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1 Fundamental Concepts

1.1 Section 1: Foundational Concepts

Set Relations and Operations Two set A and B are equal, denoted by A = B, if A and B consist of

precisely the same objects. A is a subset of B if every element of A is an element of B (under this definition

A ⊂ B if A = B), and we write A ⊂ B. If A ̸= B and A ⊂ B, we say A is a proper set of B and write

A ⊊ B.

Given two sets A and B:

(a) The union of A and B is defined by A ∪B = {x |x ∈ A or x ∈ B}.

(b) The intersection of A and B is defined by A ∩B = {x |x ∈ A and x ∈ B}.

(c) The difference of A and B is defined by A−B = {x |x ∈ A and x /∈ B}.

The arbitrary unions and intersections are defined similarly: they are the union or intersection of all sets in

a collection of sets A, and the notations are
⋂

A∈A A and
⋃

A∈A A. DeMorgan’s Law : Suppose U is the

universal set, and A is a collection of sets. Then

U −
⋂
A∈A

A =
⋃
A∈A

(U −A) and U −
⋃
A∈A

A =
⋂
A∈A

(U −A).

The power set , denoted by P(A), is the collection of all subsets of a set A.

Introduction to Logic The statement “if P , then Q” is denoted by P ⇒ Q.

(a) The contrapositive of P ⇒ Q is the statement “if Q is false, then P is false”, namely (not Q) ⇒
(not P ). The statement and its contrapositive are logically equivalent.

(b) The converse of P ⇒ Q is “if Q, then P”, namely Q ⇒ P .

(c) The negation of P is the statement not P .

Note that P ⇒ Q is logically equivalent to (not P ) or Q.

Cartesian Product Given set A and B, the Cartesian Product , denoted by A × B, is defined by

A×B = {(a, b) | a ∈ A and b ∈ B}.
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1.2 Section 2: Functions

Rule of Assignment A rule of assignment is a subset r ⊂ C×D, where each element of C appears as

the first coordinate of at most one ordered pair in r; that is, r is a rule of assignment if [(c, d) ∈ r and (c, d′) ∈
r] ⇒ [d = d′].

Given a rule of assignment r, the domain of r is defined to be the subset of C consisting all first coordinates

of elements of r, namely Domain r = {c | ∃d ∈ D : (c, d) ∈ r}. The image set is of r is defined to be the

subset of C consisting all second coordinates of elements of r, namely Image r = {d | ∃c ∈ C : (c, d) ∈ r}.

Functions A function f is a rule of assignment, together with a set B that contains the image set of r.

The set B is called the range of f . If a function having domain A and range B, we denote the function as

f : A → B.

If f : A → B and A0 ⊂ A, we define the restriction of f to A0 to be the function mapping A0 into B

whose rule is {(a, f(a)) | a ∈ A0}.

Injective, Surjective, and Bijective A function f : A → B is said to be

• injective (or one-to-one) if for each pair of distinct points of A, their images under f are distinct,

namely [f(a) = f(a′)] ⇒ [a = a′].

• surjective (or onto) if every element of B is the image of some element of A under f , namely

[b ∈ B] ⇒ [b = f(a) for some a ∈ A].

• bijective if f is both injective and surjective. If f is bijective, there exists an inverse f−1 : B → A

where f−1(f(a)) = a for all a ∈ A and f(f−1(b)) = b for all b ∈ B.

If A0 ⊂ A, we denote by f(A0) the image of A0 under f , which is set of all images of points of A0 under f .

If B0 ⊂ B, we denote f−1(B0) the preimage of B0 (note that the inverse function does not necessarily exist

for preimage to exist).
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1.3 Section 3: Relations

Relations and Equivalence Relations A relation on a set A is a subset C of the cartesian product

A×A. We denote xCy if (x, y) ∈ C. An equivalence relation on a set A is a relation C with the following

properties:

(a) Reflectivity: xCx for all x ∈ A.

(b) Symmetry: If xCy, then yCx.

(c) Transitivity: If xCy and yCz, then xCz.

Given an equivalence relation ∼ on A, the equivalence class of x is E = {y | y ∼ x}. Note that the

equivalence classes E and E′ are either disjoint or equal.

Order Relations An order relations on A is a relation C with the following properties:

(a) Comparability: For every x, y ∈ A such that x ̸= y, either xCy or yCx.

(b) Nonreflexitivity: For no x ∈ A does the relation xCx holds.

(c) Transitivity: If xCy and yCz, then xCz.

The symbol < is commonly used to denote an order relation. Suppose a, b ∈ A and a < b, we use (a, b) to

denote the set {x | a < x < b}. If this set is empty, a is the immediate predecessor of b, and b is the

immediate successor of a.

Two sets A and B (with order relations <A and <B) have the same order type if there is a bijective

correspondence between them that preserves order; that is, there exists a bijective function f : A → B such

that a1 <A a2 ⇒ f(a1) <B f(a2).

Supremum and Infimum A0 ⊂ A is bounded above if there is an element a ∈ A such that x ≤ a for all

x ∈ A0; a is called an upper bound of A0.

Supremum, Infimum If the set of all upper bounds for A0 has a least element x, then x is called

the supremum (the least upper bound) of A0 and it is denoted by x = supA0. The infimum is an

analogous.

Least Upper Bound Property, Greatest Lower Bound Property An ordered set A is said to

have the least upper bound property if every nonempty subset A0 ⊂ A that is bounded above has a

least upper bound. The greatest lower bound property is an analogous.
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1.4 Section 4: The Integers and the Real Numbers

Real Numbers Assume there exists a set R (set of real numbers), two binary operations + and · (addition
and multiplication), and an order relation < on R, with the following properties:

• Algebraic properties: (1) associativity, (2) commutativity, (3) identity element, and (4) inverse exists

for (R,+) and (R∗, ·); (5) the distributive law holds; and (6) trichotomy holds for the order relation.

• Order properties: (7) the order relation < has the least upper bound property, and (8) if x < y, there

exists z such that x < z < y.

Integers The set Z+ of positive integers is defined by the equation Z+ =
⋂

A∈A A where A is the

collective of all inductive subsets of R (the subset of R that contains 1, and x ∈ A ⇒ x + 1 ∈ A holds).

Note that the set Z+ has no upper bound in R, this is known as the Archimedean ordering property holds.

The set Z of integers is defined to be the set consisiting of the positive integers Z+, the number 0, and the

negative of elements of Z+.

We have the following theorems:

Theorem 4.1 (Well-ordering property) Every nonempty subset of Z+ has a smallest element.

Theorem 4.2 (Strong induction principle) Let A be a set of positive integers. Suppose that for each

positive integer n, the statement Sn ⊂ A implies the statement n ∈ A. Then A = Z+.
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1.5 Section 5: Cartesian Products

m-Tuple, ω-Tuple Given a set X. Let m ∈ Z+, we define an m-tuple of elements of X to be a

function x : {1, 2, · · · ,m} → X. We define an ω-tuple of elements of X to be a function x : Z+ → X,

and it is called a (infinite) sequence.

We usually denote the function x by (x1, · · · , xm) and its i-th coordinate of x by xi.

Let {A1, A2, · · · } be a family of sets. The Cartesian product of this indexed family
∏

i∈Z+
Ai = A1×A2×· · ·

is the set of all ω-tuple of elements of X.
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2 Set Theory

2.1 Section 6: Finite Sets

Finite Set, Cardinality A set A is finite if there is a bijection f : A → {1, · · · , n} for some positive

n. If A is empty, the cardinality is 0, otherwise the cardinality of A is n.

Lemma 6.1 Let A be a set, n be a positive integer, and a0 ∈ A. There exists a bijection f : A →
{1, · · · , n+ 1} if and only if there exists a bijection g : A− {a0} → {1, · · · , n}.

Remark : This lemma is saying that removing an element from a finite set will reduce the cardinality by

one.

Theorem 6.2

Let A be a set with cardinality n. Let B be a set such that B ⊊ A, then there exists no bijection

g : B → {1, · · · , n} but (if B ̸= ∅) exists a bijection g : B → {1, · · · ,m} for some m < n.

Remark : In other words, any proper subset A0 of a finite set A is finite, and A0 has a smaller cardinality

than A.

Proof : We proceed by induction on n. If n = 1, then B = ∅, so the statement holds. For n ≥ 1, assume

the theorem holds for n. Suppose f : A → {1, · · · , n + 1} is a bijection and B ⊊ A. Choose x ∈ B, there

exists a bijection g : A − {x} → {1, · · · , n} (6.1). Suppose B − {x} = ∅, there is a bijection with the set

{1}. Otherwise, suppose B −{x} ≠ ∅. Note that B −{x} ⊊ A−{x}, the inductive hypothesis implies that

the desired statements hold for B − {x}, thus they hold for B (6.1).

The following statements are the corollary of Theorem 6.2:

Corollary 6.4 : Z+ is not finite.

Corollary 6.5 : The cardinality of a finite set A is uniquely determined by A.

Corollary 6.7

Let B be a nonempty set, then the following are equivalent:

(a) B is finite.

(b) There is a surjective function from a section of the positive integers onto B.

(c) There is an injective function from B into a section of the positive integers.

Proof : (a) ⇒ (b): follows immediately from the definition of finite sets.

(b) ⇒ (c): Assume there is a surjective function f : {1, · · · , n} → B. Define g : B → {1, · · · , n} by

g(b) = min{x |x ∈ f−1({b})}, note that g is uniquely defined by the well-ordering property. g is injective
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because f (−1)({x}) and f (−1)({x′}) are disjoint if x ̸= x′.

(c) ⇒ (a): Assume g : B → {1, · · · , n} is injective, then changing the range gives a bijection into a subset of

{1, · · · , n}, which is finite.
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2.2 Section 8: Countable and Uncountable Sets

Countable, Uncountable A set A is countably infinite if there is a bijective correspondence

f : A → Z+. A set is said to be countable if it is either finite or countably infinite, otherwise it is said

to be uncountable .

Theorem 7.1

Let B be a nonempty set, then the following are equivalent:

(a) B is countable.

(b) There is a surjective function f : Z+ → B.

(c) There is an injective function g : B → Z+.

The proof of Theorem 7.1 uses the following fact:

Lemma 7.2 If C is an infinite subset of Z+, the C is countably infinite.

Proof : Construct f : Z+ → C. Define f(1) to be the least element of C and define f(n) to be the

least element of C − f({1, · · · , n − 1}), f is well-defined by the well-ordering property and the fact that

C − f({1, · · · , n− 1}) is nonempty for all n.

We now want to show f is bijective. Given m < n, f(m) belongs to f({1, · · · , n − 1} but f(n) does not,

so f(m) ̸= f(n), thus f is injective. Let c ∈ C, and suppose c /∈ f(Z+). There exists x such that f(x) > c

because C is infinite and f is injective, but f(x) ≤ c by the definition of f , resulting in contradiction.

Therefore, c ∈ f(Z+), so f is surjective thus bijective.

Corollary 7.3

A subset of a countable set is countable.

Theorem 7.5

A countable union of countable sets is countable.

Theorem 7.6

A finite product of countable sets is countable.

Theorem 7.7 Let X denote the set {0, 1}, the set Xω is uncountable.

Proof : Suppose f : Z+ → Xω, denote f(n) = (xn1, xn2, · · · ). Define y = (y1, y2, · · · ) ∈ Xω by yn = 0 if
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xnn = 1, and yn = 1 if xnn = 0. Since yn ̸= xnn, y ̸= xn for all n ∈ Z+; that is yn is not in the image set of

f , thus f is not surjective. Hence Xω is uncountable by Theorem 7.1.

We also arrive a more general form of the preceding theorem:

Theorem 7.8 Let A be a set. There is no injective map f : P → A, and there is no surjective map

g : A → A.
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2.3 Section 9: Infinite Sets and the Axiom of Choice

Theorem 9.1

Let A be a set. The following statement about A are equivalent:

(a) There exists a injective function f : Z+ → A.

(b) There exists a bijection of A with a proper subset of itself.

(c) A is infinite.

Axoim of Choice

Given a collection A of disjoint nonempty sets, there exists a set C consisting of exactly one element

from each element of A.

Theorem 9.2 (The Existence of a Choice Function) Given a collection B of nonempty sets (not

necessarily disjoint), there exists a function c : B →
⋃

B∈B B such that c(B) is an element of B for each

B ∈ B.

The function c is called a choice function for the collection B.
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2.4 Section 10: Well-Ordered Sets

Well-Ordered Sets A set A with an order relation < is said to be well-ordered if every nonempty

subset of A has a smallest element.

The ways to construct a well-ordered set include:

(a) If A is a well-ordered set, then any subset of A is well-ordered in the restricted order relation.

(b) If A and B are well-ordered sets, then A×B is well-ordered in dictionary order.

Theorem 10.1

Every nonempty finite ordered set has the order type of a section {1, · · · , n} of Z+, so it is well-ordered.

Sketch of Proof : First we show that every finite ordered set has a largest element (by induction on the

cardinality). Second, we show there is an order-preserving bijection of {1, · · · , n} with A (by induction on

n). In the inductive step, let a be the largest element, there is a bijection f ′ : {1, · · · , n− 1} → A− {a} by

inductive hypothesis, then construction f : {1, · · · , n} → A by f(n) = a and f(x) = f ′(x) if x ̸= n, and we

can show that f is order-preserving.

Theorem (Well-Ordering Theorem)

If A is a set, there exists an order relation on A that is well-ordering.

Corollary There exists an uncountable well-ordered set.

Section Let X be a well-ordered set. Given α ∈ X, let Sα denote the set Sα = {x |x ∈ X and x < α}.
It is called the section of X by α.

Lemma 10.2

There exists a well-ordered set A having a largest element Ω such that the section SΩ of A by Ω is

uncountable but every other section of A is countable.

Proof : Let B be an uncountable well-ordered set, and denote the least element of B by b. Define C :=

{0, 1} × B with dictionary order, note that C is also well-ordered. S(1,x) is uncountable for all x ∈ B and

S(0,b) = ∅ is countable. Let Ω be the smallest element of C for which SΩ is uncountable, then A = SΩ ∪{Ω}
has the desired property.

Remark : We called SΩ the minimal countable well-ordered set.
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Theorem 10.3 If A is a countable subset of SΩ, then A has an upper bound in SΩ.

3 Topological Spaces and Specific Topologies

3.1 Section 12: Topological Spaces

Topology, Topological Spaces A topology on a set X is a collection T of subsets of X having the

following properties:

1. The empty set ∅ and the set X are in T .

2. The union of the elements of any subcollection of T is in T .

3. The intersection of the elements of any finite subcollection of T is in T .

A set X for which a topology T has been specified is called a topological space .

Remark: The condition (2) and (3) is saying that topology is closed under unions and finite intersections.

Suppose X is nonempty. T = {∅, X} is a topology on X, it is said to be the indiscrete topology (trivial

topology), and it is the minimal topology on X. T = P(X) is also a topology on X, it is said to be the

discrete topology, and it is the maximal topology on X.

Open Set Suppose T is a topology on X. A subset U of X is an open set of X if U belongs to T .

Finer, Coarser Suppose T and T ′ are two topologies on a given set X. If T ⊂ T ′, T is said to be

coarser than T ′, and T ′ is said to be finer than T . If T ⊊ T ′, T is said to be strictly coarser than

T ′, and T ′ is said to be strictly finer than T . We say T is comparable with T ′ if either T ⊂ T ′ or

T ′ ⊂ T .
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3.2 Section 13: Basis for Topology

3.2.1 Basis for Topology

Basis, Open Subset If X is a set, a basis for a topology on X is a collection B of subsets of X

(Called basis elements) such that:

1. For each x ∈ X, there is at least one basis element B containing x.

2. If x belongs to the intersection of two basis element B1 and B2, then there is a basis element B3

containing x such that B3 ⊂ B1 ∩B2.

If B satisfies these two conditions, the we define the topology T generated by B as follows: A subset

U of X is said to be open in X (that is, to be an element of T ) if for each x ∈ U , there is a basis

element B ∈ B such that x ∈ B and B ⊂ U .

Remark : The collection T generated by the basis B is a topology on X.

Proof : (1) It is not hard to show that ∅, X ∈ T by definition.

(2) For all x ∈
⋃

α Uα where Uα ∈ T , x ∈ Uβ for some β. Since Uβ is open in X, there is B ∈ B such that

x ∈ B ⊂ Uβ , thus x ∈ B ⊂
⋃

α Uα. Then
⋃

α Uα is open in X by definition.

(3) For all x ∈
⋂

α Uα, there exists Bα ∈ B for each α, such that x ∈ Bα ⊂ Uα, because Uα is open in T for

all α. There exists B ∈ B such that B ⊂
⋂

α Bα by the definition of basis. Then x ∈ B ⊂
⋂

α Bα ⊂
⋂

α Uα.

Therefore,
⋃

α Uα is open in X.

Lemma 13.1

Let X be a set, let B be a basis for a topology T on X. Then T equals the collection of all unions of

elements of B.

Remark : Equivalently, U is a open set in TB if and only if U is an union of sets in B.

Proof : (⇐) Given B, each B ∈ B is an element of T . Since T is a topology, union of B is in T . (⇒) Given

U ∈ T , for all x ∈ U , choose Bx ∈ B such that x ∈ Bx ⊂ U . Then U =
⋃

x∈U Bx, so U is a union of elements

of B. This completes the proof.

Lemma 13.2

Let X be a topological space. Suppose that C is a collection of open sets of X such that for each

open set U of X and each x ∈ U , there is an element C ∈ C such that x ∈ C ⊂ U . Then C is a basis

for the topology of X.
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Lemma 13.3

Let B and B′ be bases for the topologies T and T ′, respectively, on X. Then the following are

equivalent:

(a) T ′ is finer than T .

(b) For each x ∈ X and each basis element B ∈ B containing x, there is a basis element B′ ∈ B′

such that x ∈ B′ ⊂ B.

Proof : (⇐) Given U ∈ T . For all x ∈ U , there exists B ∈ B such that x ∈ B ⊂ U , and there is B′ ∈ B′

such that B′ ⊂ B by condition (b). Then x ∈ B′ ⊂ B ⊂ U , so U ∈ T ′.

(⇒) Suppose T ⊂ T ′. For all B ∈ B ⊂ T , we have B ∈ T ′. Then for all x ∈ B, there is B′ ∈ B′ such that

x ∈ B′ ⊂ B by the definition of open sets.

Subbasis A subbasis S for a topology on X is a collection of subsets of X whose union equals X.

The topology generated by the subbasis S is defined to be the collection T of all unions of finite

intersections of elements of S..

Remark : The topology generated by the subbasis
⋃

Tα is the smallest topology containing all the collections

Tα.

In order to show that T is a topology, it is suffice to show that the collection B of all finite intersections

of elements of S is a basis (Lemma 13.1). Condition (1): Since the union of S equals X, for all x ∈ X, x

belongs to an element of S thus to an element of B. Condition (2): For all B1, B2 ∈ B, B1 and B2 are finite

intersections of S, so B1 ∩B2 is also a finite intersection of S, thus B1 ∩B2 ∈ B.

3.2.2 Standard Topology

Standard Topology, Lower Limit Topology (Rl), K-Topology (RK)

• If B is the collection of all open intervals in the real line, (a, b) = {x | a < x < b}, the topology

generated by B is called the standard topology on the real line.

• If B′ is the collection of all half-open intervals of the form [a, b) = {x | a ≤ x < b}, where a < b, the

topology generated by B′ is called the lower limit topology on R, and we denote it by Rl.

• Let K denote the set of all numbers of the form 1/n for n ∈ Z+, and let B′′ be the collection of

all open intervals (a, b) along with all set of the form (a, b)−K. The topology generated by B′′ is

called the K-topology on R, and we denote it by Rk.

Lemma 13.4 The topologies of Rl and RK are strictly finer than the standard topology on R, but are not

comparable with one another.

Sketch : Clearly Rl and RK are finer than the standard topology. Note that [−1, 0) is a basis element of

Rl, (−1, 1) −K is a basis element of RK , but they are not basis elements of one another nor the standard

topology. This completes the proof.
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3.3 Section 14: The Order Topology

Order Topology Let X be a set with a simple order relation; assume X has more than one element.

Let B be the collection of all sets of the following types:

(1) All open intervals (a, b) in X.

(2) All intervals of the form [a0, b), where a0 is the smallest element (if any) of X.

(3) All intervals of the form (a, b0], where b0 is the largest element (if any) of X.

The collection B is a basis for a topology on X, which is called the order topology .

If X is an ordered set, and a is an element of X, the following subsets are called rays: (1) (a,+∞) = {x |x >

a}, (2) (−∞, a) = {x |x < a}, (3) [a,+∞) = {x |x ≥ a}, and (4) (−∞, a] = {x |x ≤ a}. The first two types

are open rays, and the last two types are called closed rays.

Every basis element for the order topology equals a finite intersection of open rays. Then the open rays form

a subbasis for the order topology of X.
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3.4 Section 15: The Product Topology on X × Y

Product Topology Let X and Y be topological spaces. The product topology on X × Y is the

topology having as basis the collection B of all sets of the form U × V where U is an open subset of X

and V is an open subset of Y .

The product topology is well-define, because the collection B is a basis:

(1) For all (x, y) ∈ X × Y , note that X × Y is itself a basis element, so (x, y) ∈ X × Y ⊂ B.

(2) Suppose (x, y) ∈ (U1 × V1) ∩ (U2 × V2). Note that (U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 × V2) and

the latter set is a basis element because U1 ∩U2 and V1 × V2 are open in X and Y , respectively. Then

there exists B = (U1 ∩ U2)× (V1 × V2) ∈ B such that x ∈ B ⊂ (U1 × V1) ∩ (U2 × V2).

Theorem 15.1

If B is a basis for the topology of X and C is a basis for the topology of Y , then the collection

D = {B × C |B ∈ B and C ∈ C} is a basis for the topology of X × Y .

Proof : We apply Lemma 13.2. Given an open set W and a point (x, y) ∈ W , there exists a basis element

U × V such that (x, y) ∈ U × V ⊂ W by the definition of open set. Since U and V are open in X and Y ,

respectively, there exists B ∈ B and C ∈ C such that x ∈ B ⊂ U and y ∈ C ⊂ V . Then B ×C is an element

in D for which (x, y) ⊂ B × C ⊂ W . Hence by Lemma 13.2, D is a basis for X × Y .

Projection Let π1 : X × Y → X be defined by π1(x, y) = x; let π2 : X × Y → Y be defined by

π2(x, y) = y. The maps π1 and π2 are called projections of X × Y onto its first and second factors,

respectively.

Theorem 15.2

The collection S = {π−1
1 (U) |U is open in X}∪{π−1

2 (V ) |V is open in Y } is a subbasis for the prod-

uct topology on X × Y .

Proof : Let T denotes the product topology and T ′ denotes the topology generated by S. Since every

element of S belongs to T , so do arbitrary unions of finite intersections of elements of S, thus T ′ ⊂ T . Every

basis element U × V of T can be written as U × V = π−1
1 (U) ∩ π−1

2 (V ), the finite intersection of elements

of S, so U × V ∈ T ′, thus T ⊂ T ′.
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3.5 Section 16: The Subspace Topology

Subspace Topology Let X be a topological space with topology T . If Y is a subset of X, then

collection
TY = {U ∩ Y |U ∈ T }

is a topology on Y , called the subspace topology . With this topology, Y is called a subspace of X, its

open sets consist of all intersections of open sets of X with Y .

The collection TY is a topology by definition,

(1) ∅ and Y is in TY : ∅ = Y ∩∅ and Y = Y ∩X, so ∅, Y ∈ TY
(2) TY is closed under arbitrary unions:

⋃
α Uα is open in X, then

⋃
α(Y ∩ Uα) = Y ∩ (

⋃
α Uα) ∈ TY ,

(3) TY is closed under finite intersections:
⋂n

i=1 Ui is open in X, then
⋂n

i=1(Y ∩Ui) = Y ∩ (
⋂n

i=1 Ui) ∈ TY .

Lemma 16.1

If B is a basis for the topology of X, then the collection

BY = {B ∩ Y |B ∈ B}

is a basis for the subspace topology on Y .

Proof : We apply Lemma 13.2. Given an open set U and y ∈ U ∩ Y , we can choose B ∈ B such that

y ∈ B ⊂ U . Then y ∈ B ∩ Y ⊂ U ∩ Y . The desired result follows from Lemma 13.2.

Lemma 16.2

Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is open in X.

Proof : U is open in Y , so U = Y ∩V for some set V open in X. Then Y ∩V is open because it is the finite

intersection of open sets.

The following theorems explore the relation between subspace topology and the order and product topologies.

Theorem 16.3

If A is a subspace of X and B is a subspace of Y , then the product topology on A × B is the same

as the topology A×B inherits as the subspace of X × Y .

Proof : The sets (U × V ) ∩ (A×B) and (U ∩A)× (V ∩B) are the general basis elements for the subspace

topology on A×B (denoted by T1) and product topology on A×B (denoted by T2), respectively. Suppose
x ∈ (U ∩A)× (V ∩B), where U × V is open in X × Y . Then x ∈ (U × V ) ∩ (A×B) = (U ∩A)× (V ∩B),

so T1 is finer than T∈ (lemma 13.3). Similarly, T2 is finer than T1. Hence the two topologies are equal.
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However, the preceding statement does not holds for order topology. The order topology on Y is not

necessarily the same as the topology that Y inherits as a subspace of X.

Convex Given an ordered set X, we say that a subset Y of X is convex in X if for each pair of points

a < b of Y , the entire interval (a, b) of points of X lies in Y . Note that intervals and rays in X are convex

in X.

Theorem 16.4

Let X be an ordered set in the order topology; let Y be a subset of X that is convex in X. Then the

order topology on Y is the same as the topology Y inherits as a subspace of X.

Proof : Suppose T1 and T2 denotes the order topology and subspace topology, respectively.

(T2 ⊂ T1) Recall that Y is convex in X. The intersection of Y with the ray (a,+∞) or (−∞, a) in X is

either an open ray of Y , Y it self, or empty. Since the set (a,+∞)∩ Y and (−∞, a)∩ Y form a subbasis for

the T2, and each is open in the T1, then T2 ⊂ T1.

(T1 ⊂ T2) Note that any open ray of Y equals the intersection of an open ray of X with Y , so it is open in

T2. Since open rays of Y are a subbasis of T1, T1 ⊂ T2.
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4 Properties of Topologies and Continuous Functions

4.1 Section 17: Closed Sets and Limit Points

4.1.1 Closed Sets

Closed Set A subset A of a topological space X is said to be closed if the set X −A is open.

Remark : A set can be both open and closed (e.g., open sets in the discrete topology of X), or neither open

nor closed (e.g., (a, b] in R).

Suppose Y is a subspace of X, a set A is closed in Y if A is a subset of Y and A is closed in the subspace

topology (that is, Y −A is open in Y ).

The following theorems are the analogous of definition of topology, the definition of subspace topology, and

Lemma 16.2, using closed sets.

Theorem 17.1

Let X be a topological space. Then the following conditions hold:

(1) ∅ and X are closed.

(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed.

Proof : (1) ∅ and X are the complements of each other, so they are closed.

(2) Suppose {Aα} is a collection of closed sets, then X −
⋂

α Aα =
⋃

α(X −Aα) by DeMorgan’s Law. Since

X −Aα is open for all α, so do the arbitrary unions, thus
⋂

α Aα is closed.

(3) Suppose Ai is closed for i = 1, · · · , n, then X −
⋃n

i=1 Aα =
⋂n

i=1(X − Aα) by DeMorgan’s Law. Since

X −Ai is open for all i, so do the finite intersections, thus
⋃n

i=1 Aα is closed.

Theorem 17.2

Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection of a

closed set of X with Y .

Proof : (⇐) Suppose A = C ∩ Y , where C is closed in Y . Taking the relative complement of both sides

yields Y −A = Y − (C ∩ Y ) = Y −C = Y ∩ (X −C). Note that Y and X −C are open, so Y −A is open,

thus A is closed.

(⇒) Suppose A is closed in Y . The set Y −A is open in Y , so Y −A = Y ∩U for some U open in X. Taking

the relative complement of both sides yields A = Y − (U ∩ Y ) = Y ∩ (X − U). Since U is open, X − U is

closed, which completes the proof.
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Theorem 17.3 Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is closed in X.

Proof : There exists a set C closed in X such that A = Y ∩ C (Theorem 17.2). Since Y and C are closed

in X, A = Y ∩ C is closed in X (Theorem 17.1(b)).

4.1.2 Closure and Interior of a Set

Interior, Closure Given a subset A of a topological space X. The interior of A, denoted by Int A,

is defined as the union of all open sets contained in A. The closure of A, denoted by Ā, is defined as

the intersection of all closed sets containing A.

Furthermore, Int A ⊂ A ⊂ Ā. If A is open, A = Int A, and if A is closed, A = Ā.

Theorem 17.4

Let Y be a subspace of X, let A be a subset of Y , let A denote the closure of A in X. Then the

closure of A in Y equals Ā ∩ Y .

Proof : Let ĀY denote the closure of A in Y . Since Ā is closed in Y , Ā ∩ Y is closed in Y (Theorem 17.2),

so ĀY ⊂ Ā ∩ Y . On the other hand, note that ĀY is closed in Y , so ĀY = C ∩ Y for some C closed in X

containing ĀY . Then Ā ∩ Y ⊂ ĀY , since Ā ⊂ C.

Theorem 17.5

Let A be a subset of the topological space X.

(a) Then x ∈ Ā if and only if every open set U containing x intersects A.

(b) Supposing the topology of X is given by a basis, then x ∈ Ā if and only if every basis element

B containing x intersects A.

Proof : (a) (⇒) Suppose there exists U containing x such that U ∩ A = ∅. The complement X − U is

closed, so Ā ⊂ X −U . Note that x /∈ X −U , x /∈ Ā. (⇐) Conversely, suppose x /∈ Ā. The set X − Ā is open

and x ∈ X − Ā, but (X − Ā) ∩A = ∅, so there exists open set U containing x that does not intersect A.

(b) The statement follows immediately from the fact that every basis element is open in X and every open

set is the union of basis elements.

Note : We called that U is a neighborhood of x if U is an open set containing x.

4.1.3 Limit Points

Using the concept of limit point, we obtain another way of describing the closure of a set.
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Limit Point If A is a subset of the topological space X and if x is a point of X, we say that x is a

limit point of A if every neighborhood of x intersects A in some points other than x it self. In other

words, x is a limit point of A if it belongs to the closure of A− {x}.

That is, x is a limit point if (U ∩A)− {x} ≠ ∅ for all open set U containing x.

Theorem 17.6

Let A be a subset of the topological spaceX, let A′ be the set of all limit points of A. Then Ā = A∪A′.

Proof : Note that A ⊂ Ā, and A′ ⊂ Ā by the definition of A′. Then A′∩A ⊂ Ā. Conversely, suppose x ∈ Ā.

If x /∈ A, then for all open set U containing x, (U ∩A)−{x} = U ∩A ̸= ∅ (Theorem 17.5), so x ∈ A′. Then

Ā ⊂ A′ ∩A.

Corollary 17.7

A subset of a topological space is closed if and only if it contains all its limit points.

4.1.4 Hausdorff Spaces

Hausdorff Space A topological space X is called a Hausdorff space if for each pair x1, x2 of distinct

points of X, there exist neighborhoods U1 and U2 of x1 and x2, respectively, that are disjoint.

Theorem 17.8 Every finite point set in a Hausdorff space X is closed.

Proof : It is suffice to prove every {x0} is closed. For all x ∈ X such that x ̸= x0, x has a neighborhood U

such that x0 /∈ U . Then x /∈ {x0} by definition, so {x0} = {x0}, thus it is closed.

Alternative Proof : Given a point x0 ∈ A, for all x /∈ A, there is an open set Ux containing x such that

x0 /∈ Ux. Put Kx0 =
⋃

x/∈A Ux, then Kx0 is an open set such that x0 /∈ Kx0 and X − A ⊂ Kx0 . Put

K =
⋂

x0∈A Kx0
is an open set such that X − A ⊂ K and A ∩K = ∅, that is, K = X − A is an open set.

Hence A is closed.

Remark : The condition in this theorem is called the T1 axoim , and it is indeed weaker than the Hausdorff

condition.

Theorem 17.9 Let X be a space satisfying T1 axoim (every finite point set is closed); let A be a subset of

X. Then the point x is a limit point of A if and only if neighborhood of x contains infinitely many points

of A.
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Theorem 17.10

If X is a Hausdorff space, then a sequence of points of X converges to at most one point of X.

Theorem 17.11

(a) Every simply ordered set is a Hausdorff space in the order topology.

(b) The product of two Hausdorff spaces is a Hausdorff space.

(c) A subspace of a Hausdorff space is a Hausdorff space.
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4.2 Section 18: Continuous Functions

4.2.1 Continuity of a Function

Continuity Let X and Y be topological spaces. A function f : X → Y is said to be continuous if

for each open subset V of Y , the set f−1(V ) is an open subset of X.

To prove a function is continuous, it is suffices to show that the inverse image of every basis element or every

subbasis element is open.

Theorem 18.1

Let X and Y be topological spaces; let f : X → Y . Then the following are equivalent:

(1) f is continuous.

(2) For every subset A of X, one has f(Ā) ⊂ f(A).

(3) For every closed set B of Y , the set f−1(B) is closed in X.

(4) For each x ∈ X and each neighborhood V of f(x), there is a neighborhood U of x such that

f(U) ⊂ V .

Proof : (1) ⇒ (2): Given x ∈ Ā. For all neighborhoods V of f(x), f−1(V ) is a neighborhood of x, thus it

intersects A (Theorem 17.5). Then there exists y ∈ A such that y ∈ f−1(V ), and note that f(y) ∈ f(A), so

V intersects f(A). Therefore, f(x) ∈ f(A).

(2) ⇒ (3): Suppose B is closed in Y , let A = f−1(B). Note that f(Ā) ⊂ f(A) ⊂ B̄ = B. Then for x ∈ Ā,

x ∈ f−1(B) = A, so Ā ⊂ A.

(3) ⇒ (1): Given V open in Y . The set Y − V is closed, so f−1(Y − V ) = X − f−1(V ) is closed by (3),

thus f−1(V ) is open in X.

(1) ⇒ (4): Suppose V is a neighborhood of f(x), then U = f−1(V ) is a desired neighborhood of x.

(4) ⇒ (1): Suppose V is open in Y . For all x ∈ X such that f(x) ∈ V , by (4), there exists a neighborhood

Ux of x such that f(Ux) ⊂ V , namely Ux ⊂ f−1(V ). Note that f−1(V ) =
⋃

Ux, a union of open sets, so it

is open.

4.2.2 Homeomorphisms

Homeomorhpism Let X and Y be topological spaces; let f : X → Y be a bijection. If both f and

the inverse function f−1 : Y → X are continuous, then f is called a homeomorphism .

Remark : Homeomorphism preserve all the topological properties of a given space.
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Topological Imbedding Let X and Y be topological spaces; let f : X → Y be an injective map. If

the bijection f ′ : X → f(X), obtained by restricting the range of f and consider f(X) as a subspace of

Y , is a homeomorphism of X with f(X), then the map f : X → Y is a topological imbedding of X

in Y .

4.2.3 Constructing Continuous Functions

Theorem 18.2 (Rules for constructing continuous functions) Let X,Y, Z be topological spaces.

(a) (Constant function) If f : X → Y maps all of X into the single point y0 of Y , then f is continuous.

(b) (Inclusion) If A is a subspace of X, the inclusion function j : A → X is continuous.

(c) (Composites) If f : X → Y and g : Y → Z are continuous, then the map g ◦ f : X → Z is continuous.

(d) (Restricting the domain) If f : X → Y is continuous, and if A is a subspace of X, the the restricted

function f |A : A → Y is continuous.

(e) (Restricting or expanding the range) Let f : X → Y be continuous. If Z is a subspace of Y containing

f(X), then the function g : X → Z obtained by restricting the range of f is continuous. If Z is a

space containing Y as a subspace, then the function h : X → Z obtained by expanding the range of f

is continuous.

(f) (Local formulation of continuity) The map f : X → Y is continuous if X can be written as the union

of open sets Uα such that f |Uα
is continuous for each α.

Theorem 18.3 (The pasting lemma) Let X = A ∪ B, where A and B are closed in X. Let f : A → Y

and g : B → Y be continuous. If f(x) = g(x) for every x ∈ A∩B, then f and g combine to give a continuous

function h : X → Y , defined by setting h(x) = f(x) if x ∈ A, and h(x) = g(x) if x ∈ B.

Proof : Let C be a closed subset of Y . Now h−1(C) = f−1(C) ∩ g−1(C). Since f, g are continuous, f−1(C)

and g−1(C) are closed (Theorem 18.1). Then h−1(C) is closed, thus h is continuous (Theorem 18.1).

Remark : This theorem also holds if A and B are open sets in X, which is a special case of the local

formulation of continuity (Theorem 18.2 (f)).

Theorem 18.4 (Maps into products) Let the coordinate function f : A → X × Y be given by the

equation f(a) = (f1(a), f2(a)). Then f is continuous if and only if the functions f1 : A → X and f2 : A → Y

are continuous.

Sketch of Proof : (⇒) Suppose f is continuous. Notice that f1(a) = π1(f(a)) and f2(a) = π2(f(a)).

Obviously π1 and π2 are continuous, so f1, f2 are continuous (Theorem 18.1 (c)).

(⇐) Conversely, suppose f1 and f2 are continuous. For each basis element U × V , f−1(U × V ) = f−1
1 (U) ∩

f−1
2 (V ), which is open since both f−1

1 (U) and f−1
2 (V ) are open. Then f is continuous.
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4.3 Section 19: The Product Topology

J-tuple Let J be an index set. Given a set X, we define J-tuple of elements of X to be a function

x : J → X. We denote the α-th coordinate of x by xα, the function x by (xα)α∈J , and the set of all J-tuple

of elements of X by XJ .

Cartesian Product Let {Aα}α∈J be an indexed family of sets; let X =
⋃

α∈J Aα. The cartesian

product of this indexed family, denoted by
∏

α∈J Aα, is defined to be the set of all J-tuple (xα)α∈J of

elements of X such that xα ∈ Aα for each α ∈ J .

That is, the set of all functions x : J →
⋃

α∈J Aα such that x(α) ∈ Aα for each α ∈ J .

Box Topology Let {Xα}α∈J be an indexed family of topological spaces. Let us take as a basis for

a topology on the product space
∏

α∈J Xα the collection of all sets of the form
∏

α∈J Uα where Uα is

open in Xα, for each a ∈ J . The topology generated by this basis is called the box topology .

Product Topology Let Sβ denote the collection Sβ = {π−1
β (Uβ) |Uβ open in Xβ}, and let S denote

the union of these collections, S =
⋃

β∈J Sβ . The topology generated by the subbasis S is called the

product topology , and
⋂

α∈J Xα is called a product space .

Theorem 19.1 (Comparison of the box and product topologies) The box topology on
∏

Xα has as

basis all sets of the form
∏

Uα, where Uα is open in Xα for each α. The product topology on
∏

Xα has as

basis all sets of the form
∏

Uα, where Uα is open in Xα for each α and Uα = Xα except for finitely many

values of α.

Theorem 19.2

Suppose the topology on each space Xα is given by a basis Bα. The collection of sets of the form∏
α∈J Bα where Bα ∈ Bα for each α, will serve as a basis for the box topology.

The collection of all sets of the same form, where Bα ∈ Bα for finitely many indices α and Bα = Xα

for all the remaining indices, will serve as a basis for the product topology
∏

α∈J Xα.

Theorem 19.3 Let Aα be a subspace of Xα, for each α ∈ J . Then
∏

Aα is a subspace of
∏

Xα if both

products are given the box topology, or if both product are given the product topology.

Theorem 19.4 If each space Xα is a Hausdorff space, then
∏

Xα is a Hausdorff space in both box and

product topologies.

Theorem 19.5 Let {Xα} be an index family of spaces; let Aα ⊂ Xα for each α. If
∏

Xα is given either

the product or the box topology, then
∏

Aα =
∏

Aα.

Proof : (⊂) Suppose x = (xα) ∈
∏

Aα, and let U =
∏

Uα be a basis element in either topologies containing
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x. Since xα ∈ Aα and Uα is open in Xα, Uα ∩Aα ̸= ∅. Then U ∩
∏

Aα =
∏
(Uα ∩Aα) ̸= ∅, so x ∈

∏
Aα,

and thus
∏

Aα ⊂
∏

Aα.

(⊃) Conversely, suppose x = (xα) ∈
∏

Aα in either topologies. For each β ∈ J , suppose Uβ is an arbitrary

open set in Xβ containing xβ . Since π−1
β (Uβ) is open, there is y = (yα) such that y ∈ π−1(Uβ) ∩

∏
Aα.

Then y ∈ Uβ ∩Aβ , so the intersection is not empty, and it follows that xβ ∈ Aβ .

Theorem 19.6 Let f : A →
∏

Xα be given by the equation f(a) = (fα(a))α∈J , where fα : A → Xα for

each α. Let
∏

Xα have the product topology. Then the function f is continuous if and only if each function

fα is continuous.

Proof : (⇒) Let β be an arbitrary element of J , and Uβ is open in Xβ . Put U = π−1
β (Uβ), which is open in∏

Xα. Notice that f−1(U) is open in the product space, and f−1(U) = (
⋂

f−1
α (Xα))∩ f−1

β (Uβ) = f−1
β (Uβ).

Then f−1
β (Uβ) is open, thus fβ is continuous.

(⇐) Suppose U =
∏

Uα is open in
∏

Xα, Uα is open for all α. Since f−1(U) =
⋂
f−1
α (Uα), and Uα = Xα for

all but finitely many α, f−1(U) can be written as the intersection of finite f−1
α (Uα). For every α, f−1

α (Uα)

is open since fα is continuous, so f−1(U) is open, and thus f is continuous.
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4.4 Section 20: The Metric Topology

4.4.1 The Metric Topology

Metric A metric on a set X is a function d : X ×X → R having the following properties:

(1) d(x, y) ≥ 0 for all x, y ∈ X; equality holds if and only if x = y.

(2) d(x, y) = d(y, x) for all x, y ∈ X.

(3) (Triangle inequality) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

Given a metric d on X, the number d(x, y) is called the distance between x and y in the metric d. Given

ε > 0, the set Bd(x, ε) = {y | d(x, y) < ε} is called the ε-ball centered at x, or B(x, ε).

Metric Topology If d is a metric on the set X, then the collection of all ε-ball Bd(x, ε) for x ∈ X

and ε > 0 is a basis for a topology on X, called the metric topology induced by d.

Remark : A set U is open in the metric topology induced by d if and only if for each y ∈ U , there is a δ > 0

such that B(y, δ) ⊂ U .

Metric Space If X is a topological space, X is said to be metrizable if there exists a metric d on X. A

metric space is a metrizable space X together with a specific metric d that gives the topology of X.

Boundedness, Diameter Let X be a metric space with metric d. A subset A of X is said to be

bounded if there is some number M such that d(x, y) ≤ M for every pair x, y ∈ A. If A is bounded

and nonempty, the diameter of A is defined to be the number diam A = sup{d(x, y) |x, y ∈ A}.

Theorem 20.1

Let X be a metric space with metric d. Define d̄ : X ×X → R by the equation d̄ = min{d(x, y), 1}.
Then d̄ is a metric that induces the same topology as d.

Remark : d̄ is called the standard bounded metric corresponding to d.

Proof : We first need to show d̄ is a metric. The first two conditions are trivial. The triangle inequality

holds because d̄(x, z) ≤ min{d(x, y) + d(y, z), 1} ≤ min{d(x, y), 1}+min{d(y, z), 1} = d̄(x, y) + d̄(y, z).

Now we want to prove the two topologies are the same. It is not hard to prove the collection of ε-ball with

ε < 1 forms a basis for the metric topology (Lemma 13.2), and the collection of ε-ball with ε < 1 are the

same for d and d̄. It follows that d and d̄ induce the same topology.
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Lemma 20.2

Let d and d′ be two metrics on the set X; let T and T ′ be the topologies they induce, respectively.

Then T ′ is finer than T if and only if for each x ∈ X and each ε > 0, there exists a δ > 0 such that

Bd′(x, δ) ⊂ Bd(x, ε).

Sketch of Proof : Note that Bd′(x, δ) and Bd(x, ε) are basis elements of topologies induced by d and d′,

respectively, so the desired statements follows from Lemma 13.3.

4.4.2 Euclidean Metric and Square Metric

Norm, Euclidean Metric, and Square Metric Given x = (x1, · · · , xn) ∈ Rn, we define the norm of

x by the equation ∥x∥ = (x2
1 + · · · + x2

n)
1/2. We defined the Euclidean metric d on Rn by the equation

d(x,y) = ∥x − y∥, and we define the square metric ρ on Rn by the equation ρ(x,y) = max{|x1 −
y1|, · · · , |xn − yn|}.

Theorem 20.3

The topologies on Rn induced by the euclidean metric d and the square metric ρ are the same as the

product topology on Rn.

Proof : We will first prove Td = Tρ. Notice that ρ(x,y) ≤ d(x,y) ≤
√
n ·ρ(x,y). Then Bd(x, ε) ⊂ Bρ(x, ε),

so the topology induced by d and ρ are the same (Lemma 20.2).

Then we will prove Tρ is the same as the product topology T . Every basis element of Tρ is itself a basis element

of the product topology, so Tρ ⊂ T . In addition, suppose B =
∏n

i=1 Bi is a basis element of the product

topology and x is an arbitrary point in it. For each i, there exists B(xi, εi) such that xi ∈ B(xi, εi) ⊂ Bi

since Bi is open. Then put ε = min{ε1, · · · , εn}, we see that Bρ(x, ε) ⊂ B, thus T ⊂ Tρ (Lemma 13.3).

4.4.3 The Uniform Topology

Uniform Topology Given an index set J , and given points x = (xα)α∈J and y = (yα)α∈J on RJ .

Let us define a metric ρ̄ on RJ by the equation ρ̄(x,y) = sup{d̄(xα, yα) |α ∈ J}, where d̄ is the standard

bounded metric on R. The metric ρ̄ is called the uniform metric on RJ , and the topology it induces

is called the uniform topology .

Theorem 20.4 The uniform topology on RJ is finer than the product topology and coarser than the box

topology; these three topologies are all different if J if infinite.

Proof : Suppose x = (xα)α∈J and a basis element
∏

Uα of the product topology are given. Let i = 1, · · · , n
be the indices for which Uαi

̸= R, then there exists Bαi
= Bd̄(xαi

, εi) such that xαi
∈ Bi ⊂ Uαi

. Put

ε = min{εi}, then x ∈ Bρ̄(x, ε) ⊂
∏

Uα, thus the uniform topology is finer than the product topology.

On the other hand, let B be the ε-ball centered at x in the ρ̄ metric. Then the box neighborhood U =
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∏
(xα − 1

2ε, xα + 1
2ε) of x is contained in B, since for y ∈ U , d̄(xα, yα) < ε/2, so ρ̄(x,y) ≤ 1

2ε < ε.

The proof of all three topologies are different is omitted.

Theorem 20.5 Let d̄) be the standard bounded metric on R. If x and y are two points of Rω, defined

D(x,y) = sup{d̄(xi, yi)/i}. Then D is a metric that induces the product topology on Rω.

Proof : The proof of D is a metric is omitted. Suppose U =
∏

Ui is a basis element of the product topology,

where Ui ̸= R for i = α1, · · · , αn and Ui = R otherwise, and x ∈ U is given. For each i, there exists

(xi − εi, xi + ε) ⊂ Ui since Ui is open. Put ε = min{εi/i}, then x ∈ BD(x, ε) ⊂ U , so TD is finer.

Conversely, suppose BD(x, ε) is given. Choose N such that 1/N < ε, and put V = (x1−ε, x1+ε)×· · ·×(xN−
ε, xN + ε)×R× · · · . Since d̄(xi, yi)/i ≤ 1/N for i ≥ N , D(x,y) ≤ max{d̄(x1, y1), · · · , 1

N d̄(xN , yN ), 1
N } < ε.

That is, V ⊂ BD(x, ε), and thus TD is coarser. Hence D induces the product topology on Rω.
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4.5 Section 21: The Metric Topology (continued)

Theorem 21.1

Let f : X → Y ; let X and Y be metrizable with metrics dX and dY , respectively. The continuity of

f is equivalent to the requirement that given x ∈ X and given ε > 0, there exists δ > 0 such that

dX(x, y) < δ implies dY (f(x), f(y)) < ε.

Remark : This is the standard δ-ε notation.

Proof : (⇒) Let x, and V = BY (f(x), ε) be given. Since f is continuous, f−1(V ) is open in X, it contains

some δ-ball BX(x, δ). Then for all y such that dX(x, y) < δ, dY (f(x), f(y)) < ε.

(⇐) Suppose V is open. For all f(x) ∈ V , there exists B(f(x), ε) ⊂ V . By the hypothesis there exists δ

such that x ∈ BX(x, δ) ⊂ f−1(B(f(x), ε)) ⊂ f−1(V ). Then f−1(V ) is open for all open set V , and thus f is

continuous.

Convergent Sequences

Lemma 21.2 (The sequence lemma)

Let X be a topological space; let A ⊂ X. If there is a sequence of points of A converging to x, then

x ∈ Ā; the converse holds if X is metrizable.

Definition : We say the sequence x1, x2, · · · of the space X converges to a point x ∈ X if for each

neighborhood U of x, there is a positive integer N such that xn ∈ U for all n ≥ N .

Proof : (⇒) Suppose xn → x, then every neighborhood U of x contains some xi, so x ∈ Ā (Theorem 17.5).

(⇐) Suppose x ∈ Ā, for all n ∈ Z+, choose xn ∈ B(x, 1/n)∩A, which exists by Theorem 17.5. Then xn → x,

because for all open set U containing B(x, ε), choosing N such that 1/N < ε gives xn ∈ U for all n ≥ N .

Theorem 21.3

Let f : X → Y . If the function f is continuous, then for every convergence sequence xn → x in X,

the sequence f(xn) converges to f(x). The converse holds of X if metrizable.

Proof : (⇒) Suppose V is an arbitrary neighborhood of f(x). f−1(V ) is open, so there exists N such that

xn ∈ f−1(V ) if x ≥ N . Then f(xn) ∈ V for all n ≥ N , thus f(xn) → f(x).

(⇐) Conversely, suppose X is metrizable and A is subset of X. For all x ∈ Ā, there exists a convergent

sequence xn → x where xn ∈ A (Lemma 21.2). Then by the hypothesis, f(xn) → f(x), and thus f(x) ∈ f(A)

(Lemma 21.2). It follows that f(Ā) ⊂ f(A), so f is continuous (Theorem 18.1).

Binary Operations Between Real Functions

Lemma 21.4 The addition, subtraction, and multiplication are continuous function from R × R into R;

32



and the quotient operation is a continuous function from R× (R− {0}) into R.

Theorem 21.5

If X is a topological space, and if f, g : X → R are continuous function, then f + g, f − g, and fg are

continuous. If g(x) ̸= 0 for all x, then f/g is continuous.

Uniform Convergence

Uniform Convergence Let fn : X → Y be a sequence of functions from the set X to the metric

space Y . Let d be the metric for Y . We say that the sequence (fn) converges uniformly to the

function f : X → Y if given ε > 0, there exists an integer N such that d(fn(x), f(x)) < ε for all n > N

and all x ∈ X.

Theorem 21.6 (Uniform limit theorem)

Let fn : X → Y be a sequence of continuous functions form the topological space X to the metric

space Y . If (fn) converges uniformly to f , then f is continuous.

Proof : Let x ∈ X and a neighborhood V of x be given, then V contains V ′ = (f(x)− ε, f(x) + ε) for some

ε. By the uniform continuity, there exists N such that d(fn(x), f(x)) < ε/3 for n ≥ N , and we can choose

U such that fN (U) ⊂ B(fN (x), ε/3) by the continuity. It follows that for all y ∈ U ,

d(f(x), f(y)) ≤ d(f(x), fN (x)) + d(fN (x), fN (y)) + d(fN (y), f(y)) < 3 · (ε/3) = ε,

so f(y) ∈ V ′ ⊂ V for all y ∈ U , namely f(U) ⊂ V . Hence f is continuous (Theorem 18.1).
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5 Connectedness and Compactness

5.1 Section 23: Connected Spaces

Connectedness Let X be a topological space. A separation of X is a pair U, V of disjoint nonempty

open subsets of X whose union is X. The space X is said to be connected if there does not exist a

separation of X.

Remark : The set U , X − U is a separation of X if and only if U is a nonempty subset that is both open

and closed. Then the definition of connectedness is equivalent to: A space X is connected if and only if the

only subsets of X that are both open and closed in X are the empty set and X itself.

If X is connected, so is any space homeomorphic to X.

Lemma 23.1

If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty sets A and B whose union

is Y , neither of which contains a limit point of the other. The space Y is connected if there exists no

separation of Y .

Proof : (⇐) Suppose A,B form separation of Y , the sets A and B are both open and closed. The closure

of A in Y equals Ā ∩ Y = A because A is closed, so Ā ∩ B = ∅. That is, B contains no limit points of A.

WLOG, the reverse holds.

(⇒) Suppose A,B have the properties above. Since Ā∩B = ∅, Ā∩ Y = Ā∩ (A∪B) = A, so A is closed in

Y . WLOG, B is also closed. Then A,B are open since A = Y −B and B = Y −A.

Lemma 23.2 If the sets C and D form a separation of X, and if Y is connected subspace of X, then Y

lies entirely within either C or D.

Sketch of Proof : Proof by contradiction. If C ′ = C ∩ Y and D′ = D ∩ Y are nonempty, C ′ and D′ form

a separation of Y , contradicting the connectedness of Y .

Theorem 23.3

Suppose Uα are connected subspaces of X for all α ∈ J , and
⋂

Uα ̸= ∅. Then the union
⋃

Uα is

connected.

Proof : Proof by contradiction. Assume X is not connected, there exists a separation U , V . WLOG, assume

{Aα} has a point in common in U . Then Aα ⊂ U for all α (Lemma 23.2), so V is empty, contradicting the

fact that U, V is a separation.
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Theorem 23.4

Let A be a connected subspace of X. If A ⊂ B ⊂ Ā, then B is also connected.

Proof : Proof by contradiction. Assume U, V is a separation of B. WLOG, assume A ⊂ U (Lemma 23.2).

Then B ⊂ Ā ⊂ Ū , so B does not intersect V since Ū ∩ V = ∅. That is, V ∩ B = ∅ contradicting the fact

that U, V is a separation of B.

Theorem 23.5

The image of a connected space under a continuous map is connected.

Proof : Assume f : X → Y is continuous and f(X) is not connected. There exists a separation U, V of

f(X). The set f−1(U), f−1(V ) are nonempty disjoint sets whose union is X, and they are both open and

closed in X because f is continuous. Therefore, f−1(U), f−1(V ) is a separation of X, contradicting the fact

that X is connected.

Theorem 23.6

A finite cartesian product of connected spaces is connected.

Proof : For all (x, y) ∈ X×Y , the subsets {x}×Y andX×{y} are connected because they are homeomorphic

to Y and X, respectively. Let y0 ∈ Y be given, define Ux = ({x} × Y ) ∪ (X ∩ {y0}), which is connected

(Theorem 23.3). Note that X × Y =
⋃

x∈X Ux, and the intersection of {Ux} is nonempty, then X × Y is

connected (Theorem 23.3). The desired statement follows directly by induction.
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5.2 Section 24: Connected Subspaces of the Real Line

Linear Continuum A simply ordered set L having more than one element is called a linear con-

tinuum if the following hold:

(1) L has the least upper bound property.

(2) If x < y, there exists z such that x < z < y.

Theorem 24.1

If L is a linear continuum in the order topology, then L is connected and so are intervals and rays in

L.

Proof : For the sake of contradiction, suppose L is not connected, then there exists a separation A,B of

L. Choose a ∈ A and b ∈ B, assume a < b without loss of generality. Define A0 = {x ∈ A |x ∈ [a, b]} and

define B0 similarly. Put a′ = supA0 and b′ = inf B0. It is obvious that a′ ≤ b′. If a′ < b′, there exists

c ∈ (a′, b′) ⊂ [a, b] so that c /∈ A0 ∪ B0 ⊂ L, contradicting that L is a linear continuum. If a′ = b′, then

a′ = b′ ∈ A ∩ B by the least upper bound property, contradicting A,B form a separation since A ∩ B ̸= ∅.

Hence L is connected.

The proof for intervals and rays in L are trivial because they are indeed the linear continuum in L.

Corollary 24.2

The real line R is connected and so are intervals and rays in R.

Theorem 24.3 (Intermediate Value Theorem)

Let f : X → Y be a continuous map, where X is a connected space and Y is an ordered set in the

order topology. If a and b are two points of X and if r is a point of Y lying between f(a) and f(b),

then there exists a point c of X such that f(c) = r.

Proof : We claim r ∈ f(X). Assume this assertion does not hold, then the rays (−∞, r) and (r,+∞) in

f(X) form a separation of f(X), contradicting the fact that f(X) is connected, which holds because f is

continuous and X is connected (Theorem 23.5).

Path, Path Connected Given points x and y of the space X, a path in X from x to y is a continuous

map f : [a, b] → X of some closed interval in the real line into X, such that f(a) = x and f(b) = y. A

space X is said to be path connected if every pair of points of X can be joined by a path in X.

Remark : A path-connected space X is connected, but the converse does not necessarily hold. Proof:

Suppose A,B is a separation of X. choose a ∈ A and b ∈ B, there exists a path from a to b. Then the image

of f is connected and intersects both A and B, contradicting to Lemma 23.2.
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5.3 Section 26: Compact Spaces

Open Cover, Compactness A collection A of subsets of a space X is said to cover X if the union

of elements of A is equal to X. It is called an open covering of X it its elements are open subsets of

X.

A space X is said to be compact if every open covering A of X contains a finite subcollection that

covers X.

If Y is a subspace of X, a collection A of subsets of X is said to cover Y if the union of its elements contains

Y .

Theorem 26.1

Let Y be a subspace of X. Then Y is compact if and only if every covering Y by sets open in X

contains a finite subcollection covering Y .

Proof : (⇒) Suppose A = {Aα}α∈J is an open cover of Y in X, then {Aα ∩ Y |α ∈ J} is an open cover of

Y . Since Y is compact, Y has a finite subcover {Aαi
∩ Y }. Then {Aαi

} is a finite subcover of Y in X.

(⇐) Let an open cover A = {Aα ∩ Y } of Y be given. Since {Aα} is an open cover of Y in X, it has finite

subcover {Aαi} of Y by hypothesis, then {Aαi ∩ Y } is a finite subcover of Y , so Y is compact.

Properties of Compact Sets

Theorem 26.2

Every closed subspace of a compact space is compact.

Proof : Suppose Y is a closed subset of X. Adjoining the open set X − Y to the open cover {Uα} of Y in

X forms an open cover of X. By compactness, there is a finite subcover of X, removing X −Y (if contained

in the finite subcover of X) gives a finite subcover of Y in X.

Theorem 26.3

Every compact subspaces of a Hausdorff space is closed.

Proof : Suppose Y is a compact subspace of X. Let x ∈ X−Y be given, for all y ∈ Y , we can choose a pair

of disjoint neighborhoods Uy of x and Vy of y by the Hausdorff axiom. The collection {Vy}y∈Y is an open

cover of Y , so there exists a finite subcover {Vyi
}ni=1 of Y . Put Ux =

⋂n
i=1 Uyi

, the set Ux is neighborhood

of x such that Ux ∩ Y = ∅ (that is, x is an interior point). Notice that X − Y =
⋃

x∈X−Y Ux and the latter

set is open, it follows that X − Y is open. Hence Y is closed.
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The following lemma is proved above in Theorem 26.3:

Lemma 26.4 If Y is a compact subspace of the Hausdorff space X and x0 is not in Y , then there exists

disjoint open sets U and V of X containing x0 and Y , respectively.

Compactness and Function

Theorem 26.5

The image of a compact space under a continuous map is compact.

Proof : Suppose f : X → Y is continuous, and {Uα} is an open cover of Y . Since the collection {f−1(Uα)}
is an open cover of X since f is a continuous function, then there exists an finite subcover {f−1(Ui)}ni=1 of

X. Then {Ui}ni=1 is a finite subcover of Y , thus Y is compact.

Theorem 26.6

Let f : X → Y be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a

homeomorphism.

Proof : Suppose X0 is a closed subset of X. The set X0 is compact (Theorem 26.2), then f(X0) is compact

(Theorem 26.5), it follows that f(X0) is closed (Theorem 26.3). Hence f−1 is continuous (Theorem 18.1),

and thus f is a homeomorphism.

Compactness and Product Topology

Theorem 26.8 (The Tube Lemma) Consider the product space X ×Y , where Y is compact. If N is an

open set of X × Y containing the slice x0 × Y of X × Y , then N contains some tube W × Y above x0 × Y ,

where W is a neighborhood of x0 in X.

Proof : Suppose x0 × Y is covered by basis elements {Uα × Vα} lying in N . Since x0 × Y is homeomorphic

to Y and is thus compact, x0 × Y can be covered by a finite subcollection {Ui × Vi}ni=1 (we assume each

Ui × Vi intersects x0 × Y , otherwise it could be removed). Define W = U1 ∩ · · · ∩Un, the set W is open and

it contains x0. It is obvious that W × Y is open and W × Y ⊂ N .

Theorem 26.7

The product of finitely many compact spaces is compact.

Proof : Let A be the open covering of X × Y . Given x ∈ X, the tube x × Y can be covered by some

A1, · · · , An in A, and their union Nx =
⋃n

i=1 Ai contains Wx×Y for some open set Wx (Lemma 26.8). Since

X is compact, there exists a finite subcollection {W1, · · · ,Wn} that covers X, so the set N =
⋃n

i=1 Ni covers⋃n
i=1(Wi×Y ) ⊃ X×Y . Note that Ni is a finite subcollection of A for all i, so do their finite union N . That

is, N is a finite subcover of X × Y , so X × Y is compact. The original statement is trivial by induction.
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Remark : Indeed, the product of infinitely many compact spaces is compact, and this theorem is known as

the Tychonoff Theorem.

Finite Intersection Property

Finite Intersection Property A collection C of subsets of X is said to have the finite intersection

property if for every finite subcollection {C1, · · · , Cn} of C, the intersection C1 ∩ · · · ∩Cn is nonempty.

Theorem 26.9 Let X be a topological space. Then X is compact if and only if for every collection C of

closed sets in X having finite intersection property, the intersection
⋂

C∈C C of all elements of C is nonempty.

Sketch of Proof : The compactness means that for all collection A of open sets,
⋃

A∈A A ⇒ ∃ finite A0 ⊂
A :

⋃
A∈A0

A = X, while the other property means that for all collection C of closed sets, ∀ finite C0 ⊂ C :⋃
C∈C0

C = ∅ ⇒
⋂

C∈C C = ∅. Note that the two properties are equivalent, which is not hard to show by

taking contrapositive and complements of the statements above.
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5.4 Section 27: Compact Subspaces of the Real Line

Compactness on Rn

Theorem 27.1

Let X be a simply ordered set having the least upper bound property. In the order topology, each

closed interval in X is compact.

Sketch of Proof : Step 1: Prove the statement: if x is a point of [a, b] different from b, then there is a point

y > x of [a, b] such that the interval can be covered by at most two elements of A.

Step 2: Let C be the set of all points y > a of [a, b] such that the interval [a, y] can be covered by finitely

many elements of A, and let c = supC.

Step 3: Show that c ∈ C. If c /∈ C, there is an element containing (d, c] for some d. There exists z ∈ (d, c)

such that z ∈ C, otherwise d is a smaller upper bound. Since [a, z] and (d, c] can be covered by finitely many

elements of A, so do there union [a, c] = [a, z] ∪ (d, c], contradiction.

Step 4: Show that c = b. If c < b, there exists y such that [c, y] can be covered by at most two elements of

A by Step 1, then [a, y] = [a, c] ∪ [c, y] can be covered by finitely many elements of A, contradiction.

Corollary 27.2 Every closed interval in R is compact.

Theorem 27.3

A subspace A of Rn is compact if and only if it is closed and is bounded in the euclidean metric d or

the square metric ρ.

Remark : The statement does not necessarily hold for every metric of Rn.

Proof : The topology on Rn induced by the above two metrics are the same, it suffice to consider only ρ.

(⇒) Suppose A is compact, it is closed (Theorem 26.3). If A is not bounded, choose x ∈ A, then the open

cover {Bρ(x, n) |n ∈ Z+} has no finite subcover, contradicting to the hypothesis. Therefore, A is closed and

bounded.

(⇐) Suppose A is closed and bounded. A is a subset of a cube (k-cell), which is compact, since A is bounded.

Then A is compact (Theorem 26.2).

Theorem 27.4 (Extreme Value Theorem)

Let f : X → Y be continuous, where Y is an ordered set in the order topology. If X is compact, then

there exist points c and d in X such that f(c) ≤ f(x) ≤ f(d) for every x ∈ X.

Proof : Since f is continuous and X is compact, the image A = f(X) is compact. Assume A has no largest

element, the open cover {(−∞, a) | a ∈ A} contains no finite subcover, contradicting the hypothesis that A
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is compact. A similar argument shows that A has a smallest element.

The Lebesgue Number Lemma

Distance Let (X, d) be a metric space; let A be a nonempty subset of X. For each x ∈ X, we define

the distance form x to A by the equation d(x,A) = inf{d(x, a) | a ∈ A}.

Lemma 27.5 (The Lebesgue Number Lemma)

Let A be an open covering of the metric space (X, d). If X is compact, there is a δ > 0 such that for

each subset of X having diameter less than δ, there exists an element of A containing it.

Remark : The number δ is called a Lebesgue number for the covering A.

Proof : The case where X ∈ A is trivial, assume X /∈ A. Choose a finite subcover {Ai}, define f : X → R
by the equation f(x) = 1

n

∑n
i=1 d(x,X − Ai). Since f is continuous and f(x) > 0, it has a minimum value

δ > 0 (Theorem 27.4). For all x, notice that δ ≤ f(x) ≤ d(x,X −Ai) for some i, then B(x, δ) ⊂ Ai.

Uniform Continuity

Uniform Continuity A function f from the metric space (X, dX) to the metric space (Y, dY ) is said

to be uniformly continuous if given ε > 0, there is a δ > 0 such that for every pair of points x, y ∈ X,

dX(x, y) < δ implies dY (f(x), f(y)) < ε.

Theorem 27.6 (Uniform Continuity Theorem)

Let f : X → Y be a continuous map of the compact metric space (X, dX) to the metric space (Y, dY ).

Then f is uniformly continuous.

Proof : Let ε > 0 be given. For each x ∈ X, choose δx such that d(p, x) < δx ⇒ d(f(p), f(x)) < ε/2.

The open cover {B(x, δx) |x ∈ X} has a finite subcover {B(xi, δxi)}. Put δ = mini δxi . For each pair of

points p, q such that d(p, q) < δ, choose xi such that p ∈ B(xi, δxi
), clearly d(f(x), f(p)) < ε/2. Note that

d(q, xi) ≤ d(p, q) + d(p, xi) < δ + δxi
≤ 2δxi

, so d(f(x), f(q)) < ε/2 by continuity. Therefore,

d(f(p), f(q)) ≤ d(f(p), f(xi)) + d(f(xi), f(q)) < ε/2 + ε/2 ≤ ε

so f is uniformly continuous.

Isolated Points and Uncountable Sets

If X is a space, a point x of X is said to be isolated point of X if the one-point set {x} is open in X.
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Theorem 27.7

Let X be a nonempty compact Hausdorff space. If X has no isolated points, then X is uncountable.

Sketch of Proof : Step 1: Show that given any nonempty open set U of X and any point x ∈ X, there

exists a nonempty open set V in U such that x /∈ V̄ [by the Hausdorff axiom].

Step 2: Let f : Z+ → X, let xn = f(n). Apply step 1 to X to choose a nonempty open set V1 ⊂ X such

that x1 /∈ V̄1, and for each n ∈ Z+, choose Vn such that Vn ⊂ Vn−1 and V̄n does not contain xn. Consider

the nested sequence V̄1 ⊃ V̄2 ⊃ · · · of nonempty closed sets. Since X is compact, there is a point x ∈
⋂
V̄n

(Theorem 26.9). Therefore, x /∈ f(Z+), implying that f is not surjective.

Corollary 27.8

Every closed interval in R is uncountable.
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6 Countability and Separation Axioms

6.1 Section 30: The Countability Axioms

First Countability Axiom A space X is said to have a countable basis at x if there is a countable

collection B of neighborhoods of x such that each neighborhood of x contains at least one of the elements

of B.

A space that has a countable basis at each of its points is said to satisfy the first countability axiom ,

or to be first-countable .

Theorem 30.1

Let X be a topological space.

(a) Let A be a subset of X. If there is a sequence of points of A converging to x, then x ∈ Ā; the

converse holds if X is first-countable.

(b) Let f : X → Y . If f is continuous, then for every convergence sequence xn → x in X, the

sequence f(xn) converges to f(x); the converse holds if X is first countable.

Remarks: This theorem is generalization of Theorem 21.2 and 21.3.

Second Countability Axiom If a space X has a countable basis for its topology (namely, if the

topology X is generated by a countable set), then X is said to satisfy the second countability axiom ,

or to be second-countable .

Remark : The second countability axiom implies the first, and indeed much stronger than the first. For

instance,every metrizable space is first countable (see section 21) but not necessarily second countable.

Theorem 30.2

A subspace of a first countable space is first countable, and a countable product of first countable

spaces is first countable. A subspace of a second countable space is second countable, and a countable

product of second countable spaces is second countable.

Proof : Suppose B be a countable basis for X ⊃ A, then the set {B ∩A |B ∈ B} is a countable basis for A.

Suppose Bi is a countable basis for Xi, then {
∏

Ui |Ui ∈ Bi}, where Ui = Xi for all but finite many i, is a

countable basis for the product space
∏

Xi.

The proof for first countable space is similar.
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Dense A subset A of a space X is said to be dense in X if Ā = X.

Theorem 30.3

Suppose that X has a countable basis. Then

(a) Every open covering of X contains a countable subcollection covering X. (Lindelof space)

(b) There exists a countable subset of X that is dense in X. (Separable)

Remark : The properties above are generally weaker than the second countability axiom, but become

equivalent when the space is metrizable.

Proof : (a) Suppose A is an open covering, define A′ = {An}n∈Z+
by choosing An for which Bn ⊂ An.

Notice that A′ is obviously countable, and it is a subcover of X since B is a basis thus an open cover, implied

by Lemma 13.1. Therefore, A′ is a desired subcollection.

(b) Choose D = {xn}n∈Z+
from Bn for each n ∈ Z+. For all x ∈ X, every basis element containing x

intersects D, so x ∈ D̄. Hence D is a countable set that is dense in X.
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6.2 Section 31: The Separation Axioms

Remark : Suppose X is a topological space, X is

• T1 (Frechet) if every finite point set is closed (see §17),

• T2 if X is Hausdorff

• T3 if X is regular Hausdorff, and

• T4 if X is normal Hausdorff

The definition of regular and normal spaces are given below.

Regularity Axiom (T3) Suppose that one point sets are closed in X. Then X is said to be regular

if for each pair consisting a point x and a closed set B disjoint from x, there exist disjoint open sets

containing x and B, respectively.

Normalcy Axiom (T4) Suppose that one point sets are closed in X. Then X is said to be normal if

for each pair A,B if disjoint closed sets, there exist disjoint open sets containing x and B, respectively.

Remark : The regular space is Hausdorff, and the normal space is regular (we need to include the condition

that one-point sets be closed in order for this to the case).

Lemma 31.1

Let X be a topological space, and let one-point sets in X be closed.

(a) X is regular if and only if given a point x of X and a neighborhood U of x, there is a neigh-

borhood V of x such that V̄ ⊂ U .

(b) X is normal if and only if given a closed set A and an open set U containing A, there is an open

set V containing A such that V̄ ⊂ U .

Proof : (a) (⇒) Given a neighborhood U of x. X − U is closed, so there exists open sets V1, V2 separating

x,X − U . Note that V1 is disjoint from X − U [otherwise, if y ∈ V1 ∩ (X − U), V2 intersects V1 as a

neighborhood of y by Theorem 17.5, contradiction]. Then V̄1 ⊂ U .

(⇐) Given x and a closed set U disjoint from x. Since X − U is open, there exists a neighborhood V of x

such that V̄ ⊂ X − U . Then V,X − V̄ separates x, U .

The proof for (b) is an analogous, with replacing the pointx by the set A throughout.

Theorem 31.2

(a) A subspace of a Hausdorff space is Hausdorff; a product of Hausdorff spaces is Hausdorff.

(b) A subspace of a regular space is regular; a product of regular spaces is regular.
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Remark : There is no analogous theorem for normal spaces, see next section.

Proof : (a) The proof is omitted, see §17.

(b) Suppose A is a subspace of X. One-point sets are closed because A is Hausdorff by (a). Let x ∈ A

and U be a closed subset in A disjoint from x. Since U = Ū ∩ A given that U is closed in A, x /∈ Ū . By

the regularity of X, x and Ū can be separated by the disjoint neighborhoods V1, V2, then x and U can be

separated by the disjoint neighborhoods V1 ∩A, V2 ∩A.

Suppose X = Xα. One-point sets are closed because X is Hausdorff by (a). Let x ∈ X and U be a

neighborhood of x, then there is an neighborhood
∏

Uα such that x ∈
∏

Uα ⊂ U . For each α, we choose

Vα = Uα if Uα = Xα, and otherwise we choose a neighborhood Vα of xα such that V̄α ⊂ Uα since Xα is

regular (Lemma 31.1). Then V =
∏

Vα is a neighborhood of x, and V̄ =
∏

V̄α ⊂
∏

Uα ⊂ U (Theorem 19.5),

so X is regular by Lemma 31.1.
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6.3 Section 32: Normal Spaces

Theorem 32.1

Every regular space with a countable basis is normal.

Remark : The stronger version is: every regular Lindelof space is normal. We formulate a proof for this

statement below.

Proof of The Stronger Form : Suppose A,B are disjoint closed subset of X. For x ∈ A, by the regularity,

there is a neighborhood U disjoint from a neighborhood of B. Since {Ua} is an open covering, it has a

countable subcover {Un}n∈Z+
, and the closure is disjoint from B. Choose {Vn} for B similarly.

Define U ′
n := Un −

⋃n
i=1 V̄i [motivation: remove the closure of {Vn} in Un] and define V ′

i similarly. Put

U ′ :=
⋃
U ′
n and V ′ :=

⋃
V ′
n. It it not hard to show U ′ and V ′ are open, disjoint, and contains A and B,

respectively.

Theorem 32.2

Every metrizable space is normal.

Proof : Suppose A,B are disjoint closed subset. For every a ∈ A, choose εa such that B(a, ε) is disjoint

from B, and define U :=
⋃

a∈A B(a, εa/2). Similarly, V for B. Note that U and V are disjoint, since

z ∈ B(a, εa/2) ∩B(b, εb/2) implies that d(a, b) < εa or εb, contradiction.

Theorem 32.3

Every compact Hausdorff space if normal.

Proof : Suppose A,B are closed subset. A,B are compact (Theorem 26.2), so for all a, there exist disjoint

open sets Ua, Va containing a and B (Lemma 26.4). By compactness, A,B can be covered by a finite

collection {Ui} , {Vi}, respectively. Put U :=
⋃

Ui and V :=
⋂
Vi, it is obvious that U, V are disjoint open

sets containing A,B, respectively.

Theorem 32.4 Every well-ordered set X is normal in the order topology.

Remark : Indeed, every order topology is normal.

Sketch of Proof : First, we prove every interval of the form (a, b] is open. Let A,B be disjoint closed sets,

and denote a0 = minX. Assume a0 /∈ A ∪ B. For all a ∈ A such that a ̸= a0, there exists (xa, a] disjoint

from B, and it holds for B similarly. Put U :=
⋂

a∈A(xa, a] and V :=
⋂

b∈B(xb, b], they are disjoint. Now

assume a0 ∈ A∪B, since {a0} is both open and closed, append a0 to U or V gives a pair of desired disjoint

open sets.
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6.4 Section 33: The Urysohn Lemma

Theorem 33.1 (Urysohn Lemma)

Let X be a normal space, let A and B be disjoint subsets of X. Let [a, b] be a closed interval in the

real line. Then there exists a continuous map f : X → [a, b] such that f(x) = a for every x ∈ A, and

f(x) = b for every x ∈ B.

Proof : Step 1: Without loss of generality, we can let a = 0 and b = 1. Let P = [0, 1]∩Q. Put U1 = X−B and

choose U0 such that A ⊂ U0 ⊂ U0 ⊂ U1 (Lemma 31.1). Arrange P to a sequence {r1 = 1, r2 = 0, r3, r4, · · · }.
Recursively, for all n ≥ 3, we can choose p, q ∈ {r1, · · · , rn−1} such that p < rn < q. Then we can choose

Urn for which Up ⊂ Urn ⊂ Urn ⊂ Uq (Lemma 33.1). Then we obtain a collection {Un}n∈P of neighborhoods

of A such that Up ⊂ Uq whenever p < q.

Step 2: Extend the definition of Up to Q by defining Up = ∅ if p < 0 and Up = X if p > 1. Define

f : X → [0, 1] by f(x) = inf{n ∈ Q : x ∈ Un}. It is not hard to show f is well-defined since R has greatest

lower bound property, and f(x) = 0 for x ∈ A and f(x) = 1 if x ∈ B.

Step 3: We need to show f is continuous. The following three lemma hold:

(a) For all r, s ∈ Q such that 0 ≤ r < s, Ur ⊂ Us.

The proof is obvious by cases.

(b) For all r ≥ 0, if x ∈ Ur, f(x) ≤ r.

Proof: If s > r, x ∈ Us by lemma (a), so {n : x ∈ Un} contains all rational number larger than s. By

the fact that Q is dense in R and the definition of infimum, f(x) ≤ r.

(c) For all r ≥ 0, if x /∈ Ur, f(x) ≥ r.

Proof: If s < r, x /∈ Ur, so {n : x ∈ Un} contains no rational number less than s. Then f(x) ≤ r.

Given a point x0 ∈ X and an open interval (c, d) ⊂ R containing f(x0). Since Q is dense, we can choose

r, s ∈ Q such that c < r < f(x0) < s < d. The set V := Us − Ur is neighborhood of f(x0). By lemma (b)

and (c), r ≤ f(x) ≤ s for all x ∈ V , so f(V ) ⊂ (c, d). Hence f is continuous by Theorem 18.1.

Separated by a Continuous Function If A and B are two subsets of the topological space X, and

if there is a continuous function f : X → [0, 1] such that f(A) = {0} and f(B) = {1}, we say A and B

can be separated by a continuous function .
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The Urysohn Lemma cannot be generalized to show that in a regular space, points can be separated from

closed sets by continuous function. In step 1 of the proof when constructing Up, we need the existence of Up

for which Ur ⊂ Up ⊂ Up ⊂ Us if r < p < s, and regularity is not sufficient.

Completely Regular A space X is completely regular if one-point sets are closed in X and if for

each point x0 and each closed set A not containing x0, there is a continuous function f : X → [0, 1]

such that f(x0) = 1 and f(A) = {0}.

Remark : A normal space is completely regular (Urysohn Lemma), and a completely regular space is regular.

A completely regular Hausdorff space is called Tychonoff, namely T31/2 .

Theorem 33.2

A subspace of a completely regular space is completely regular. A product of completely regular

spaces is completely regular.

Proof : Let Y be a subspace of X. Suppose x ∈ Y and A is closed in Y and disjoint from x. Note that

A = Ā ∩ Y , so x /∈ Ā. Since X is completely regular, there is a continuous function f : X → [0, 1] such that

f(x0) = 0 and f(Ā) = {1}. The restriction of f to Y is a desired continuous function on Y .

Let X =
∏

Xα be the product space, b ∈ X, and A be a closed subset disjoint from b. Choose a basis

element
∏

Uα containing b; it is disjoint from A, and Uα = Xα except for finite {αi}. For each i, choose

fi : Xαi → [0, 1] such that fi(bαi) = 1 and fi(X − Uαi) = {0}. Then function f : X → [0, 1] defined by

f(x) =
∏n

i=1 fi(xα) is the desired continuous function on X, for it equals 1 at b and vanish outside
∏

Uα.
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6.5 Section 34: The Urysohn Metrization Theorem

Theorem 34.1 (Urysohn Metrization Theorem)

Every regular space X with a countable basis is metrizable.

Proof : We shall prove X is metrizable by imbedding X in a metrizable space Y = Rω, that is, by showing

X is homeomorphic with a subspace of Y .

Step 1: We want to prove th following lemma: there exists a countable collection of continuous functions

fn : X → [0, 1] having the property that given any x ∈ X and a neighborhood U of x, there exists an index

n such that fn is positive at x and vanish outside U .

Proof: There exists a basis element B such that x ∈ B ⊂ B̄ ⊂ U by the regularity of X (Lemma 31.1). Since

X is normal (Theorem 32.1), by the Urysohn Lemma, there is a continuous function f : X → [0, 1] such that

f(B̄) = {1} and f(X − U) = {0}. Then f is a positive at x for all x ∈ B and vanish outside U . Note that

the basis is countable, there exists a countable collection of continuous functions {fn}n∈Z+
with the desired

property.

Step 2: Let Y = Rω, which is metrizable (Theorem 20.5). Define F : X → Rω by the rule F (x) =

(f1(x), f2(x), · · · ), we assert that F is an imbedding.

F is continuous because Rω has the product topology and fn is continuous for every n (Theorem 19.6). F

is injective, since if x ̸= y, there exists n such that fn(x) > 0 and fn(y) = 0. Finally, we need to show F

is a homeomorphism of X onto Z = F (X). F define a continuous bijection of X with Z. We need to show

for each open set U in X, F (U) is open in Z. Let z0 ∈ F (U) [want to show there exists W open in Z such

that z0 ∈ W ⊂ F (U)], and let x0 be a point such that F (x0) = z0. Choose n such that fn(x0) > 0 and

fn(X−U) = {0}, and let V = π−1
n ((0,∞)). It is not hard to show z0 ∈ V ∩Z, and W := V ∩Z ⊂ F (U) since

fn vanish outside U . Then f(U) is open, it follows that F−1 is continuous. Hence F is a homeomorphism

and thus an imbedding of X in Rω.

Theorem 34.2 (Imbedding Theorem)

Let X be a space in which one-point sets are closed. Suppose that {fα}α∈J is an indexed family of

continuous functions fα : x → R satisfying the requirement that for each point x0 of X and each

neighborhood U of x0, there is an index α such that fα is positive at x0 and vanished outside U .

Then the function F : X → RJ defined by F (x) = (fα(x))α∈J is an imbedding of X in RJ . If fα

maps X into [0, 1] for each α, then F imbeds X in [0, 1]J .

The proof is an analogous of Step 2 of the preceding proof.

Theorem 34.3

A space X is completely regular if and only if it is homeomorphic to a subspace of [0, 1]J for some J .
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7 The Fundamental Group

7.1 Section 51: Homotopy of Paths

7.1.1 Homotopy and Path of Homotopy

Homotopic, Nulhomotopic If f and f ′ are continuous maps of the space X into the space Y , we

say that f is homotopic to f ′ if there is a continuous map F : X × I → Y (where I = [0, 1]) such

that F (x, 0) = f(x) and F (x, 1) = f ′(x). The map F is called a homotopy between f and f ′. If f is

homotopic to f ′, we write f ≃ f ′. If f ≃ f ′ and f ′ is a constant map, we say that f is nulhomotopic.

Remark : The homotopy F (x, t) represents a continuous deforming of f to f ′ over time t.

For convenience we use the interval I = [0, 1] as the domain for all paths. Consider the special case in which

f and f ′ are two paths in X (note that a continuous map f : [0, 1] → X such that f(0) = x0 and f(1) = x1

is called a path from x0 to x1), there is a stronger relation between them:

Path Homotopic Two paths f and f ′, mapping the interval I = [0, 1] into X, are said to be path

homotopic if they have the same initial point x0 and the same final point x1, and if there is a homotopy

F : I×I → X such that F (s, 0) = f(s) and F (s, 1) = f ′(s) for each s, t ∈ I. We call F a path homotopy

between f and f ′. If f is path homotopic to f ′, we write f ≃p f ′.

Remark : The path homotopy F (s, t) represents a continuous deforming of f to f ′ over time t, where the

end points of the path remain fixed during the deformation.

Lemma 51.1

The relations ≃ and ≃p are equivalence relations.

Proof : Reflexivity and symmetry are trivial for ≃ and ≃p. Suppose F and F ′ are the homotopy or path

homotopy between f and f ′, and f ′ and f ′′, respectively. Defined G by the equation

G(x, t) =

{
F (x, 2t) for 0 ≤ t ≤ 1/2,

F ′(x, 2t− 1) for 1/2 ≤ t ≤ 1.

[Motivation: We think of G as the homotopy where the first half (with respect to t) is the continuous

deformation from f to f ′, and the second half from f ′ to f ′′.] Then G is the required homotopy between f

and f ′′, this implies that ≃ and ≃p are transitive.

7.1.2 Product of Paths
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Product of Paths If f is a path in X from x0 to x1, and if g is a path in X from x1 to x2, we define

the product f ∗ g of f and g to be the path h given by the equations

h(s) =

{
f(2s) for 0 ≤ s ≤ 1/2,

f(2s− 1) for 1/2 ≤ s ≤ 1.

The function h is well-defined and continuous, by the pasting lemma; it is a path in X from x0 to x2.

Motivation: We think of h as the path whose first half is the path f and whose the second half is the path

g.

The product operation on paths induces a well-defined operation on path-homotopy classes, defined by

[f ] ∗ [g] = [f ∗ g]. Suppose F , G are the path homotopy between f and f ′, between g and g′, respectively;

then

H(s, t) =

{
F (2s, t) for 0 ≤ s ≤ 1/2,

F (2s− 1, t) for 1/2 ≤ s ≤ 1,

is the required path homotopy between f ∗ g and f ′ ∗ g′.

Theorem 51.2

The operation ∗ has the following properties:

(1) (Associativity) If [f ] ∗ ([g] ∗ [h]) is defined, so is ([f ] ∗ [g]) ∗ [h], and they are equal.

(2) (Right and left identities) Given x ∈ X let ex denote the constant path ex : I → X carrying all

of I to the point x. If f is a path in X from x0 to x1, then [f ] ∗ [ex1
] = [f ] and [ex0

] ∗ [f ] = [f ].

(3) (Inverse) Given the path f in X from x0 to x1, let f̄ be the path defined by f̄(s) = f(1− s). It

is called the reverse of f . Then [f ] ∗ [f̄ ] = [ex0
] and [f̄ ] ∗ [f ] = [ex1

].

Remark : The properties above are called the groupiod properties of ∗.

Proof : Note the following two elementary facts: if f, g are two paths, k : X → Y is a continuous map, and

(a) if F is a path homotopy in X, then k ◦ F is a path homotopy between paths k ◦ f and k ◦ f ′;

(b) if k : X → Y is a continuous map and if f(1) = g(0), then k ◦ (f ∗ g) = (k ◦ f) ∗ (k ◦ g).

(2) Let i : I → I be the identity map. Since I is convex, there is a path homotopy G between i and e0 ∗ i.
Then f ◦G is a path homotopy between f ◦ i = f and f ◦ (e0 ∗ i) = ex0 ◦ f . The other part is an analogous.

(3) Let ī denotes the reverse of i. Since I is convex, there is a homotopy between e0 and i ∗ ī. Then f ◦H
is a path homotopy between f ◦ e0 = ex0

and f ◦ (i ◦ ī) = f ∗ f̄ . The other part is an analogous.

(1) Given paths f, g, h in X. Define the triple product ka,b (where 0 < a < b < 1), when restricted to [0, a],

[a, b], and [b, 1], equals the positive linear maps of these intervals onto I followed by f, g, h, respectively (the

positive linear map p of [a, b] to [c, d] is unique bijection of the form p(x) = mx+ k).

Choose another pair of points c, d of I and define kc,d. Let p : I → I be the map, when restricted to [0, a],

[a, b], and [b, 1], equals the positive linear maps onto [0, c], [c, d], and [d, 1], respectively. It follows that

kc,d ◦ p = ka,b. Since I is convex, there is a path homotopy P between p and i (the identity map). Then
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kc,d ◦ P is a path homotopy in X between ka,b and kc,d. Hence f ∗ (g ∗ h) = k 1
2 ,

3
4
and (f ∗ g) ∗ h = k 1

4 ,
1
2
are

homotopic.

Theorem 51.3 Let f be a path in X and let a0, · · · , an be numbers such that 0 = a0 < a1 < · · · < an = 1.

Let fi : I → X be the path that equals the positive linear map of I onto [ai−1, ai] followed by f . Then

[f ] = [f1] ∗ · · · ∗ [fn].
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7.2 Section 52: The Fundamental Group

Group Definition Review Suppose G and G′ are groups:

• A homomorphism f : G → G′ is a map such that f(x · y) = f(x) · · · f(y) for all x, y; it satisfies the
equations f(e) = e′ and f(x−1) = f(x)−1, where e and e′ are the identities of G and G′.

• The kernel of f is the set f−1(e′); it is a subgroup of G. The image if f is similarly a subgroup of

G′.

• A homomorphism f is called amonomorphism if it is injective, called epimorphism if it is surjective,

and called an isomorphism if it is bijective.

Suppose G is a group and H is a subgroup of G:

• Let xH denote the set of all products xh for h ∈ H; it is called a left coset of H in G. The collection

of all such cosets forms a partition of G.

• We called H a normal subgroup if x · h · x−1 ∈ H for each x ∈ G and h ∈ H. In this case, we have

xH = Hx for each x, so out two partitions of G are the same. We denote this partition by G/H.

• If one defined (xH) · (yH) = (x · y)H, one obtains a well-defined operation on G/H that makes it a

group. The group is called the quotient of G by H.

7.2.1 The Fundamental Group and Alpha-hat Function

Fundamental Group Let X be a space and x0 be a point of X. A path in X that begins and ends

at x0 is called a loop based at x0. The set of path homotopy classes of loops based at x0, with the

operation ∗, is called the fundamental group (first homotopy group) of X relative to the base point

x0. It is denoted by π1(X,x0).

α̂ Let α be a path in X from x0 to x1. We define a map α̂ : π1(X,x0) → π1(X,x1) by the equation

α̂([f ]) = [ᾱ] ∗ [f ] ∗ [α].

Theorem 52.1

The map α̂ is a group isomorphism.

Proof : To show that ᾱ is a homomorphism, we compute

α̂([f ]) ∗ α̂([g]) = ([ᾱ] ∗ [f ] ∗ [α]) ∗ ([ᾱ] ∗ [g] ∗ [α]) = [ᾱ] ∗ [f ∗ g] ∗ [α] = α̂([f ∗ g]).

To show ᾱ is an isomorphism, let β denote the reverse of α, then β̂ is an inverse of α̂. For each [h] ∈ π1(X,x1),

α̂(β̂([h])) = [ᾱ] ∗ ([α] ∗ [h] ∗ [ᾱ]) ∗ [α] = [h], and similarly β̂(α̂([f ])) = f for [f ] ∈ π1(X,x0).

Corollary 52.2 If X is path connected and x0 and x1 are two points of X, the π1(X,x0) is isomorphic to

π1(X,x1).
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7.2.2 Homomorphism Between Fundamental Spaces

Simply Connected A space X is said to be simply connected if it is a path-connected space and

if π1(X,x0) is the trivial group (group with one element) for some x0, and hence for every x0 ∈ X.

Lemma 52.3

In a simply connected space X, any two paths having the same initial and final points are path

homotopic.

Proof : Suppose α, β are paths from x0 to x1. [α ∗ β̄] is a loop at x0, so [α ∗ β̄] = [ex0
] since X is simply

connected. Then [α ∗ β̄] ∗ [β] = [ex0
] ∗ [β] = [β], so [α] = [β].

Remark : The fundamental group is a topological invariant of the space X. If two spaces have differ-

ent fundamental group, they are not homeomorphic. To prove this fact, we introduce the notion of the

“homeomorphism induced by a continuous map”.

Homeomorphism Induced by a Continuous Map Let h : (X,x0) → (Y, y0) be a continuous

map. Define h∗ : π1(X,x0) → π1(Y, y0) by the equation h∗([f ]) = [h ◦ f ]. The map h∗ is called the

homomorphism induced by h relative to the base point x0.

The map h∗ is well-defined, for if F is a path homotopy between f and f ′, then h ◦ F is a path homotopy

between h ◦ f and h ◦ f ′. The fact that h∗ is a homomorphism follows from (h ◦ f) ∗ (h ◦ g) = h ◦ (f ∗ g).

Theorem 52.4

If h : (X,x0) → (Y, y0) and k : (Y, y0) → (Z, z0) are continuous, then (k ◦ h)∗ = k∗ ◦ h∗. If

i : (X,x0) → (X,x0) is the identity map, then i∗ is the identity homomorphism.

Proof : The proof is trivial: (k∗ ∗ h∗)([f ]) = k∗([h ◦ f ]) = [k ◦ (h ◦ f)] = [(k ◦ h) ◦ f ] = (k ◦ h)∗([f ]), and

similarly i∗([f ]) = [i ◦ f ] = [f ].

Corollary 52.5

If h : (X,x0) → (Y, y0) is a homeomorphism of X with Y , then h∗ is an isomorphism of π1(X,x0)

with π1(Y, y0).

Proof : Let i∗, j∗ denote the identity homomorphism inX and Y , respectively, then (h−1)∗◦h∗ = (h−1◦h)∗ =

i∗ and h∗ ◦ (h−1)∗ = (h ◦ h−1)∗ = j∗. Therefore, (h
−1)∗ is the inverse of h∗.
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