡

Let R be a UFD, and let a, b, c be nonzero elements of R. Then

(a) (a) ⊂ (b) if and only if the multiset of irreducible factors of b is contained in the multiset of irreducible
factors of a;

(b) a and b are associates if and only if the two multisets coincide.

(c) the irreducible factors of a product bc are the collection of all irreducible factors of b and of c.

Definition 5.4 (gcd)

♣

Let R be an integral domain, and let a, b ∈ R. An element d ∈ R is a greatest common divisor (gcd) of a and
b if (a, b) ⊂ (d) and (d) is the smallest principal ideal in R with this property.

Remark Equivalently, d is the gcd of a, b if and only if a | d, b | d, and (a | e, b | e) ⇒ d | e for all e.

The greatest common divisor is unique up to associates.
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Proposition 5.4 (UFDs are GCD domain)

♠Let R be a UFD, and let a, b be nonzero elements of R. Then a, b have a greatest common divisor.

Proof Sketch: Given that R is a UFD, we may write a = µqα1
1 · · · qαn

n and b = νqβ11 · · · qβnn , where µ, ν are units,
αi, βi ≥ 0 for all i, and qi and qj are not associates if i ̸= j. Let

d = q
min(α1,β1)
1 · · · qmin(αn,βn)

n .

It is clear that d | a and d | b. Suppose c such that c | a and c | b, then c = ωqγ11 · · · qγnn . Note that the irreducible
factors must be contained in both multisets of a and b, so γi ≤ min(αi, βi) for all i, followed by c | d. ■

Lemma 5.2 (Irreducible elements are prime in UFD)

♡Let R be a UFD, and let a be an irreducible element of R. Then a is prime.

Proof Suppose a is irreducible and a | bc. Since (bc) ⊂ (a), a is contained in the irreducible factors of bc by Lemma
5.1. Then a must be contained in the irreducible factor of b or c because the irreducible factors of bc is the union of
factors of b and factors of c. Hence a divides b or c, followed by a is prime. ■

Proposition 5.5

♠

Let R be an integral domain. Show that R is a UFD if and only if both the following conditions are satisfied:

(1) R satisfies the ascending chain condition (a.c.c.) for principal ideals (i.e., any ascending chain of
principal ideals stabilizes).

(2) Every irreducible element of R is prime.

Remark See Noetherian ring (Definition 5.6) for a.c.c.

Proposition 5.6

♠If R is a PID, then it is a UFD.

5.2.2 Principle Ideal Domains (PID) and Euclidean Domain (EDs)

Proposition 5.7

♠A ring R is a field if and only if R[x] is a PID.
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5.2 UFDs, PIDs, Euclidean Domains

Definition 5.5 (Euclidean Domain)

♣

A Euclidean valuation on an integral domainR is a valuation v : R→ N such that for all a ∈ R and nonzero
b ∈ R there exist q, r ∈ R such that a = qb+ r, with either r = 0 or v(r) < v(b). An integral domain R is a
Euclidean domain if it admits a Euclidean valuation.

Proposition 5.8

♠Let R be a Euclidean domain, then R is a PID.

Proof Sketch: Similar to proving Z is a PID, we may use Euclidean division lemma to show that the element a ∈ I

such that v(a) = min v(R) satisfy that b ∈ R implies b = ab′ for some b′ ∈ R, hence I = (r).

Lemma 5.3

♡

Let a = bq + r in a ring R, then (a, b) = (b, r). In particular, a, b have a gcd if and only if b, r have one, and
in this case gcd(a, b) = gcd(b, r).

Proof Note that a = bq + r ∈ (b, r), so (a, b) ⊂ (b, r); and r = a − bq ∈ (a, b) implies (b, r) ⊂ (a, b). Hence
(a, b) = (b, r). ■

�

Note We may use Euclidean algorithm (with Euclidean valuation) to compute gcd.

5.2.3 Noetherian Ring

Definition 5.6 (Noetherian Ring)

♣A commutative ring R is said to be Noetherian if every ideal of R is finitely generated.

Proposition 5.9

♠

The commutative ring R is Noetherian if and only if the ascending chain condition (a.c.c.) holds for all
ideals, i.e., every chain

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

stabilizes, meaning that for every such chain there exists N ∈ N such that In = IN for all n ≥ N .
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5.3 Unique Factorization in Polynomial Ring

5.3.1 Primitivity and Content, Gauss’s Lemma

Lemma 5.4

♡

Suppose R is a ring and I ⊴ R, let IR[x] := {a0 + a1x + · · · adxd ∈ R[x] | ai ∈ I}, the R[x]/(IR[x]) ∼=
(R/I)[x].

If I is a prime ideal of R, then IR[x] is a prime ideal of R[x].

Definition 5.7 (Primitive Polynomial)

♣

Let R be a commutative ring, and f ∈ R[x]. The polynomial f is said to be primitive if f /∈ pR[x] for every
prime principle ideal p; and it is said to be very primitive is the above statement holds for all prime ideals p.

Proposition 5.10

♠Let R be a commutative ring and f, g ∈ R[x], then fg is primitive if and only if both f and g are primitive.

Proof f, g is not primitive iff fg ∈ pR[x] for some principle prime ideal p, iff either f ∈ pR[x] or g ∈ pR[x] (given
that pR[x] is a prime ideal), iff f or g is not primitive. ■

Proposition 5.11 (Equivalent definition of primitivity)

♠

Let R be a commutative ring and f = a0 + a1x+ · · ·+ adx
d ∈ R[x]. Then

(a) f is very primitive if and only if (a0, · · · , ad) = (1).

(b) If R is a UFD, then f is primitive if and only if gcd(a0, · · · , ad) = 1.

Proof (a) Suppose (a0, · · · , ad) ̸= R, then they are contained in a maximal ideal thus a prime ideal, so f is not
very primitive. Conversely, suppose (a0, · · · , ad) = R, then no prime ideals contain all a0, · · · , ad, so f is not very
primitive.

(b) Suppose d := gcd(a0, · · · , ad) ̸= 1, then f ∈ (d)R[x] ⊂ (d0)R[x] for any irreducible (thus prime) factor d0 of
d, so f is not primitive since (d0) is a principle prime ideal. Conversely, suppose f is not primitive, i.e., f ∈ (p)R[x]

for some prime p. Then p divides gcd(a0, · · · , ad), so the gcd is not 1. ■

Definition 5.8 (Content)

♣Let R be a UFD. The content of a nonzero polynomial f ∈ R[x], denoted contf , is the gcd of its coefficients.

�

Note The polynomial f is primitive if and only if (contf ) = (1)

68



5.3 Unique Factorization in Polynomial Ring

Proposition 5.12

♠

Let R be a UFD, and let f ∈ R[x]. Then

(a) (f) = (contf )(f ′), where f ′ is primitive.

(b) If (f) = (c)(g), with c ∈ R and g primitive, then (c) = (contf ).

Proof (a) Let a′i := ai/contf , and put f ′ = a′0 + · · · a′dxd. Note that f ′ is primitive since gcd(a′0, · · · , a′d) =

gcd(a0, · · · , ad)/contf = 1, and f = contff ′, hence (f) = (contf )(f ′).

(b) Since f and cg are associates given that (f) = (cg), f = ucg for some unit u. Then contf = contucg =

uccontg = uc by the property of gcd, so contf and c are associates, followed by (contf ) = (c). ■

Theorem 5.1 (Gauss’s Lemma)

♡Let R be a UFD, and let f, g ∈ R[x]. Then (contfg) = (contf )(contg).

Proof fg = (contf )(f ′)(contg)(g′) = (contf )(contg)(f ′g′) where f ′, g′ ∈ R[x] are primitive. Notice that f ′g′ is
primitive by Proposition 5.10, (contfg) = (contf )(contg) follows from Proposition 5.12. ■

Corollary 5.1

♡Let R be a UFD, and let f, g ∈ R[x]. Assume (f) ⊂ (g), then (contf ) ⊂ (contg).

5.3.2 Field of Fractions

Given an integral domain R, consider the category R whose objects are (i,K) where K is a field and i : R ↪→ K is
an injective ring homomorphism, and the morphisms are field homomorphism α : K → L.

Definition 5.9 (Field of Fraction)

♣

The field of fractions K(R) of R is an initial object of the category R, i.e., K(R) is the smallest field
containing R.

The field of fraction K(R) may be constructed as R×R∗ over an equivalence relation, K(R) := {a/r | a ∈ R, r ∈
R∗}/ ∼, where a/r ∼ b/s if as− br = 0 (note that R is an integral domain). The operations defined as follows

a

r
+
b

s
=
as+ br

rs
,

a

r
· b
s
=
ab

rs

make K(R) a field.

Example 5.3 The field of fraction of Z is K(Z) = Q.
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Definition 5.10 (Field of Rational Functions)

♣

The field of rational functions with coefficients in R is the field of fractions of the ring R[x], denoted R(x).
The elements of R(x) are fractions of polynomials p(x)/q(x), where p(x), q(x) ∈ R[x] and q(x) ̸= 0.

5.3.3 R UFD Implies R[x] UFD

Proposition 5.13

♠

Let R be a UFD, and F = K(R) be its field of fractions. For nonzero f, g ∈ R[x], if (contg) ⊂ (contf ) and
(g)F ⊂ (f)F , then (g) ⊂ (f).

Proof Since (g)F ⊂ (f)F , g = (a/b)f for some a/b ∈ F , taking content yields contg = (a/b)contf . By
(contg) ⊂ (contf ), contg = c · contf for some c ∈ R, so c · contf = contg = (a/b)contf . It follows that
a/b = c ∈ R, so g = (a/b)f = cf , hence (g) ⊂ (f). ■

Proposition 5.14

♠

Let R be a UFD, and let F be its field of fraction. Let f ∈ R[x] be a nonconstant polynomial. Then f is
irreducible in R[x] if and only if f is primitive and irreducible in F [x].

Proof The if direction is trivial. Suppose f ∈ R[x] is irreducible. Then f is primitive, otherwise f = contff ′ is
a decomposition. Assume f is reducible in F [x] for the sake of contradiction, i.e., f = gh for g, h ∈ F [x]. We can
write g = cg′ and h = dh′ for some c, d ∈ F and some primitive polynomials g′, h′ ∈ R[x] 1O. Note that f = cdf ′g′,
so (cd) = (contf ) = (1) since f is primitive, followed by f = uf ′g′ for some unit u ∈ R. Hence f = (uf ′)(g′)

is a desired decomposition of f in R[x], and both uf ′ ∈ R[x] and g′ ∈ R[x] are not unit, contradicting that f is
irreducible, therefore f is irreducible in F [x]. ■
1O: this can be done by taking c = gcd(a0, · · · , ad)/lcm(b0, · · · , bd) for g =

∑
(ai/bi)x

i, and d is defined
analogously.

Theorem 5.2 (R UFD ⇒ R[x] UFD)

♡Let R be a UFD, then R[x] is a UFD.

Proof (Existence) Since F := Frac(R) is a field, its polynomial ring is a UFD (since it is a PID), so f ∈ R[x] has
a factorization f = uf ′1 · · · f ′n where u ∈ F and f ′i’s are irreducible. Each f ′i can be written as f ′i = uifi for some
ui ∈ F and primitive polynomial fi ∈ R[x] (by multiplying some constant); note that each fi is irreducible in K[x]

sinceui is a unit inK[x], therefore fi is irreducible inR[x]. Then f = (uu1 · · ·un)f1 · · · fn, and v := uu1 · · ·un ∈ R

by taking content. Since R is a UFD, we may decompose v in R to v = d1 · · · dm. Hence f = u1 · · ·umf1 · · · fn is
a factorization in R[x] since all ui’s and fi’s are irreducible.

(Uniqueness) Suppose f = d′1 · · · d′m′f ′1 · · · f ′n′ . Since (d1 · · · dm) = (d′1 · · · d′m′) = contf , {di} and {d′i} are
equivalent under ordering and associates. Since K[x] is a UFD and f1 · · · fn ∼ f ′1 · · · f ′n′ , {fi} and {f ′i} are
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5.3 Unique Factorization in Polynomial Ring

equivalent under ordering and associates inK[x]; in addition, the factor ui s.t. fi = uif
′
i is a unit inR by the content

consideration, so the equivalence extends to R[x]. Hence the factorization of f is unique. ■

Remark The motivation is that we may write f = contff ′ where f ′ is primitive, then we can decompose contf
in R and f ′ in K[x] (which is a UFD). Since factorization of primitive f ′ in F [x] is equivalent compare to R[x],
combining the factorizations of contf and f ′ gives the desired, and indeed unique, factorization.

�

Note We may also use Proposition 5.5 (a.c.c. of principle ideals) to prove the existence of factorization.
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5.4 Irreducibility of Polynomials

5.4.1 Roots and Irreducibility

Definition 5.11 (Root)

♣

Suppose f ∈ R[x], we say a ∈ R is a root of f if eva(f) = 0, the root a has a multiplicity r if (x− a)r | f but
(x− a)r+1 ∤ f .

Remark a ∈ R is a root of f if and only if (x− a) | f .

Proof : Note that R[x]/(x − a) ∼= R by the evaluation homomorphism eva(f), so a is a root iff f ∈ ker eva, iff
f ∈ (x− a)R[x], iff (x− a) | f . ■

Lemma 5.5

♡

Let R be an integral domain, and let f ∈ R[x] be a polynomial of degree n. Then the number of roots of f ,
counted with multiplicity, is at most n.

Proof Let K = Frac(R) and consider f ∈ K[x]. Since K[x] is a UFD, roots of f in K corresponds to irreducible
factors of degree 1 in K[x], so f has at most n roots in K. Hence f has at most n roots in R. ■

Alternative Proof: We proceed by strong induction on n = deg f . The case is trivial for n = 1. Suppose n > 1 and
a is a root of f with multiplicity of r. Then (x − a)r | f , f = (x − a)rg for some g s.t. deg g = n − r (note that
deg fg = deg f +deg g in an integral domain). By inductive hypothesis, g has at most n− r roots with multiplicity,
then (x− a)rg has at most n roots. ■

Example 5.4 The integral domain condition is necessary. Consider f = 2x in Z/4Z and f = (x + 2)(x + 3) in
Z/6Z.

Corollary 5.2

♡

Let R be an infinite integral domain, and f, g ∈ R[x]. Then f = g if and only if their evaluation r 7→ f(r)

and r 7→ g(r) agrees.

Proof The evaluation agrees iff every r ∈ R is a root of f − g, but nonzero polynomial cannot have infinitely many
roots, so f − g = 0, namely f = g. ■

Proposition 5.15

♠

Let R be a UFD and K = Frac(R) be its field of fractions. Let f(x) = a0 + a1x+ · · · anxn ∈ R[x], and let
c = p/q ∈ K be a root of f with gcd(p, q) = 1. Then p | a0 and q | an in R.

Proof Since f(pq ) = a0 + a1
p
q + · · · + an

pn

qn = 0, then a0qn + a1pq
n−1 + · · · + anp

n = 0. Note that a0qn =

−p(a1qn−1 + · · · + anp
n−1), then p | a0qn. Since p, q are relatively prime in a UFD, the multiset of irreducibles
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factors of p belongs to the multiset of a0, followed by p | a0. q | an follows analogously. ■

5.4.2 Toward Field Extension

Definition 5.12 (Field Extension)

♣

Suppose the inclusion map i : k → F is a homomorphism of fields, then we say that F is an extension of k,
denoted by k ⊆ F (or F/k).

Remark Homomorphisms of field are defined to be the ring homomorphism between fields, and they are necessarily
injective.

Proposition 5.16 (Extension by adjoining a root)

♠

Let k be a field, let f(t) ∈ k[t] be a nonzero irreducible polynomial. Then

(a) F := k[t]/(f(t)) is a field, endowed with a natural homomorphism i : k ↪→ F (obtained as the
composition k → k[x] → F ) realizing it as an extension of k.

(b) f(x) ∈ k[x] ⊆ F [x] has a root in F , namely the coset of t.

(c) If k ⊆ K is any extension in which f has a root, then there exists a homomorphism j : F → K such
that the diagram

k K

F
i j

commutes.

Proof (a) f(t) is irreducible thus prime in k[t] since it is UFD, therefore (f(t)) is a prime ideal thus a maximal
ideal since k[t] is PID, followed by F = k[t]/(f(t)) is a field.

(b) Let h̄ = h + (f(t)) ∈ F be the coset of h in F . Since evt̄(f) = f(t̄) = f(t) = 0̄, then t̄ ∈ F is a root of
f(x) ⊆ F [x].

(c) Suppose u ∈ K is a root of f , and consider the evaluation homomorphism evu : k[t] → K. Note that (f(t)) ⊆
ker evu since f(u) = 0, then by the universal property there exists an homomorphism F = k[t]/(f(t)) → K. ■

Example 5.5 By Proposition 5.15, note that i ∈ C is a root ofx2+1, there is a homomorphism ẽvi : R[x]/(x2+1) ↪→
C induced by evi : R[x] → C, i.e., ẽvi : f + (x2 + 1) 7→ evi(f). It is not hard to verify that ẽvi is bijective and thus
an isomorphism. Hence C ∼= R[x]/(x2 + 1).

Definition 5.13 (Algebraically Closed Field)

♣A field k is algebraically closed if all irreducible polynomials in k[x] have a degree 1.
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Lemma 5.6 (Characterization of algebraically closedness)

♡

A field k is algebraically closed if and only if every polynomial f ∈ k[x] factors completely as a product of
linear factors, if and only if every nonconstant polynomial f ∈ k[x] has a root in k.

Proposition 5.17

♠Algebraically closed fields are infinite.

Proof Assume F = {c1, · · · , cn} be a finite field for contraposition. Consider the polynomial f(x) = (x −
c1) · · · (x− cn) + 1 ∈ F [x]. It is clear that f ̸= 0 and f(x) has no roots in F , so F is not algebraically closed. ■

5.4.3 Irreducibility in the Complex and Real Polynomial Ring

Theorem 5.3 (Fundamental Theorem of Algebra)

♡C is algebraically closed.

Proposition 5.18 (Irreducibility of polynomials in R[x])

♠

(a) Every polynomial f ∈ R[x] with deg(f) ≥ 3 is reducible.

(b) The nonconstant irreducible polynomials in R[x] are precisely the polynomials of degree 1 and the
quadratic polynomials f = ax2 + bx+ c with b2 − 4ac < 0.

Proof (a) Let f = a0 + a1x+ · · ·+ anx
n ∈ R[x] for which deg f ≥ 3. Consider f ∈ C[x], f has a root z in C by

the algebraic closedness. If z ∈ R, then f = (x− z)g and deg g ≥ 2, so f is reducible. On the other hand, if z /∈ R,
consider its conjugate z̄. Note that ai ∈ R,

f(z̄) = a0 + a1z̄ + · · ·+ anz̄
n = a0 + a1z + · · ·+ anzn = f(z) = 0,

it follows that z̄ is a root of f . That is, f is divisible by (x − z)(x − z̄) = (x2 + Re(z)) + Im(z)2 ∈ R[x]. Since
deg(x− z)(x− z̄) = 2 < deg f , then f is reducible in R[x].

(b) follows from part (a) and the fact that the roots of ax2 + bx+ c in C are not real if and only if b2 − 4ac < 0. ■

Proposition 5.19 (Eisenstein Criterion)

♠

Let R be a (commutative) ring, and let p be a prime ideal of R. Let f = a0 + a1x + + anx
n ∈ R[x] be a

polynomial, and assume that (i) an /∈ p; (ii) ai ∈ p for i = 0, · · · , n− 1; and (iii) a0 /∈ p2. Then f is not the
product of polynomials of degree < n in R[x].

Proof Assume f = (b0 + · · ·+ bjx
j)(c0 + · · ·+ ckx

k), where j + k = n, for the sake of contradiction. Let γn(f)
denotes the i-th term coefficient. Note that b0c0 = γ0(f) = a0 ∈ p, then by the definition of prime ideal, we may
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5.4 Irreducibility of Polynomials

assume b0 ∈ p w.l.o.g., and c0 /∈ p since a0 /∈ p2. We proceed by induction on i < j to prove bi ∈ p: assume
b0, · · · , bi−1 ∈ p and c0 /∈ p, then

p ∋ ai = γi(f) = b0ci + b1ci−1 + · · ·+ bic0 =⇒ bic0 ∈ p =⇒ bi ∈ p.

Therefore, bj ∈ p implies an = bjck ∈ p, contradiction. ■
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Chapter 6 Fields

Introduction

h The category of field

h Simple extensions

h Algebraic and transcendental extensions

h Splitting fields

h Separable extensions and separable degree

h Galois correspondence and Galois groups

h Geometric impossibilities

h Field extensions

h k-automorphisms

h Algebraic closure k̄

h Normal fields

h Finite extensions

h The fundamental theorem of Galois theory

h Cyclotomic fields

6.1 Field Extensions, I

Definition 6.1 (The Category of Fields, Fld)

♣

The category Fld is the category of fields with field homomorphisms (namely ring homomorphism). We denote
by Fldn, for n = 0 or n = p where p is a nonnegative prime, the category of fields with characteristic n.

�

Note Let k ⊆ F be a field extension, then the characteristic of k is equal to the characteristic of F .

Example 6.1 The initial object of Fld0 is Q and the initial object of Fldp is Z/pZ for nonnegative prime p.
However, Fld has no initial objects.

6.1.1 Simple Extension

Definition 6.2 (Degree of an Extension)

♣

A field extension k ⊆ F is finite, of degree n, if F has (finite) dimension dimF = n as a vector space over k,
we write [F : k] = n. The extension is infinite otherwise, denoted by [f : k] = ∞.

Remark The degree of the field extension F = k[t]/(p(t)), where p(t) is a monic irreducible polynomial, through
adjoining a root is n = deg p(x), since the cosets of 1, t, · · · , tn−1 form a basis of the vector space over k.



6.1 Field Extensions, I

Definition 6.3 (Simple Extension)

♣

Let k ⊆ F be a field extension, and let α ∈ F . The smallest subfield of F containing both k and α is denoted
k(α); that is, k(α) is the intersection of all subfields of F containing k and α.

A field extension k ⊆ F is simple if there exists an element α ∈ F such that F = k(α).

Remark The characterization of the simple extension k(α) is the fraction field of the (finite) sum k+kα+kα2+ · · ·
if the extension is infinite, and it is k + kα+ · · ·+ kαn−1 if the extension has degree n.

Proposition 6.1

♠

Let k ⊆ k(α) be a simple extension. Consider the evaluation map: ϵ : k[t] → k(α), defined by f(t) → f(α).
Then we have the following:

(a) ϵ is injective if and only if k ⊆ k(α) is an infinite extension. In this case, k(α) is isomorphic to the field
of rational functions k(t).

(b) ϵ is not injective if and only if k ⊆ k(α) is finite. In this case there exists a unique monic irreducible
nonconstant polynomial p(t) ∈ k[t] of degree n = [k(α) : k] such that

k(α) ∼= k[t]/(p(t))

Via this isomorphism, α corresponds to the coset of t. The polynomial p(t) is the monic polynomial of
smallest degree in k[t] such that p(α) = 0 in k(α).

Proof Suppose ϵ : k[t] → k(α) is injective, then the universal property of field of fraction implies the existence of
field homomorphism k(x) ↪→ k(α). Since the (isomorphic) image of k(x) contains k and α, hence k(x) ∼= k(α) by
the definition of k(α). The extension is infinite because 1, α, α2, · · · ∈ k(α) are linearly independent.

Suppose ϵ is not injective, then its kernel is ker ϵ = (p(t)) for some p(t) ∈ k[t] (unique if restricted to monic
polynomials), since k[x] is a PID. The first isomorphism theorem implies k[t]/(p(t)) ∼= im ϵ ⊂ k(α), therefore
k[t]/(p(t)) ∼= k(α) since the image of k[t]/(p(t)) contains k and α, and [k(α) : k] = deg p is finite. ■

Example 6.2 Q[
√
2] = {a + b

√
2} is a simple extension of Q, whose primitive elements are ±

√
2, minimal

polynomial is x2 − 2, and the degree of extension is 2.

C is a simple extension of R, whose primitive elements are ±i, minimal polynomial is x2 + 1,and the degree of
extension is 2.

Proposition 6.2

♠

Let k1 ⊆ F1 = k1(α1), k2 ⊆ F2 = k2(α2) be two finite simple extensions. Let p1(t) ∈ k1[t], resp.,
p2(t) ∈ k2[t] be the minimal polynomials of α1, resp., α2. Let i : k1 → k2 be an isomorphism, such
that i′(p1(t)) = p2(t), where i′ : k1[t] → k2[t] is induced by i. Then there exists a unique isomorphism
j : F1 → F2 agreeing with i on k1 and such that j(α1) = α2.

Remark
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6.1 Field Extensions, I

k1 k1(α1)

k2 k2(α2)

i j

Proof The function i′ : k1[t] → k2[t] induced by i is clearly an isomorphism. By the universal property of quotient,
since (p1(x)) = ker(π2 ◦ i′), there exists an unique homomorphism j : k1[t]/(p1) → k2[t]/(p2) such that

k1[t] k1[t]/(p1)

k2[t] k2[t]/(p2)

i′ ∼

π1

π2

j is an isomorphism since i′ is an isomorphism, hence there is an unique isomorphism j : F1 → F2. ■

Definition 6.4 (k-Automorphism Group)

♣

Let k ⊆ F be a field extension. The group of automorphisms of the extension, denoted Autk(F ), is the group
of field automorphisms j : F → F such that j|k = idk.

Proposition 6.3

♠

Let k ⊆ F = k(α) be a simple finite extension, and let p(x) be the minimal polynomial of α over k. Then
|Autk(F )| equals the number of distinct roots of p(x) in F .

In particular, |Autk(F )| ≤ [F : k], with equality if and only if p(x) factors over F as a product of distinct
linear polynomials.

Proof We associate with each k-automorphism σ the image σ(α). Let p(t) = p0 + p1t+ · · ·+ pnt
n ∈ k[t]. Since

σ extends identity on k, p(σ(α)) = p0 + p1σ(α) + · · · + pnσ(α)
n = σ(p(α)) = σ(0) = 0, followed by σ(α) is a

root of p(x). Every root β uniquely determines an k-automorphism such that j(α) = β by the above proposition,

k(α) α

k

k(β) β

hence |Autk(F )| equals the number of distinct roots of p(x) in F . ■

Example 6.3 There are exactly one embedding of Q[t]/(t2 − 2) in R. There are exactly three embeddings of
Q[t]/(t3 − 2) in C.
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6.1.2 Algebraic and Transcendantal Extension

Definition 6.5 (Algebraic and Transcendantal Extension)

♣

Let k ⊆ F be a field extension, and let α ∈ F . Then α is algebraic over k, of degree n if n = [k(α) : k] is
finite; α is transcendantal over k otherwise.

The extension F/k is algebraic if every α ∈ F is algebraic.

Proposition 6.4

♠α ∈ F is algebraic over k if and only if there exists a nonzero polynomial f(x) ∈ k[x] such that f(α) = 0.

Proof By the characterization of finite simple extension, k(α) ∼= k[t]/(p(t)) for a unique monic irreducible
polynomial by Proposition 6.1. Then it is not hard to see that p(α) = 0. ■

Proposition 6.5

♠

Let k ⊆ E ⊆ F be field extensions. Then k ⊆ F is finite if and only if both k ⊆ E and E ⊆ F are finite. In
this case, [F : k] = [F : E][E : k].

Proof Suppose F/k is finite, then E/k is finite since it is a subspace of F/k, and F/E is finite because every basis
of F/k spans F/E. Conversely, suppose F/E and E/k are finite, let (e1, · · · , en) and (k1, · · · , km) be their bases,
resp. Consider the product (eikj)i,j . It is not hard to prove they are linearly independent in F/k and spans F/k.
Therefore, F/k is finite; indeed, [F : k] = nm = [F : E][E : k]. ■

Proposition 6.6

♠

Let k ⊆ F = k(α1, · · · , αn) be a finitely generated field extension. Then the following are equivalent:

(i) k ⊆ F is a finite extension.

(ii) k ⊆ F is an algebraic extension.

(iii) Each αi is algebraic over k.

If these conditions are satisfied, then [F : k] ≤ the product of the degrees of αi over k.

Proof (i) ⇒ (ii) It follows immediately that [k(αi) : k] ≤ [F : k] since k(αi) ⊆ F .

(ii) ⇒ (iii) This statement is trivial by definition.

(iii) ⇒ (i) Suppose F/k is algebraic, and let km := k(α1, · · · , αm). For each m, [km : km−1] = [km−1(αm) :

km−1] ≤ [k(αm) : k] is no greater than the degree of αi, in particular, is finite. Therefore, [F : k] =
∏n
m=1[km :

km−1] ≤ product of degrees of αi, in particular, is finite. ■
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Corollary 6.1

♡Let k ⊆ F be a field extension. Let E = {α ∈ F |α is algebraic over k}. Then E is a field.

Proof Suppose α, β ∈ F are algebraic over k, then k(α, β)/k is an algebraic extension (Proposition 6.6), followed
by α± β, αβ−1 are algebraic. ■

Proposition 6.7

♠

Let k ⊆ E ⊆ F be field extensions. Then k ⊆ F is algebraic if and only if both k ⊆ E and E ⊆ F are
algebraic.
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6.2 Algebraic Closures

6.2.1 Algebraic Closures

Definition 6.6 (Algebraically Closed, Algebraic Closure)

♣

A field K is algebraically closed if all irreducible polynomials in K[x] have degree 1.

An algebraic closure of a field k is an algebraic extension k ⊆ k̄ such that k̄ is algebraically closed.

Proposition 6.8

♠

Suppose K is a field, the following are equivalent

(i) K is algebraically closed.

(ii) K has no nontrivial algebraic extensions.

(iii) If K ⊆ L is any extension and α ∈ L is algebraic over K, then α ∈ K.

Theorem 6.1

♡Every field k admits an algebraic closure k ⊆ k̄; this extension is unique up to isomorphism.

Lemma 1: Let k be a field. Then there exists an extension k ⊆ K such that every nonconstant polynomial f(x) ∈ k[x]

has at least one root in K.

Proof : Let F denotes nonconstant polynomials of k[t], and define T := (tf )f∈F . Consider the polynomial ring k[T ]

in all the indeterminates tf and the ideal I generated by all polynomials of the form f(tf ). I is a proper ideal, because
1 ∈ I implies

∑n
i=1 aifi(tfi), then the evaluation at the roots tf1 = α1, · · · , tfn = αn yields 1 =

∑n
i=1 aifi(αi) = 0,

which is a clear contradiction. That is, there exists a maximal ideal m ⊇ I , then K := k[T ]/m is a field. Each
polynomial f ∈ F has a root tf +m in K.

Lemma 2: Consider the chain of extensions k =: K0 ⊆ K1 ⊆ · · · , where each Kn+1 is obtained from Kn by the
above construction. Let L =

⋃
Ki, then the field L is algebraically closed.

Proof : For all f ∈ L, f ∈ Kn for some n, so f has a root in Kn+1 ⊂ L. Therefore, L is algebraically closed.

Lemma 3 (Existence of Algebraic Closure): Let k ⊆ L be a field extension, with L algebraically closed. Let
k̄ := {α ∈ L |α is algebraic over k}. Then k̄ is an algebraic closure of k.

Proof : For all α, β ∈ k̄ (algebraic number over k), since k(α, β) is a algebraic extension, α ± β, αβ−1 ∈ L are
algebraic over k thus in k̄, so k is a field. For every root α ∈ L algebraic over k̄, α is algebraic over k because k̄(α)/k̄
and k̄/k are both algebraic, then α ∈ k̄.

Lemma 4: Let k ⊆ L be a field extension, with L algebraically closed. Let k ⊆ F be any algebraic extension. Then
there exists a morphism of extensions i : F → L.

Proof : Define a partial order onZ := {(K, iK) | k ⊆ K ⊆ F, iK : K → L s.t. iK |k = idk} by (K, iK) ≤ (K ′, iK′)
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if K ⊂ K ′ and iK′ |K = iK . Every chain in Z has an upper bound K =
⋃
Ki and iK(a) := iKi(a) for any i s.t.

a ∈ Ki. By Zorn’s lemma, Z admits a maximal element (G, iG). We claim that G = F , otherwise F/G is an
algebraic extension, so we may further extend (G, iG), contradicting the fact that it is maximal. Hence there exists a
homomorphism iF = iG : F → L extending the identity on k.

Lemma 5 (Uniqueness of Algebraic Closures): Let k ⊆ k̄, k ⊆ k̄′ be two algebraic closures of k, then exists an
isomorphism k̄′ → k̄ extending the identity on k.

Proof : By Lemma 4, there exists a homomorphism i : k̄ → k̄′ extending the identity on k, this map is clearly
injective. i is also surjective, otherwise k̄′/k̄ is a nontrivial algebraic extension, contradicting that k̄ is algebraically
closed. Hence i is an isomorphism extending the identity on k. ■
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6.3 Field Extension II

6.3.1 Splitting Field and Normality

Definition 6.7 (Splitting Field)

♣

Let k be a field, and let f(x) ∈ k[x] be a polynomial of degree d. The splitting field for f(x) over k is an
extension F of k such that f(x) = c

∏d
i=1(x−αi) in F [x], and further F = k(α1, · · · , αd) is generated over

k by the roots of f(x) in F .

Proposition 6.9 (Existence and Uniqueness of Splitting Field)

♠

Let k be a field, and let f(x) ∈ k[x]. Then the splitting field F for f(x) over k is unique up to isomorphism,
and [F : k] ≤ (deg f)!.

In fact, if i : k′ → k is any isomorphism of fields and g(x) ∈ k′[x] is such that f(x) = i(g(x)), then i extends
to an isomorphism of any splitting field of g(x) over k′ to any splitting field of f(x) over k.

Proof Let α ∈ F be a root of f(x). Since the minimal polynomial of α is a factor of f , [k(α) : k] ≤ deg f . By
induction, we see that [F : k(α)] ≤ (deg f − 1)! because every other roots of f(x) divides f(x)/(x−α) ∈ k(α)[x],
whose degree is deg f − 1. Then [F : k] = [F : k(α)][k(α) : k] ≤ (deg f)!.

Suppose F , G are splitting field of f(x) ∈ k[x], g(x) ∈ k′[x], resp.

k F k̄

k′ G

i ∼

For each root α1 of f(x), let p(x) ∈ k[x] be the minimal polynomial of α1. For any root β1 of ι(p(x)), there
is an isomorphism k(α1) → k′(β1) extending ι on k by Proposition 6.2. Repeating this process, we obtain an
isomorphism F := k(α1, · · · , αn) → k′(β1, · · · , βn) =: G extending ι. In particular, the splitting field is unique
up to isomorphism. ■

Proposition 6.10 (Minimality of the splitting field)

♠

Let k be a field with f(x) ∈ k[x] and F be the splitting field for f(x) over k. Suppose K/k is an extension
such that f(x) splits as a product of linear factors over K, then there is a homomorphism F → K extending
the identity on k.

Definition 6.8 (Normal Extension)

♣

A field extension k ⊂ F is normal if for every irreducible polynomial f(x) ∈ k[x], f(x) has a root in F if
and only if f(x) splits as a product of linear factors over F .
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Proposition 6.11

♠

A field extension k ⊆ F is finite and normal if and only if F is the splitting field of some polynomial
f(x) ∈ k[x].

Proof Suppose F/k is finite and normal, then F is a finitely generated F = k(α1, · · · , αn). Let pi(x) be the
minimal polynomial of αi, then F is the splitting field of

∏n
i=1 pi(x).

Conversely, suppose F is the splitting field of f . Let p(x) be a irreducible polynomial such that a root α of it is
contained in F , and let β be another root of p(x). There is an isomorphism k(α) → k(β) by Proposition 6.2.
Note that F and F (β) are splitting fields of f(x) over k(α) and k(β), resp, Proposition 6.9 implies an isomorphism
ι̃ : F → F (β) extending i,

k(α) F

k

k(β) F (β)

∼ ι

Combine with the fact that F ⊆ F (β), we see that F = F (β), thus β ∈ F . Hence F contains every root of p(x),
thus F is normal. ■

6.3.2 Separable Polynomials and Extensions

Definition 6.9 (Separability (of polynomial))

♣

Let k be a field. A polynomial f(x) ∈ k[x] is separable if it has no multiple factors over its splitting field,
otherwise f(x) is inseparable.

Definition 6.10 (Formal Derivative)

♣

Let f(x) = a0 + a1x + · · · + anx
n ∈ k[x] is a polynomial over k, we define its derivative by f ′(x) =

a1 + 2a2x+ · · ·+ nanx
n−1.

Remark The formal derivative is a purely formal operation (with no limiting process). Regardless, the expected
properies od derivatives holds, in particular, (fg)′ = f ′g + fg′.

Proposition 6.12

♠

Let k be a field, and let f(x) ∈ k[x]. Then f(x) is separable if and only if f(x) and f ′(x) are relatively prime
(in k[x]).

Proof Proof by contraposition. For the sufficiency, assume gcd(f, f ′) ̸= 1, f(x) and f ′(x) have a common factor
x−αwhere α ∈ k̄. Let f(x) = (x−α)g(x), then f ′(x) = g(x)+(x−α)g′(x). Since (x−α) | f ′(x) by definition,
we see that (x− α) | g(x), followed by (x− α)2 | f(x) thus f is inseparable.
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For the necessity, assume f(x) is inseparable, namely f(x) = (x − α)2g(x) for some α ∈ k̄. Then x − α divides
f ′(x) = 2(x− α)g(x) + (x− α)2g′(x), followed by (x− α) | gcd(f, f ′) thus f and f ′ are coprime. ■

Proposition 6.13

♠Let k be a field, and let f(x) ∈ k[x] be an inseparable irreducible polynomial. Then f ′(x) = 0.

Proof By Proposition 6.12, g(x) := gcd(f, f ′) ̸= 1 is non-unit. The irreducibility of f implies f(x) = cg(x)

for some constant c ∈ k. Note that g(x) divides f ′(x) = cg′(x), and deg g′ < deg g, this forces g′(x) = 0, hence
f ′(x) = 0. ■

Definition 6.11 (Perfect Field)

♣A field k is perfect if char k = 0 or if char k > 0 and the Frobenius homomorphism x 7→ xp is surjective.

Lemma 6.1

♡Suppose k is a field of characteristic p, then (a± b)p = ap ± bp for all a, b ∈ k.

Proposition 6.14

♠Let k be a field. Then k is perfect if and only if all irreducible polynomials in k[x] are separable.

Proof We first prove the sufficiency by contradiction, assume f(x) = a0 + a1x + · · · + anx
n is irreducible and

inseparable. Suppose char k = 0. Apply Proposition 6.13, f ′(x) =
∑n

i=1 iaix
i−1 = 0, then iai = 0 thus ai = 0 for

all i. Then f(x) = 0, contradicting that f is irreducible.

On the other hand, suppose char k = p and the Frobenius homomorphism σ is surjective. Again apply Proposition
6.13, iai = 0 for all i, so ai = 0 for p ∤ i; that is, f(x) =

∑n
i=1 aix

pi. Since σ is surjective, for each ai bi ∈ k s.t.
bpi = ai. Then f(x) =

∑
i(bix

i)p = (
∑

i bix
i)p by Lemma 6.1, contradicting that f(x) is irreducible.

Conversely, we now prove the necessity. Suppose irreducible polynomials are separable, and char k = p ̸= 0,
it suffices to prove σ is surjective. Let α ∈ k, consider f(x) = xp − α. Choose a root β ∈ k̄, we can write
f(x) = xp − βp = (x − β)p, so f(x) is inseparable. Then f(x) = (x − β)p is reducible by the hypothesis, and
similarly (x − β)c (1 < c ≤ p) are reducible, followed by β ∈ k. Therefore, σ(β) = βp = α, it follows that σ is
surjective. ■

Corollary 6.2

♡Finite fields are perfect. In particular, irreducible polynomials are separable over finite field.
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Definition 6.12 (Separability (of extension), Separable degree)

♣

An algebraic extension k ⊆ F is separable if every α ∈ F is separable (i.e., the minimal polynomial of α
is separable) over k. The separable degree of F over k, denoted by [F : k]s, is defined to be the number of
different homomorphisms F → k̄ extending the identity on k.

Proposition 6.15

♠A field k is perfect if and only if every algebraic extension of k is separable.

Proof The statement is equivalent to Proposition 6.14.

Lemma 6.2

♡

Let k ⊆ k(α) be a simple algebraic extension. Then [k(α) : k]s equals the number of distinct roots in k of the
minimal polynomial of α. In particular, [k(α) : k]s ≤ [k(α) : k], with equality if and only if α is separable
over k.

Proof The proof is analogous to Proposition 6.3 (k-automorphism). Let p(x) be the minimal polynomial of α.
Each desired φ : F → k̄ maps α to a root of p since p(φ(α)) = φ(p(α)) = φ(0) = 0. On the other hand, each root
β induces a unique φ : F → k̄ extending the identity on k and φ(α) = β. ■

Lemma 6.3 (Multiplicative of separable degree)

♡

Let k ⊆ E ⊆ F be algebraic extensions. Then [F : k]s is finite if and only if both [F : E]s, [E : k]s are finite,
and in this case [F : k]s = [F : E]s[E : k]s.

Proposition 6.16

♠

Let k ⊆ F be a finite extension. Then [F : k]s ≤ [F : k], and the following are equivalent:

(i) F = k(α1, · · · , αr), where each αi is separable over k;

(ii) k ⊆ F is separable;

(iii) [F : k]s = [F : k].
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6.4 Field Extensions III

6.4.1 Finite Field

For every finite field F of characteristic p, F may be viewed as an extension Fp ⊆ F . Let [F : Fp] = d, then F ∼= Fdp
as a vector space, namely |F | = pd is a power of p.

Theorem 6.2

♡

Let q = pd be a power of prime p. Then splitting field of the polynomial xq−x over Fp is a field with precisely
q elements.

Conversely, let F be a field with exactly q elements, then F is a splitting field for xq − x over Fp.

Proof Let f(x) := xq − x. Since f ′(x) = qxq−1 − 1 = −1, then gcd(f, f ′) = 1, followed by f(x) is separable
over Fp. We claim the roots E of f(x) is a field: for α, β ∈ E, we know αq = α and βq = β, then 0 ∈ E,

α− β = αq − βq = (α− β)q and αβ−1 = αqβ−q = (αβ−1)q for β ̸= 0;

that is, E is closed under subtraction and division. Hence the splitting field of f(x) contains precisely q elements.

Conversely, suppose F contains q elements. Note that F× forms a group (under multiplication) and |F×| = q − 1,
we see that αq−1 = 1, i.e., αq = α, for α ̸= 0. It is clear that 0q = 0, so F contains q roots of f(x). Hence F is the
splitting field. ■

Corollary 6.3

♡For every prime power q there exists one and only one finite field of order q, up to isomorphism.

Proposition 6.17 (Extension of finite fields)

♠

Let p be a prime integer, and let 0 < d ≤ e be integers. Then there exists an extension Fpe/Fpd if and only if
d | e.

In the case that d | e, the extension Fpe/Fpd is simple. That is, all extensions of finite fields are simple.

Proposition 6.18

♠The factorization of xqn − x in Fq[x] consists of all irreducible monic polynomials of degree d such that d |n.
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6.4.2 Separability and Simple Extensions

Proposition 6.19

♠

An algebraic extension k ⊆ F is simple if and only if the number of distinct intermediate fields k ⊆ E ⊆ F is
finite.

Proof For sufficiency, suppose E is an intermediate field, then F = E(α). Let qk(x) denotes the minimal
polynomial of α over k, analogously for qE(x). Note that qk(α) = 0 considering qk ∈ E[x], then qE(x) | qk(x) in
E[x]. We want to show qE(x) determines E: let E′ ⊆ E be the field generated by the coefficients of qE(x), then
qE(x) is irreducible inE′[x], so deg qE = [F : E′] = [F : E][E : E′] = deg qE · [E : E′], followed by [E : E′] = 1,
namely E′ = E, as needed. Apply this claim to the fact that there is finitely-many factors of qk(x), it follows that
there is finitely-many intermediate fields.

Conversely, for necessity, we may assume k is infinite (finite case follows from Proposition 6.17). Let F = k(α, β).
There exists c ̸= c′ ∈ k such that k(cα+β) = k(c′α+β) because the number if intermediate field k ⊆ k(cα+β) ⊂ F

is finite but c ∈ k is infinite. Then

α =
(cα+ β)− (c′α− β)

c− c′
∈ F, and also β = (cα− β)− cα ∈ F.

Therefore, we see that F = k(cα+ β) is simple, and the original statement follows from induction. ■

Proposition 6.20

♠Every finite separable extension is simple.

Proof Assume F = k(α, β) with α, β separable and k infinite (Again, finite case follows from Proposition 6.17).
Let I be the set of field homomorphisms ι : F → k̄ extending the identity on k; fix ι and define

f(x) :=
∏
ι′:ι̸=ι′

[
(ι(α)x− ι(β))−

(
ι′(α)x− ι′(β)

)]
.

The polynomial is nonzero, because the multiplicand being zero implies ι(α) = ι′(α) and ι(β) = ι′(β), forcing
ι = ι′.

Since f(x) has finitely-many roots while k is infinite, there exists c ∈ k s.t. f(c) ̸= 0. Let γ = cα + β. Since
f(c) ̸= 0, then ι(γ) = ι(α)c+ ι(β) are distinct for ι ∈ I . Notice that each ι(γ) is a root of the minimal polynomial
pγ of γ because p(ι(γ)) = ι(p(γ)) = 0, then we see that [F : k]s ≤ [k(γ) : k] ≤ [F : k]. Since [F : k]s = [F : k]

because α, β are separable, [k(γ) : k] = [F : k], so F = k(γ). The desired statement follows immediately from
induction. ■

Corollary 6.4

♡

Let k ⊆ F be a finite, separable extension. Then |Autk(F )| ≤ [F : k], with equality if and only if k ⊆ F is a
normal extension.
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6.5 Introduction to Galois Theory

6.5.1 The Galois Correspondence and Extensions

Definition 6.13 (Fixed Field)

♣

Let k ⊆ F be a field extension, and letG ⊆ Autk(F ) be a group of automorphisms of the extension. The fixed
field of G is the intermediate field

FG := {α ∈ F | ∀ g ∈ G, g(α) = α}.

The notion of fixed field allows us to set up the Galois correspondence

{intermediate field E : k ⊆ E ⊆ F} ⇋ {subgroups of Autk(F )}.

Proposition 6.21

♠

The Galois correspondence is inclusion-reversing. Further, for all subgroups G of Autk(F ) and all interme-
diate fields k ⊆ E ⊆ F :

E ⊆ F AutE(F );

G ⊆ AutFG(F ).

Further still, denote by E1E2 the smallest subfield of F containing two intermediate fields E1, E2, and denote
by ⟨G1, G2⟩ the smallest subgroup of Autk(F ) containing two subgroups G1, G2. Then

AutE1E2(F ) = AutE1(F ) ∩ AutE2(F );

F ⟨G1,G2⟩ = FG1 ∩ FG2 .

Example 6.4 The Galois correspondence is not necessarily bijective. Consider the extension Q( 3
√
2)/Q, and embed

Q( 3
√
2) ⊆ R. The minimal polynomial of 3

√
2 is x3 − 2, it contains only one root in R, so AutQ(Q( 3

√
2)) is a

singleton. Note that there are two intermediate fields of Q( 3
√
2)/Q, so the Galois correspondence is not bijective.

Proposition 6.22

♠

Let k ⊆ F be a finite extension, and letG be a subgroup of Autk(F ). Then FG ⊆ F is a finite, simple, normal,
separable extension.

Remark Suppose α ∈ F and g ∈ G, then g(α) is a root of the minimal polynomial of α, it follows that theG-orbit of
α is finite, denoted α1, · · · , αn. Define qα(t) :=

∏n
i=1(t−αi). Note that for all g ∈ G, qα(t) =

∏n
i=1(t− g(αi)) =

g(qα(t)), so qα(t) ∈ FG[t]. In particular, qα(t) is separable and deg qα ≤ |G|.

Proof (a) Since [F : FG] ≤ [F : k] < +∞, then F/FG is finite. (b) For all α ∈ F , α is a root of a separable
polynomial qα(t) ∈ FG[t], so α separable in F , followed by F/k is separable. (c) F/k is simple because it is finite
and separable. (d) Let α be the generator of F/FG, then F is the splitting field of qα(t), thus it is normal. ■
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Proposition 6.23 (Surjectivity of Galois correspondence)

♠

Let k ⊆ F be a finite extension, and let G ≤ Autk(F ). Then G = AutFG(F ) and |G| = [F : FG]. In
particular, the Galois correspondence (from intermediate fields to automorphism groups) is surjective for a
finite extension.

Proof Let α denotes the generator of the simple extension F/FG, then |AutFG(F )| is the number of distinct roots
of the minimal polynomial of α, so |AutFG(F )| ≤ deg qα ≤ |G|. We may establish the equality G = AutFG(F )

by the cardinality consideration given that G ≤ Autk(F ). In addition, since F/FG is finite, separable, and normal,
then |G| = |AutFG(F )| = [F : FG]. ■

Definition 6.14 (Galois extension, Galois group)

♣

A finite extension k ⊆ F is a Galois extension if it is normal and separable.

If k ⊆ F is a Galois extension, the corresponding automorphism group Autk(F ), denoted Gal(F/k) or
Galk(F ), is called the Galois group of the extension.

Theorem 6.3 (Characterization of Galois extension)

♡

Let F/k be a finite field extension, then the following are equivalent:

(i) F is the splitting field of a separable polynomial f(t) ∈ k[t] over k.

(ii) F/k is Galois (i.e., normal and separable).

(iii) |Autk(F )| = [F : k]

(iv) k = F Autk(F ) is the fixed field of Autk(F ).

(v) The Galois correspondence for F/k is a bijection.

(vi) F/k is separable, and if K/F is an algebraic extension and σ ∈ Autk(K), then σ(F ) = F .

Remark Suppose F/k is not Galois, then the equivalence between (ii) and (vi) implies that k may be embedded
into F via automorphisms with different images; on the other hand, if F/k is Galois, the images must coincide and
the embedding k ⊂ F is unique.

Proposition 6.24

♠

Any extension of finite field Fpe/Fpd is a Galois extension, and Gal(Fpe/Fpd) is cyclic, generated by σd : x 7→
xp

d where σ is the Frobenius homomorphism.
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6.5.2 The Fundamental Theorems of Galois Theory

Theorem 6.4 (The fundamental theorem of Galois theory I)

♡

Let k ⊆ F be a Galois extension. The Galois correspondence is an inclusion-reversing isomorphism of the
lattice of intermediate subfields of k ⊆ F with the lattice of subgroups of Autk(F ).

Remark That is, the Galois extension F/k satisfies the following:

(1) The function

{intermediate field E | k ⊆ E ⊆ F} {subgroup of Autk(F )}
Φ

Ψ

defined by Φ := Aut(−)(F ) and Ψ := F (−) are inclusion reversing bijections, i.e.,

k ⊆ E ⊆ E′ ⊆ F implies AutE′(F ) ⊆ AutE(F )

G1 ≤ G2 ≤ Autk(F ) implies FG2 ⊆ FG1

AutFG(F ) = G for G ≤ Autk(F )

FAutE(F ) = E for intermediate fields k ⊆ E ⊆ F

(2) For every intermediate k ⊆ E ⊆ F , we have F/E is Galois, [F : E] = |AutE(F )|, and [E : k] = [Autk(F ) :
AutE(F )].

(3) IfE1, E2 are intermediate fields andG1, G2 are the corresponding subgroups of Autk(F ), then AutE1E2(F ) =

G1 ∩G2, and F ⟨G1,G2⟩ = E1 ∩ E2.

Example 6.5 Note that E/k is not necessarily Galois even if F/k is Galois. Let F be the splitting field of the
minimal polynomial of 3

√
2, and consider Q ⊆ Q( 3

√
2) ⊆ F . We see that Q( 3

√
2)/Q is not Galois because it is not

normal, whereas F/Q( 3
√
2) and F/Q are Galois.

Let F/k be a Galois extension, and let I be the set of k-homomorphisms E → k̄. Then

(a) For all ι ∈ I , ι(E) ⊆ F .

(b) The assignment (g, ι) 7→ g ◦ ι defines an action of Gal(F/k) on I .

(c) The action is transitive.

(d) As a Gal(F/k)-set, I is isomorphic to the set of left cosets Gal(F/k)/Gal(F/E).

Proof (a) For all k-automorphism ι and α ∈ E, ι maps α to another root of its minimal polynomial. Since F is
normal, we see that ι(α) ∈ F , hence ι(E) ⊆ F .

(b) We define the composition g ◦ ι : E → k̄ by composing ι with the restriction g|ι(E) : ι(E) ⊆ F → F of g. Then
it is not hard to verify this defines an action of Gal(F/k) on I .

(c) Let ι1, ι2 ∈ I . Consider g′ := ι2◦ι−1
1 : ι1(E) → F . SinceF is normal, gmay be extended to a k-homomorphism

g : F → F . Then g acts on ι1 is given by g ◦ i1 = (ι2 ◦ ι−1
1 ) ◦ ι1 = ι2. Hence the action is transitive.

(d) Given ι ∈ I , its orbit is I and its stabilizer is given by Stab(ι) = Autι(E)(F ).

Choosing ι = idE , then Stab(ι) = AutE(F ) = Gal(F/E). Apply the orbit-stabilizer theorem, we see that
I ∼= Gal(F/k)/Gal(F/E). ■
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Remark The above bijection interpret the equality [E : k] = [E : k]s = |I| = [Autk(F ) : AutE(F )] discovered
using Lagrange’s theorem.

Theorem 6.5 (The fundamental theorem of Galois theory II)

♡

Let k ⊆ F be a Galois extension, and let E be an intermediate field. Then k ⊆ E is Galois if and only if
AutE(F ) is normal in Autk(F ); in this case, there is an isomorphism Autk(E) ∼= Autk(F )/AutE(F ).

Proof For the sufficiency, E/k being Galois implies g(E) = E for all g ∈ Autk(F ) (Theorem 6.3 (6)). Then for
ι ∈ AutE(F ), we see (g−1ιg)|E = (g−1g)|E = idE , so g−1ιg ∈ AutE(F ). Therefore, AutE(F ) ⊴ Autk(F ).

For the necessity, suppose AutE(F ) ⊴ Autk(F ). Note that the stabilizers Stab(ι) = Autι(E)(F ) are conjugate
of each other, Autk(F ) being normal implies Autι(E)(F ) = AutE(F ) for all ι, thus E = ι(E) since the Galois
correspondence is a bijection. Again by Theorem 6.3 (6), E/k is Galois.

Furthermore, in this case, define the homomorphism φ : Autk(F ) → Autk(E) by the restriction on E. φ is clearly
surjective, and kerφ = AutE(F ). Hence by first isomorphism theorem, AutE(F ) ⊴ Autk(F ). ■

Proposition 6.25 (Composite Galois extensions)

♠

Suppose k ⊆ F is a Galois extension and k ⊆ K is any finite extension. ThenK ⊆ KF is a Galois extension,
and Gal(KF/K) ∼= Gal(F/(F ∩K)).
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6.6 Applications of Galois Theory

6.6.1 Geometric Impossibilities

Constructions by straightedge and compass follows the following rules:

If points A,B are construction, we can draw a line joining them (straightedge),

If points A,B are constructed, we can draw the circle with center at A and containing B (compass), and

We can mark any points of intersection of distinct lines, line and circle, or circle.

Given a point A and a line l, we may construct a line l′ ⊥ l passing through A. We can then construct a line l′′ ∥ l
passing through A by repeat the above construction on l′.

Definition 6.15 (Constructible numbers)

♣

A real number r is constructible if if the point (r, 0) is constructible with straightedge and compass (assuming
O = (0, 0) and P = (1, 0)); we denote the set of constructible real numbers by CR ⊆ R.

A complex number z = x+ iy is constructible if the point (x, y) is constructible by straightedge and compass;
we denote the set by CC ⊆ C.

Proposition 6.26

♠A complex number z = x+ iy ∈ CC if and only if x, y ∈ CR.

Proposition 6.27

♠The subset CR ⊆ R is a subfield of R, CC is a subfield of C, and in fact CC = CR(i).

Proof The set of constructible numbers are nonempty because 0, 1 ∈ CR. Suppose p < q ∈ CR, it is not hard to
show q− p ∈ CR. Let l be the line passing through P = (p, 0) and Q = (q, 0). Construct a line l′ ∥ l through (1, 0),
then the intersection of l′ with y-axis is given by (p/q, 0). Therefore, p/q ∈ CR. Hence CR is a field. CC = CR(i)
follows from Proposition 6.26. ■

Remark In particular, we can consider the constructible numbers as Q-extensions: Q ⊆ CR ⊆ CC.

Theorem 6.6

♡

Let γ ∈ R, then γ ∈ CR if and only if there exists real numbers δ1, · · · , δk such that γ ∈ Q(δ1, · · · , δk), and
[Q(δ1, · · · , δj) : Q(δ1, · · · , δj−1)] = 2 for all j.

Proof Sketch: For sufficiency, we prove the intersections of two lines, two circles, and a line and a circle can be
viewed as a extension of degree ≤ 2. (i) Two non-parallel lines in F has intersection in F . (ii) Given a line and a
circle in F , if they have an intersection point δ, then δ ∈ F (

√
δ) and [F (

√
δ) : F ] = 2. (iii) The intersection of two
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6.6 Applications of Galois Theory

circles can be reduced to the above case. We therefore conclude the statement by viewing the construction of γ as
stages of the construction of the intersection.

For necessity, note that the root of quadratic function can be constructed as the y-intercept of circle centered at some
P = (p, 0) through some Q = (q, 0), then we may construct γ through constructing δi’s. ■

Remark Since CC = CR(i), the same statement holds for constructible complex numbers, including i in the list of
δj (or simply allowing the δj to be complex numbers).

Corollary 6.5

♡Let γ ∈ CC be a constructible number, then [Q(γ) : Q] is a power of 2.

6.6.2 Cyclomatic Polynomials and Fields

Definition 6.16 (Roots of unity, Cyclomatic Polynomials)

♣

Define the complex numbers ζn := e2πi/n, then µn := {1, ζn, · · · , ζn−1
n } are roots of xn − 1, we call these

elements the n-th root of unity. We say ζmn is primitive if it is the generator of µn.

The cyclotomic polynomial is defined to be

Φn(x) =
∏

ζmn primitive

(x− ζ) =
∏

1≤m≤n
gcd(m,n)=1

(x− ζmn ),

and its degree ϕ(n) = |{1 ≤ m < n | gcd(n,m) = 1}| is called the Euler’s totient function.

Example 6.6 Suppose p is a prime, then Φp(x) = (xp − 1)/(x− 1) = xp−1 + · · ·+ x+ 1. It is irreducible since
Φp(x+ 1) = xp−1 +

(
p
1

)
xp−2 + · · ·+

(
p
p−1

)
is irreducible by Eisenstein’s criterion.

Proposition 6.28

♠

(a) For all positive integers n, xn − 1 =
∏

1≤d |nΦd(x).

(b) The cyclotomic polynomials Φn(x) have integer coefficients, i.e., Φn(x) ∈ Z[x].

Proof Sketch: (a) xn − 1 and
∏

Φd(x) have the same roots, namely {1, · · · , ζn, · · · , ζn−1
n }, and they are both

separable, we then conclude the equality.

(b) Proceed by strong induction on n. Let f(x) :=
∏

1≤d<n,d |nΦd(x), then xn− 1 = f(x)Φn(x) by (a). Euclidean
division over Z[x] gives xn − 1 = f(x)q(x) + r(x), then f(x)(q(x) − Φn(x)) = r(x), forcing r(x) = 0 and thus
Φn(x) = q(x) ∈ Z[x]. ■
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Proposition 6.29

♠For all n > 0, Φn(x) ∈ Z[x] is irreducible over Q.

Proof Proof by contradiction, assume Φm(x) is reducible in Z[x]. Then Φn(x) = f(x)g(x) for some irreducible
f(x), then it is the minimal polynomial of some ζmn . Choose p ∤ n such that ζmpn is not a root of f . ThenΦn(ζmpn ) = 0

implies that g(ζmpn ) = 0.

Consider the polynomials in modulo p, i.e., Fp[x]. Then ζmn is a root of g(xp) = g(x)p, so f(x) | g(x) in Fp[x],
thus f(x)2 |Φn(x), namely Φn(x) is inseparable. Note that Φn(x)′ = nxn−1 ̸≡ 0, the cyclotomic polynomial is
separable, contradiction. Hence Φn(x) is irreducible. ■

Definition 6.17 (Cyclotomic field)

♣The splitting field Q(ξn) for the polynomial xn − 1 over Q is the n-th cyclotomic field.

Proposition 6.30

♠Q(ξn)/Q is a Galois extension, with the Galois group Gal(Q(ξn)/Q) ∼= (Z/nZ)×.

Proof The extension Q(ζn)/Q is Galois because it is the splitting field of Φn(x). Define σ : (Z/nZ)× →
Gal(Q(ζn)/Q) by σ(m + nZ) : ζn 7→ ζmn , then σ is an injective homomorphism. By the order consideration, note
that |Gal(Q(ζn)/Q)| = φ(n) = |(Z/nZ)×|, σ is an isomorphism. Hence (Z/nZ)× ∼= Gal(Q(ζn)/Q). ■

6.6.3 Constructibility of n-gons

Proposition 6.31 (Galois extension of degree pr)

♠

Let F/k be a Galois extension, and assume [F : k] = pr for some prime p and r ≥ 0.Then there exist
intermediate fields

k = E0 ⊆ E1 ⊆ E2 ⊆ . . . ⊆ Er = F

such that [Ei : Ei−1] = p for i = 1, . . . , r.

Theorem 6.7 (Constructibility of n-gons)

♡The regular n-gon is constructible by straightedge and compass if and only if ϕ(n) is a power of 2.
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Chapter 7 Homological Algebra

Introduction

h Additive and abelian category

h Image and coimage

h Exact sequence, homology

h Kernel and cokernel

h Functors

h Category of cochain complexes

7.1 Categorical Preliminaries

7.1.1 Additive Category

Definition 7.1 (Additive category)

♣

A category A is additive if:

(1) A has a zero-object, i.e., an object that is both initial and terminal,

(2) A has both finite products and finite coproducts, and

(3) each set of morphisms homA(A,B) is endowed with an abelian group structure, in such way that the
composition maps are bilinear, i.e., f ◦ (g + g′) = f ◦ g + f ◦ g′ and (f + f ′) ◦ g = f ◦ g + f ′ ◦ g.

The zero-morphism 0 : A→ B is defined by the composition of A→ 0 and 0 → B.

Remark With the notion of zero-morphism, two morphisms f, g are equal if and only if f − g = 0. In addition,
any composition with zero-morphism yields zero-morphism, i.e., 0 ◦ f = 0 = f ◦ 0.

Definition 7.2 (Kernel, Cokernel)

♣

Let φ : A→ B be a morphism in an additive categoryA. A morphism ι : K → A is a kernel of φ if φ◦ ι = 0,
and for all morphism α : Z → A such that φ ◦ α = 0, there exists a unique α̃ : Z → K making the diagram
commute:

Z A B

K
α̃

α φ

ι

A morphism π : B → C is a cokernel of φ if π ◦ φ = 0, and for all β : B → Z such that β ◦ φ = 0, there
exists a unique β̃ : C → Z making the diagram commute:

A B Z

C

φ

π

β

β̃



7.1 Categorical Preliminaries

Proposition 7.1 (Characterization of mono-/epi-morphism via (co)kernels I)

♠

A morphism φ : A → B in an additive category is a monomorphism if and only if for all α : Z → A,
φ ◦ α = 0 ⇒ α = 0. It is an epimorphism if and only if for all β : B → Z, β ◦ φ = 0 ⇒ β = 0.

Proof The monomorphism part follows from the fact that φ ◦α = φ ◦α′ ⇒ α = α′ is equivalent to φ ◦ (α−α′) =

0 ⇒ α− α′ = 0. The epimorphism part is analogous. ■

Proposition 7.2 ((Co)kernels are (epi-/)mono-morphisms)

♠In any additive category, kernels are monomorphisms and cokernel are epimorphisms.

Proof Suppose kerφ ◦ α̃ = 0. Note that Z → A→ B = 0, then 0 : Z → A factors through K by 0 = kerφ ◦ α̃ =

kerφ ◦ 0 by the definition of kernel, it follows that α̃ = 0 since the factorization is unique.

Z A B

K

0

α̃

0

φ

kerφ

The cokernel part is analogous. ■

Proposition 7.3 (Characterization of mono-/epi-morphism via (co)kernels I)

♠

Let φ : A → B be a morphism in an additive category. If φ has a kernel, then φ is a monomorphism if and
only if 0 → A is its kernel. If φ has a cokernel, then φ is an epimorphism if and only if A→ 0 is its cokernel.

Proof For the necessity, suppose 0A : 0 → A is the kernel of φ. Then if φ ◦ α = 0, α factors through 0A, we thus
conclude that α = 0. Hence φ is a monomorphism.

Conversely, for the sufficiency, suppose φ is a monomorphism. If φ ◦ α = 0, then α = 0 by Proposition 7.1. It
follows that α = 0 factors through Z → 0 → A, namely 0 → A is a kernel.

The epimorphism part is analogous. ■

7.1.2 Abelian Category

Definition 7.3 (Abelian category)

♣

An additive category A is abelian if:

(1) kernels and cokernels exist in A, and

(2) every monomorphism is a kernel of some morphism, and every epimorphism is a cokernel of some
morphism.
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Proposition 7.4

♠In an abelian categoryA, every kernel is the kernel of its cokernel; every cokernel is the cokernel of its kernel.

Remark For the cokernel part, let π to be the cokernel of φ and ι to be the kernel of π, we want to prove π = coker ι.
Consider

L

Z A B

K

φ

π=coker φ

β

ι=kerπ

it suffices to prove that for all β s.t. β ◦ ι = 0, β factor through π.

Proposition 7.5

♠

Let φ : A→ B be a morphism in an abelian category A, and assume that φ is both a monomorphism and an
epimorphism. Then φ is an isomorphism.

Remark We obtain a left inverse of φ by viewing φ as the kernel of its cokernel B → 0, and a right inverse is
obtained by viewing φ as the cokernel of its kernel 0 → A.

B

0 A B 0

A

id

φ

id

Proposition 7.6

♠In an abelian category, finite products and coproducts coincide.

7.1.3 Images and Canonical Decomposition of Morphisms

Proposition 7.7 (ker(coker φ))

♠

Let φ : A→ B be a morphism in an abelian category, and let ι : K → B be the kernel of the cokernel of φ.
Then

(a) ι is a monomorphism;

(b) φ factors through ι; and

(c) ι is initial with these properties.

Proof (a) follows from Proposition 7.1, and (b) follows from coker φ ◦ φ = 0 and the definition of kernel.
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7.1 Categorical Preliminaries

(c) Let ψ : L→ B satisfies the above properties, consider its cokernel B → Cokψ.

Step 1: coker ψ factors through coker φ.

Since coker ψ ◦ ψ = 0 and φ factors through ψ, then coker ψ ◦ φ = 0, followed by coker ψ factors through coker φ
by the definition of cokernel.

Step 2: ι factors through ψ.

Note that coker ψ ◦ ι = 0 since coker φ ◦ ι = 0 and coker φ factors through coker ψ. It follows that ι factors through
ψ by the definition of kernel. ■

L

A K B Cokφ

Cokψ

ψ

φ

ι

?

coker φ

coker ψ

Remark This proposition motivates the general definition of image: every monomorphism through which φ factors
must factor uniquely through im φ.

Definition 7.4 (Image, Coimage)

♣

Let φ : A → B be an abelian category. The image of φ is the object im φ = ker(coker φ). The coimage of
φ is the object coim φ := coker(kerφ) as the dual definition of image.

Proposition 7.8 (Factorization through (co)image)

♠

Let φ : A → B be a morphism in an abelian category, and let im φ : K → B, coim φ : A → C be its
image and coimage, respectively. Then the induced morphisms A → K and C → B are, respectively, an
epimorphism and a monomorphism.

Proof Let φ factors through im φ into φ̄ : A→ K, and let φ̄ factors through im φ̄.

A K B

K ′

φ̄

φ

im φ

im φ̄

Note that K ′ → B is a monomorphism through which φ factors, and K ′ → B is preceding the initial morphism
im φ, then im φ is an isomorphism. In particular, the cokernel coker im φ̄ = coker φ̄ = 0, followed by φ̄ is an
epimorphism. ■

Theorem 7.1 (Canonical decomposition in abelian categories)

Every morphism φ : A→ B in an abelian category A may be decomposed as
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7.1 Categorical Preliminaries

♡

φ : A C K Bcoim φ

∼
im φ

where A → C is coker (kerφ) = coim φ and K → B is ker(coker φ) = im φ. The induced morphism
φ̃ : C → K is uniquely determined and is an isomorphism.

Proof There exists a unique homomorphism ψ : K → C making the diagram commute by the universal property
im φ.

K

A B

C

im φφ̄

coim φ

φ

φ

Since ψ ◦ φ̄ is an epimorphism, so does ψ; similarly, since φ ◦ ψ is a monomorphism, so does ψ. Therefore ψ is an
isomorphism, taking φ−1 : C → K suffices. ■
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7.2 Functors

Definition 7.5 (Functor)

♣

Let C,D be two categories. A (covariant) functor F : C → D consists of

(1) an assignment (A ∈ C) → (F (A) ∈ D),

(2) a function FA,B : homC(A,B) → homD(F(A),F(B)) for every pair of objects A,B ∈ C (we may
write F : FA,B for simplicity), where the function F

(i) preserves identities: F(idA) = idF (A) for all A ∈ C, and

(ii) preserves composition: F(β ◦α) = F(β) ◦F(α) for all A,B ∈ C, α : A→ B, and β : B → C.

A contravariant functor G : C → D is a covariant functor Cop → D.

Remark For a contravariant functor G : C → D, (ii) is equivalent to G(β ◦C α) = G(α) ◦D G(β).

Example 7.1 Example of basic functors include:

Forgetful functor: U : Grp → Set defined by (1) U assigns each group to its underlying set, and (2) U map
each group homomorphism to its underlying set-function.

Free group: F : Set → Grp defined by (1) U : X 7→ F (X) where F (X) is the free group on the set X , and
(2) U maps α : A → B to the group homomorphism F (A) → F (B) induced by α̃ : A → B ⊆ F (B) by the
universal property of free group.

Group of units: (−)× : Ring → Grp defined by (1) (−)× : R→ R× assigning each ring to its group of units,
and (2) maps each α : A → B to the group homomorphism α|R× , i.e., the restriction of α on the group of
units.

Example 7.2 For a category C and an object X ∈ C, the covariant Yoneda functor FX = homC(X,−) : C → Set
is defined as:

(1) For each A ∈ C, assign F : A 7→ homC(X,A).

(2) For each α ∈ homC(A,B), map F : α 7→ α∗, where α∗ : homC(X,A) → homC(X,B) is defined by
α∗(f) = α ◦ f .

Analogously, we may define the contravariant Yoneda FX =: Cop → Set assigning A 7→ homC(A,X).

Example 7.3 The Galois groups functor F = Gal(−/k) : (GalExtk)op → Grp is defined as

(1) For each E ∈ (GalExtk)op, assign F : E 7→ Gal(E/k).

(2) For each α ∈ hom(GalExtk)op(F,E) = homGalExtk(E,F ), namely a (Galois) extension F/E, define F(α) by
the canonical map Gal(F/k) → Gal(E/k) obtained by restriction.
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7.3 Complexes and Homology

7.3.1 Exactness in Abelian Category

Definition 7.6 (Exactness)

♣

Let A be an abelian category. Given a sequence of objects and morphisms in A,

· · · A B C · · ·φ ψ

the sequence is exact at B if

(1) ψ ◦ φ = 0

(2) coker(φ) ◦ ker(ψ) = 0

Proposition 7.9 (Equivalent definition of exactness)

♠A sequence · · ·A φ−→ B
ψ−→ C −→ · · · is exact at B if and only if im(φ) = ker(ψ).

Remark That is, the above sequence is exact at B if and only if ψ and coker(φ) (both of which are morphisms with
B as source) have the same kernel, if and only if φ and ker(ψ) (both of which are morphisms with B as target) have
the same cokernel.

Proposition 7.10 (Exactness and mono-/epi-morphisms)

♠

Let a sequence be given as above that is exact B. Then ψ is a monomorphism if and only if φ = 0, and φ is
an epimorphism if and only if ψ = 0.

Proposition 7.11 (Exact sequences and homA(Z,−))

♠

Let φ : A→ B be a morphism in an additive category A. Then ι : K → A is a kernel for φ if and only if for
all objects Z the induced sequence

0 homA (Z,K) homA (Z,A) homA (Z,B)
ι∗ φ∗

is exact, where ι∗(f) := ι ◦ f and φ∗(g) := φ ◦ g. The result is analogous for cokernels.
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7.3.2 Complex and Homology

Proposition 7.12

♠

In an abelian category, consider the sequence A f−→ B
g−→ C. Then g ◦ f = 0 if and only if im f factors

through ker g.

Proof For the sufficiency, if g ◦ f = 0, then f factors through the monomorphism ker g, so does im f by the
universal property of image. For the necessity, if im f factors through ker g, so does f , namely f = ker g ◦ f̃ for
some f̃ , then g ◦ f = g ◦ ker g ◦ f̃ = 0. ■

Definition 7.7 (Complex)

♣

A cochain complex M• = (M•, d•) in an abelian category A is a sequence of morphisms

· · · M i−1 M i M i+1 · · ·di−2 di−1 di di+1

such that di ◦ di−1 = 0 for all i ∈ Z. We call d• the differentials of the complex. We say M• is exact at i if
im di−1 = ker di, and we call M• is exact if it is exact at all i ∈ Z.

Remark The motivation of cohomology groups of a cochain complex (M•, d•) is a “measure its deviation of
exactness”: H i(M•) := ker di/im di−1.

In the general abelian category, note that im di−1 factors through ker di,

M i−1 M i M i+1

I K

di−1 di

im di−1

σ

ker di

this give rise to a unique monomorphism σ : I → K. We may identity the i-th cohomology H i(M•) := coker σ
(and we use quotient notation as a shorthand).

7.3.3 Category of Cochain Complexes

Definition 7.8 (Category of Cochain Complexes)

Let A be an abelian category, we define the category of cochain complexes C(A) by

The objects are cochain complexes (M•, d•M ) in A
The morphisms α : (M•, d•M ) → (N•, d•N ) are given by families of morphisms (αi : M i → N i)i∈Z

such that all diagrams of the following form commute:
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♣

· · · M i−1 M i M i+1 · · ·

· · · N i−1 N i N i+1 · · ·

di−1
M

αi−1

diM

αi αi+1

di−1
N

diN

Proposition 7.13

♠If A is an abelian category, then C(A) is also an abelian category.

Definition 7.9 (Additive functor)

♣

Let F : C → D be a functor between additive categories. We call F additive if for all A,B ∈ C, the induced
map FA,B : homC(A,B) → homD(F (A), F (B)) is a group homomorphism.

Proposition 7.14 (Homology as a functor)

♠For any fixed i ∈ Z, the assignment (M•, d•) 7→ H i(M•, d•) defines an additive covariant functor C(A) → A.

Remark We can also view cohomology as a functor C(A) → C(A), by placing each cohomology object H i(M•)

in degree i, connected by zero-morphisms, obtaining a complex H•(M•).

Proposition 7.15 (Connecting homomorphism in degree 0)

♠

Consider the short exact sequences (L•, λ), (M•, µ), (N•, ν). Assume there exists a short exact sequence in
C(A) given by 0 −→ L• −→M• −→ N• −→ 0. Then there exists an exact sequence in A as follows

0 H0(L•) H0(M•) H0(N•)

H1(L•) H1(M•) H1(N•) 0

δ

Proof Sketch: By the Freyd-Mitchell embedding theorem, any abelian category can be identified with a full
subcategory of R-Mod for some ring R. Then we may apply the snake lemma (Proposition 4.14).
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