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Chapter 1 The Real and Complex Number Systems

Introduction

h Ordered Set and Least-upper-bound

h The Complex Field

h Real Field and Properties

1.1 Ordered Set

Definition 1.1 (Ordered Set)

♣

Suppose S be a set. An order on S is a relations, denoted by <, with the following properties:

(1) Trichotomy: If x, y ∈ S, then exactly one of the following x = y, x < y, y < x is true.
(2) Transitivity: If x, y, z ∈ S, x < y, and y < z, then x < z.

The ordered set is a set S in which an order is defined.

Definition 1.2 (Supremum, Infimum)

♣

Suppose S is a ordered set, E ⊂ S, and E is bounded above. Suppose there exists α ∈ S such that:

(1) α is an upper bound of E.
(2) If γ < α, then γ is not an upper bound of E.

Then α ∈ S is called the least upper bound of E (or the supremum of E) and is denoted by α = supE.

The definition of greatest lower bound (infimum) is an analogous.

Remark The second statement is equivalent to: for all upper bounds γ, we have γ ≥ α.

Definition 1.3 (Least Upper Bound Property)

♣

An ordered set S has the least-upper-bound property if for all nonempty E ⊂ S that is bounded above, then
supE exists in S.

Theorem 1.1

♡

Suppose S is an ordered set the least-upper-bound property, then S has the greatest-lower-bound property,
that is, for all nonempty E ⊂ S that is bounded below, then inf E exists in S.

Proof Let L be the set of all lower bounds of E, L ̸= ∅. Since L is bounded above by elements in E, there exists



1.1 Ordered Set

α = supL in S. It follows that α = inf E because (1) for all x ∈ E, α ≤ x since x is an upper bound of L, it follows
that α ∈ L, and (2) γ ≤ α for all lower bounds γ ∈ L by definition. This completes the proof.

Remark We construct the set of lower bounds to convert the l.u.b. property to g.l.b. The construction of L gives
the following relationships: L ≤ α ≤ E and supL = α = inf E.
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1.2 The Real Field

1.2 The Real Field

Definition 1.4 (Field, Ordered Field)

♣

A field (F,+, ·) is a set F such that (F,+) and (F \{0}, ·) are abelian group, and multiplicative is distributive
to addition.
An ordered field is a field (F,+ · · · ) which is also an ordered set such that

1. x+ y < x+ z if x, y, z ∈ F and y < z, and

2. xy > 0 if x, y ∈ F , x, y > 0.

Example 1.1 There exists no order that turns C into an ordered field.

Proposition 1.1 (Existence Theorem)

♠There exists an ordered field R which has the least upper bound property.

Remark Suppose E ⊂ S, α = supE if and only if for all ε > 0, there exists x ∈ E such that α− ε < x ≤ α.

�

Note Well-ordering principle of N: if E is a nonempty subset of N, the E has a least element in it.

Theorem 1.2

♡

1. Archimedean property: if x, y ∈ R and x > 0, there exists N ∈ Z>0 such that nx > y.

2. Q is dense in R: if x, y ∈ R and x < y, there exists q ∈ Q such that x < q < y.

Proof (1) For the sake of contradiction, suppose there exists x, y such that nx ≤ y for all n ∈ Z>0. Let
E = {nx |n ∈ Z>0}, clearly E is nonempty and bounded above by y, there exists α = supE. There exists nx ∈ E

such that α− x < nx ≤ α, it follows that (n+ 1)x > α, contradicting the fact that α = supE.

(2) There exists n ∈ N such that n(y − x) > 1, namely ny − 1 > nx. Apply the Archimedean property again,
we obtain m1,m2 ∈ Z>0 such that m1 > nx, m2 > −nx, so −m2 < nx < m1. It follows that there exists m
(−m2 ≤ m ≤ m1) such that m− 1 ≤ nx < m. Then nx < m < ny, so x < m/n < y where m/n ∈ Q. ■

Remark Indeed, the set of all irrationals Qc is also dense in R.

Theorem 1.3

♡

For every real x > 0 and every integer n > 0, there exists a unique real y > 0 such that yn = x; in other
words, x1/n exists and is unique.

Proof For the existence, letE = {t > 0 | tn < x}. It is not hard to showE is nonempty (by choosing t < min(x, 1))
and bounded above (by 1 + x), so there exists α = supE by the least-upper-bound property.

7



1.2 The Real Field

We now prove αn = x by contradiction. Notice that bn−an = (b−a)(bn−1+abn−1+ · · ·+an−1) < (b−a)nbn−1.

Assume αn > x, put h = (αn − x)/nαn−1, then

αn − (α− h)n < h · nαn−1 ≤ an − x.

That is, x < (α− h)n < αn, contradicting to the fact that α = supE.

Assume αn < x, put h = min{1, (x− αn)/n(α+ 1)n−1}, then

(α+ h)n − αn < h · n(α+ h)n−1 ≤ h · n(α+ 1)n−1 ≤ x− αn.

That is, αn < (α+ h)n < x, contradicting to the fact that α is an upper bound.

Hence, αn = x. ■

Definition 1.5 (Extended Real Number System)

♣

The extended real number system consists of the real field R and two symbols, +∞ and −∞. We preserve the
original order in R, and define −∞ < x < +∞ for every x ∈ R.

The extended real number system does not form a field.

8



1.3 The Complex Field and The Euclidean Spaces

1.3 The Complex Field and The Euclidean Spaces

Definition 1.6 (Complex Number)

♣

A complex number is an ordered pair (a, b) of real numbers. Let x = (a, b) and y = (c, d), we define the
addition and multiplication by x+ y = (a+ c, b+ d) and xy = (ac− bd, ad+ bc).

Remark The complex number along with addition and multiplication forms a field C, and it contains R as a subfield.

We define the conjugate of x = (a, b) by x̄ = (a,−b) and define the absolute value |x| = (xx̄)1/2. The complex
numbers have the following properties:

z + w = z̄ + w̄, zw = z̄w̄;

z + z̄ = 2Re(z), z = z̄ = 2Im(z);

zz̄ is real and positive (exception when z = 0), so |z| > 0;

|z̄| = |z|;

|zw| = |z||w|;

|Re(z)| ≤ |z|;

(triangle inequality) |z + w| ≤ |z|+ |w|

Proof :
|z + w|2 = (z + w)(z̄ + w̄) = zz̄ + zw̄ + z̄w + ww̄

= |z|2 + 2Re(zw̄) + |w|2

≤ |z|2 + 2|zw̄|+ |w|2 = |z|2 + 2|z||w|+ |w|2

= (|z|+ |w|)2,

it follows that |z + w| ≤ |z|+ |w|. ■

Proposition 1.2 (Schwarz Inequality)

♠

If a1, · · · , an and b1, · · · , bn are complex numbers, then∣∣∣∣∣
n∑

j=1

aj b̄j

∣∣∣∣∣
2

≤
n∑

j=1

|aj |2
n∑

j=1

|bj |2.

Proof Put A =
∑

|aj |2, B =
∑

|bj |2, and C =
∑
aj b̄j . If B = 0, b1 = · · · = bn = 0, so the conclusion is trivial.

Suppose therefore B > 0, then

0 ≤
∑

|Baj − Cbj |2 =
∑

(Baj − Cbj)(Bāj − Cbj)

= B2
∑

|aj |2 −BC̄
∑

aj b̄j −BC
∑

ājbj + |C|2
∑

|bj |2

= B2A−BC̄C −BCC̄ +B|C|2

= B(AB − |C|2).

9



1.3 The Complex Field and The Euclidean Spaces

Therefore, AB − |C|2 ≥ 0. ■

Proof (Alternative) We use the same notation of A,B,C as above. Notice that AB =
∑

i,j aib̄j āibj and |C|2 =∑
i,j aib̄j ājbi. Then

AB =
(∑

i

aiāi

)(∑
j

bj b̄j

)
=
(∑

i

aibi

)(∑
j

āj b̄j

)
+
∑
i,j

aib̄j(āibj − ājbi)

=
∣∣∣∑

i

aibj

∣∣∣2 +∑
i≤j

(aib̄j − aj b̄i)(āibj − ājbi)

= |C|2 +
∑
i≤j

|aib̄j − aj b̄i|2

≥ |C|2.

Hence AB ≥ |C|2. ■

Definition 1.7 (Euclidean Space)

♣For k ∈ Z>0, Rk = {x : x = (x1, · · · , xk), xi ∈ R for all i}

Let x = (x1, · · · , xk) and y = (y1, · · · , yk). The addition is defined by x+ y = (x1 + y1, · · · , xk + yk), the scalar
multiplication is defined by ax = (ax1, · · · , axk), the inner product is defined by x · y =

∑k
i=1 xiyi, and the norm

is defined by |x| = (x · x)1/2 = (
∑k

i=1 x
2
i )

1/2.

Let x,y, z ∈ Rk, α ∈ R, the following properties holds:

|x| ≥ 0, and the equality holds if and only if x = 0;

|ax| = |a||x|;

(Cauchy-Schwartz) |x · y| ≤ |x||y|;

(triangle inequality) |x+ y| ≤ |x|+ |y|;

|x− z| ≤ |x− y|+ |y − z|.
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Chapter 2 Basic Topology

Introduction

h Countable and Uncountable Sets

h Limit Point, Closed Set, Closure

h Open Relative (Subspace topology)

h Heine-Borel Theorem

h Neighborhoods, Open Sets

h Bounded Set, Dense Subset

h Open Cover, Compact Set

h Perfect Set, Connected Sets

2.1 Countable Sets

Definition 2.1 (1-1 Correspondence)

♣

Suppose A, B are sets, we say A and B are in 1-1 correspondence if there exists a bijection f : A → B. We
write A ∼ B, and this relation is a equivalence relation.

Definition 2.2 (Countability)

♣

For any n ∈ Z+, define Jn := {1, · · · , n}, and let J = {1, · · · } = Z>0. For any set A, we say:

A is finite if A ∼ Jn for some n (the empty set is considered finite).

A is countable if A ∼ J .

A is at most countable if A is finite or countable, and A is uncountable if it is not at most countable.

Example 2.1 Z is countable, because f : N → Z, defined by f(n) = n/2 if n is even and f(n) = −(n− 1)/2 if n
is odd, is a bijection.

Definition 2.3 (Sequence)

♣A sequence is a function defined on N. If f is a sequence, we denote xn = f(n), and we write f as {xn}.

Proposition 2.1

♠Every infinite subset of a countable set A is countable.

Proof Let E ⊂ A be an infinite subset. Since A is countable, there exists {xn} = A. Let n1 be the least
positive integer such that xn1 ∈ E, which exists by the well-ordering principle. Recursively, choose ni from
E \ {x1, · · · , xn−1}, which is nonempty since E is infinite, such that ni is the least positive integer such that
xni ∈ E. Putting f(k) = xnk

(k ∈ Z+), we obtain an 1-1 correspondence between E and J . ■



2.1 Countable Sets

Note: That is, every subset of a countable set is at most countable.

Proposition 2.2

♠

Let {En}, n = 1, 2, · · · be a sequence of countable sets, and put S =
⋃∞

n=1En, then S is countable. In other
words, the countable union of countable sets is countable.

Proof Let En = {xn,k}∞k=1 for all n, S can be enumerated as:

namely S = {x1,1, x2,1, x1,2, x3,1, · · · }. Then S is at most countable. Since E1 ⊂ S is countable thus infinite, S is
countable. ■

Corollary 2.1

♡The at most countable union of at most countable sets is at most countable.

Proposition 2.3

♠

Let A be a countable set, and let Bn be the set of all n-tuples (a1, · · · , an) where ak ∈ A (k = 1, · · · , n),
and the element need not be distinct. Then Bn is countable. In other words, the finite cartesian product of
countable sets is countable.

Proof We proceed by induction on n. If n = 1, the statement is trivial. For n > 1, suppose Bn−1 is countable.
Fix b ∈ Bn−1, let Eb := {(a, b) | a ∈ A}, which is countable since A is countable. Then Bn =

⋃
b∈Bn−1

Eb is a
countable union of countable sets, then Bn is countable by proposition 2.2. ■

Corollary 2.2

♡Q is countable.

Proof The set of Z×Z is countable by proposition 2.3, and Q can be view as the subset of Z×Z∗ ⊂ Z×Z by the
map f : (x, y) 7→ x/y, followed by Q is countable by 2.2. ■

Proposition 2.4 (Cantor)

♠R is uncountable.

Proof For the sake of contradiction, suppose R is countable, then so is (0, 1) ⊂ R. Clearly, (0, 1) is infinite. We
can enumerate (0, 1) as {xn}∞n=1, and let xn = 0.xn1xn2 · · · be the decimal representation. Choose y = 0.b1b2 · · ·

12



2.1 Countable Sets

for which bn ̸= xnn for all n. It follows that y ̸= xn for all n since bn ̸= xnn, so y /∈ {xn}∞n=1, contradicting the fact
that y ∈ (0, 1). ■
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2.2 Metric Spaces Topology

2.2 Metric Spaces Topology

Definition 2.4 (Metric Spaces)

♣

A metric space is a set X with a distance function (metric) d : X → X → R such that:

(a) d(x, y) > 0 if p ̸= q, and d(p, p) = 0;

(b) d(p, q) = d(q, p);

(c) d(p, q) ≤ d(p, r) + d(r, q) for any r ∈ X .

Example 2.2 LetX = Rk, defined d(x,y) = |x−y| to be the usual Euclidean distance. d satisfies all the conditions
in the above definition, so (Rk, d) is a metric space, and we called the Euclidean distance the “usual” distance in Rk.

Definition 2.5 (Neighborhood, Open Set)

♣

Let (X, d) be a metric space,

(a) A neighborhood of p is a set Nr(p) consisting of all q ∈ X such that d(p, q) < r, for some r > 0. The
number r is called the radius of Nr(p).

(b) A point E is an interior point of E if there is a neighborhood N of p such that N ⊂ E.

(c) A set E is open if every point of E is an interior point.

Remark A set E is open if and only if for all p ∈ E, there exists r > 0 such that Nr(p) ⊂ E.

Proposition 2.5

♠Every neighborhood is an open set.

Proof Consider the neighborhood E = Nr(p). For all p′ ∈ E, let h = d(p, p′) < r, then Nr−h(p
′) ⊂ E, because

for all q ∈ E, d(p, q) ≤ d(p, p′) + d(p′, q) < h+ (r− h) = r. Hence p′ is an interior point for all p′ ∈ E, thus E is
open. ■

Definition 2.6 (Closed Set)

♣

Let (X, d) be a metric space, suppose E ⊂ X ,

(a) A point p is a limit point of the setE if every neighborhood of p contains a point q ̸= p such that q ∈ E.
If p ∈ E and p is not a limit point of E, then p is called the isolated point of E.

(b) E is closed if every limit point of E is a point of E.

Remark Equivalently, p is a limit point if and only if N∗
r (p) ∩ E ̸= ∅, where we denote N∗

r (p) := Nr(p) \ {p}.
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2.2 Metric Spaces Topology

Proposition 2.6

♠If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of E.

Proof Proof by contradiction. Suppose p is a limit point of E, and there exists a neighborhood of p containing
finitely many points q1, · · · , qn. Put r = mini d(p, qi), then r > 0 since {qi} is finite. It follows that Nr(p) contains
no points of E \ {p}, contradicting that p is a limit point. ■

Remark Corollary: A finite point set has no limit points.

Definition 2.7 (Boundedness, Dense)

♣

Let (X, d) be a metric space, suppose E ⊂ X ,

(a) The complement of E, denoted by Ec, is Ec = {p ∈ X | p /∈ E}.

(b) E is bounded if there exists M > 0 and p ∈ E such that d(p, q) < M for all q ∈ E.

(c) E is dense in X if every point of X is a limit point of E or in E.

DeMorgan’s Law: Let {Eα} be a collection of sets Eα, then (
⋃

αEα)
c =

⋂
α(E

c
α).

Theorem 2.1

♡A set E is open if and only if its complement is closed.

Remark Corollary: A set F is closed if and only if its complement is open.

Proof (⇒) Suppose E is open, and let x be a limit point of Ec. If x ∈ E, there exists r′ such that Nr′(x) ⊂ E, so
Nr′(x) ∩ Ec = ∅, contradicting that x is a limit point of Ec. Thus x ∈ Ec, implying that Ec is closed.

(⇐) SupposeEc is closed, and let x ∈ E. Since x /∈ Ec, x is not a limit point ofEc, implying that there exists r > 0

such that N∗
r (x) ∩ Ec = Nr(x) ∩ Ec = ∅. It follows that Nr(x) ⊂ E, thus E is open. ■

Proposition 2.7

♠

(a) Arbitrary unions and finite intersections of open sets are open.

(b) Arbitrary intersections and finite unions of closed sets are closed.

Proof (a) (i) Suppose x ∈ G =
⋃

αGα, x is a point Gβ thus an interior point of Gβ for some β. Then x is an
interior point of G since Gβ ⊂ G, so the arbitrary union of open sets is open. (ii) Suppose x ∈ G =

⋂n
i=1Gi, then

for all i, there exists ri such that Nri(x) ⊂ Gi. Put r = min{ri}, we have Nr(x) ⊂ Gi for all i, so Nr(x) ⊂ G.
Thus, x is an interior point of G, so G is open.

(b) By taking the complement and using DeMorgan’s Law, we obtain (b) from (a).

Remark The infinite intersection of open sets is not necessarily open. For instance, Gn = (−1/n, 1/n) for n ∈ N,
then

⋂
Gn = {0} is not an open subset.
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2.2 Metric Spaces Topology

Definition 2.8 (Closure)

♣

If X is a metric, E ⊂ X , and E′ denotes the set of all limit points of E in X , the the closure of E is the set
Ē = E ∪ E′.

�

Note The interior E◦ is defined to be the set of all interior points of E. The boundary ∂E is defined to be
∂E := E \ E◦.

Proposition 2.8

♠

If X is a metric space and E ⊂ X , then

(a) Ē is closed,

(b) E = Ē if and only if E is closed, and

(c) Ē ⊂ F for every closed set F containing E.

Remark By (a) and (c), Ē is the smallest closed subset that contains E.

Proof (a) Let p ∈ Ēc, p is not in E nor a limit point of E, so there exists r > 0 such that Nr(p) ∩ E = ∅. If
q ∈ Nr(p) ∩ E′, let d = d(p, q), then there exists q′ ∈ E ∩Nr−d(q) ⊂ Nr(p) ∩ E = ∅, contradiction. Therefore,
Nr(p) ∩ Ē = Nr(p) ∩ (E ∪ E′) = ∅, then p is the interior point of Ēc, so Ēc is open, followed by Ē is closed.

(b) Suppose E = Ē, then E is closed by (a). Conversely, suppose E is closed, E ⊂ Ē = E ∩ E′ = E, so E = Ē.

(c) Since E ⊂ F , E′ ⊂ F because E′ are limit points of F and thus in F because F is closed. Therefore,
Ē = E ∪ E′ ⊂ F .

Remark For (a), we show that for p ∈ Ēc, Nr(p) contains no points of E, and it contains no limit points of E,
otherwise it intersects E. Then we conclude p is an interior point.

Proposition 2.9

♠

Let E be a nonempty set of R which is bounded above, and let y = supE. Then y ∈ Ē, thus y ∈ E if E is
closed.

Proof Suppose y ∈ E, then obviously y ∈ Ē. Suppose y /∈ E, then for all ε > 0, there exists y′ such that
y′ ∈ Nε(y) ∩ E = N∗

ε (y) ∩ E. It implies that y ∈ E′, so y ∈ Ē. ■

Definition 2.9 (Open Relative)

♣

Let Y ⊂ X be a non-empty subset. E ⊂ Y is open relative to Y if for each p ∈ E, there exists r > 0 such
that Nr(p) ∩ Y ⊂ E. Equivalently, there exists r > 0 such that q ∈ E whenever d(p, q) < r and q ∈ Y .

16



2.2 Metric Spaces Topology

Proposition 2.10

♠

Suppose Y ⊂ X . A subset E of Y is open relative to Y if and only if E = Y ∩G for some open subset G of
X .

Remark E is open relative to Y ⊂ means E is open in the subspace topology Y on X .

Proof (⇒) SupposeE is open relative to Y . To each p ∈ E there is a positive number rp such thatNrp(p)∩Y ⊂ E.
LetG =

⋃
p∈E Nrp(p), G is clearly open. Note that for all p ∈ E, p ∈ Nrp(p)∩Y , thenE =

⋃
p∈E(Nrp(p)∩Y ) =

(
⋃

p∈E Nrp) ∩ Y = G ∩ Y .

(⇐) SupposeE = Y ∩G for some open setG inX . For all p ∈ E = G∩Y , there exists r > 0 such thatNr(p) ⊂ G

since G is open in X , then Nr(p) ∩ Y ⊂ G ∩ Y = E. Thus, E is open relative to Y . ■

Example 2.3 Consider E = (0, 1) × {0}. E is open (relative) to Y = R × {0}, considering E as a subset of Y .
However, if we consider E as a subset of X = R2, E is not open.
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2.3 Compact Space

2.3 Compact Space

Definition 2.10 (Open cover, Compactness)

♣

Suppose (X, d) is a metric space. An open cover of a set E ⊂ X is a collection of open sets {Gα |α ∈ A}
such that E ⊂

⋃
α∈AGα.

K ⊂ X is compact if every open cover contains a finite subcover.

Proposition 2.11

♠Suppose K ⊂ Y ⊂ X . Then K is compact relative to X if and only if K is compact relative to Y .

Proof (⇒) Suppose K is compact relative to X , and assume {Vα = Gα ∩ Y } is an open cover open relative to
Y . Then {Gα} is an open cover of K, so there is a finite subcover {Gi} since K is compact relative to X . Thus,
K ⊂ (

⋂n
i=1Gi)∩ Y =

⋂n
i=1(Gi ∩ Y ) =

⋂n
i=1 Vi. It follows that there exists a finite subcover {Vi = Gi ∩ Y } of K

open relative to Y , so K is open relative to Y .

(⇐) The converse is an analogous. ■

Proposition 2.12

♠Compact subsets of a metric space are closed.

Proof Suppose K is compact, we want to show Kc is open. Let q ∈ Kc be given. For all p ∈ K, let
d = d(p, q)/2 > 0, we define the neighborhoods p ∈ Up = Nd(p) and q ∈ Vp = Nd(q). Note that {Up | p ∈ K}
forms an open cover of K, so there exists a finite subcover {Upi}. Consider V =

⋂n
i=1 Vpi . Note that V is open, and

V ∩K = ∅, since for all Upi , K ∩ Upi ⊂ Vpi ∩ Upi = ∅. Therefore, p is an interior point, so K is closed since the
choice of p is arbitrary. ■

Proposition 2.13

♠Closed subsets of compact sets are compact.

Proof Suppose F ⊂ K ⊂ X where F is closed relative to K and K is compact. Assume {Uα} is an open cover of
F . Adding the open set F c to {Uα} yields an open cover of K, so there exists a finite subcover {Vi} of K since K
is compact. Removing F c from {Vi} (if exists) gives a finite subcover of F . Hence F is compact. ■

Corollary 2.3

♡The intersection of a compact set and a closed set is compact.
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2.3 Compact Space

Proposition 2.14 (Finite intersection property)

♠

If {Kα} is a collection of compact subsets of a metric space X such that the intersection of every finite
subcollection of {Kα} is nonempty, then

⋂
Kα is nonempty.

Proof For the sake of contradiction, suppose
⋂
Kα = ∅. Fix K1 ∈ {Kα}, then K1 ⊂

⋃
Kc

α. By the compactness,
there exists α1, · · · , αn such that K1 ⊂

⋃n
i=1K

c
αi

= (
⋂n

i=1Kαi)
c. Then K1 ∩

⋂n
i=1Kαi = ∅, contradicting that

finite intersections are nonempty. ■

�

Note Corollary: If {Kn}n∈N is a sequence of nonempty compact sets such that Kn ⊃ Kn+1 for all n ∈ N, then⋂∞
n=1Kn is nonempty.

k-cell A k-cell is a set I ⊂ Rk of the fork I = [a1, b1]× · · · × [ak, bk] where aj < bj for j = 1, · · · , k.

Lemma 2.1

♡If {In} is a sequence of intervals in R1 such that In ⊃ In+1, then
⋂∞

n=1 In is nonempty.

Proof Let In = [an, bn] for all n, and put E = {an}. E is nonempty and bounded above by b1, so there exists
x = supE. For all m, notice that a1 ≤ a2 ≤ · · · am ≤ bm ≤ · · · ≤ b2 ≤ b1, so x ≤ bm. Also note that clearly
am ≤ x by the definition of supremum, thus x ∈ Im. Hence x ∈

⋂∞
m=1 Im. ■

Remark It is nor hard to show the intersection of a sequence of k-cells is nonempty.

Proposition 2.15

♠Every k-cell is compact.

Proof Proof by contradiction. Suppose I ⊂ Rk is a k-cell and is not compact. Put δ =
√∑

(ai − bi)2. Let
cj = (aj + bj)/2, dividing [aj , bj ] into [aj , cj ]∪ [cj , bj ] determines 2k k-cell, and at least one of the k-cells, denoted
by I1, is not compact because I is not compact.

Continuing this process we obtain a sequence {In} such that (a) In ⊃ In+1, (b) In cannot be covered by any finite
subcollection of an open cover {Gα}, and (c) |x − y| ≤ 2−nδ if x, y ∈ In. There exists x∗ ∈

⋂
In by Lemma 2.1

and x∗ ∈ Gα for some α . Since Gα is open, there exists r > 0 such that Nr(x
∗) ⊂ Gα, and there exists n ∈ Z>0

such that 2−n < r by the Archimedean property. This leads to a clear contradiction to (b). Hence I is compact. ■

Lemma 2.2

♡Suppose K is compact and E ⊂ K is an infinite subset. Then E has a limit point in K.

Proof Proof by contradiction. Suppose E has no limit point in K, then for all q ∈ E there exists εq > 0 such that
N∗

εq(q) ∩ E = ∅. That is, Nεq(q) ∩ E = {q}. The collection {Nεq(q) | q ∈ E} forms an open cover, there exists a
finite subcover by the compactness, contradicting to the fact that E is infinite. ■
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2.3 Compact Space

Theorem 2.2 (Heine-Borel Theorem)

♡

Suppose E is a subset of Rk with Euclidean metric, then the following are equivalent:

(a) E is closed and bounded.

(b) E is compact.

(c) Every infinite subset of E has a limit point in E.

Remark In general, (a) ̸⇒ (b) and (a) ̸⇒ (c).

Proof (a) ⇒ (b): E is bounded, so there is a k-cell containing E. Then E is a closed subset of compact set, so E
is compact by Proposition 2.13.

(b) ⇒ (c): Lemma 2.2.

(c) ⇒ (a): Suppose E is not bounded, then E contains points S = {xn}∞n=1 such that |xn| > n. S has no limit
points since N1/2(p) ∩ E contains at most two points, then (c) does not hold since S is infinite.

Now suppose E is not closed, then there exists a limit point x of E such that x /∈ E. Construct S = {xn}∞n=1

such that xn ∈ N1/n ∩ E. Assume y is another limit point of E, let d = |x − y|/2 > 0, and choose n0 for which
1/n0 ≤ d. Then |xn − y| ≥ |x− y| − |x− xn| ≥ 2d− 1/n, so |xn − y| ≥ d for n ≥ n0. It implies that Nd(y) is
contains finitely many points in E, so y is not a limit point of E by Proposition (2.6). Then S is infinite and the only
limit point is x but x /∈ E. Therefore, E is closed and bounded by contrapositive. ■

Theorem 2.3 (Weierstrass)

♡Every bounded infinite subset E of Rk has a limit point in Rk.

Proof E is a subset of a k-cell I ⊂ Rk by the boundedness. Since I is compact, E has a limit point in I ⊂ Rk by
Lemma (2.2). ■
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2.4 Perfect Sets and Connected Sets

2.4 Perfect Sets and Connected Sets

2.4.1 Perfect Sets

Definition 2.11 (Perfect Sets)

♣

Suppose (X, d) is a metric space and E ⊂ X . E is perfect if E = E′, equivalently, E is closed and has no
isolated points. If p ∈ E is not a limit point of E, p is called an isolated point of E.

Example 2.4 For fixed a, b ∈ R, the closed interval [a, b] ⊂ R1 is perfect.

Proposition 2.16

♠Let P be a nonempty perfect set in Rk, then P is uncountable.

Proof P is infinite because it has a limit point. Assume P is countable and P = {xi}∞i=1. Fix r1 > 0, let
V1 = Nr1(x1). Since x1 is a limit point, V1 ∩ P ̸= ∅. We can construct recursively a sequence of neighborhoods
V2, V3, · · · of points in E, for which (i) Vn+1 ⊂ Vn and (ii) xn /∈ Vn+1, and we know that Vn ∩ P ̸= ∅ since the
center of Vn is a limit point of P .

Put Kn = Vn ∩ P . Kn is compact since Vn is compact and P is closed. Then
⋂∞

i=1Kn is nonempty by the Lemma
(2.1). However, xn ̸= Kn+1 implies

⋂∞
n=1Kn = ∅. By contradiction, P is uncountable. ■

Remark Key Claim: Given an open set U and x ∈ X , there exists an open subset V ⊊ U such that x /∈ V , this
holds by the Hausdorff axiom.

Key idea: We can construct a strictly decreasing sequence {Vn} of neighborhoods of points of P , for which every
Vn intersects P (by perfectness) but Vn converges to points outside of P (by excluding xn in Vn+1). Then there is a
contradiction regards to the intersection of {Vn ∩ P}.

Corollary 2.4

♡Every interval [a, b] (a < b) is uncountable. In particular, the set of all real numbers is uncountable.

Example 2.5 Cantor Set: Let E0 = [0, 1]. Recursively define En by removing the middle thirds of the intervals in
En−1, e.g., E1 = [0, 1/3] ∪ [2/3, 1]. We obtain a sequence of compact sets En such that

(i) E1 ⊃ E2 ⊃ · · · , and

(ii) En is the union of 2n intervals, each of length 3−n.

The set P =
⋂∞

i=1En is called the Cantor Set, and

P is compact and P is nonempty by Lemma 2.1.

P contains no segment. By the construction, the segment of the form ((3k + 1)/3m, (3k + 2)/3m) is not
contained in P , but every segment (α, β) contains such segment, so P contains no segments.
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2.4 Perfect Sets and Connected Sets

P is perfect. Let x ∈ P and S be a segment containing x. Let In be the interval of En containing x, choose
n large enough so that In ⊊ S. Put xn be the endpoint of of In such that xn ̸= x, it follows that xn ∈ P thus
xn ∈ S ∩ P , so x is a limit point of P . Hence P is perfect.

The Cantor set is an example of totally disconnected, perfect, compact metric space.

2.4.2 Connected Sets

Definition 2.12 (Connectedness)

♣

Suppose X is a metric space and A,B ⊂ X . A and B are said to be separated if A ∩ B = A ∩ B = ∅. A
set E ⊂ X is said to be connected if E is not a union of two nonempty separated sets.

Proposition 2.17

♠

Suppose E ⊂ R, E is connected if and only if it has the following property: if x, y ∈ E and x < z < y, then
z ∈ E.

Proof (⇒) Proof by contrapositive. Assume there exists z ∈ (x, y) such that z /∈ E. Then E = Az ∪ Bz where
Az := E ∩ (−∞, z) and Bz := E ∩ (x,∞). Az , Bz are clearly nonempty and separated, then E is not connected.

(⇐) Proof by contrapositive. Assume E is not connected and A,B is a separation. Choose x ∈ A and y ∈ B,
assume x < y without loss of generality. Let a = sup(A ∪ [x, y]) and b = inf(B ∪ [x, y]). Clearly a ≤ b. If a < b,
choose c ∈ (a, b), then c /∈ A ∪B = E but x < c < y, contradiction. Otherwise if a = b, a ∈ A ∩B, it means that
a /∈ A ∪B = E since A ∩B = A ∩B = ∅. Then x < a < y and a /∈ E. ■

Remark The following are criteria of connectedness:

(a) The subset setE ⊂ X is connected if and only if there exists no disjoint nonempty open (relative toE) subsets
A,B of E such that E = A ∪B.

(b) The subset set E ⊂ X is connected if and only if the only subsets that are both open and closed (relative to E)
are empty set and E itself.
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Chapter 3 Numerical Sequences and Series

Introduction

h Convergent Sequences

h Cauchy Sequences

h Subsequence and Subsequential Limits

3.1 Convergent Sequences

3.1.1 Convergent Sequences

Definition 3.1 (Convergence)

♣

A sequence {pn} in a metric space X is said to converge if there is a point p ∈ X such that for all ε > 0,
there exists an integer N such that d(pn, p) < ε if n ≥ N . We denote the convergence by pn → p or
limn→∞ pn = p. If {pn} does not converge, it is said to diverge.

Proposition 3.1

♠

Let {pn} be a sequence in a metric space X ,

(a) {pn} converges to p ∈ X if and only if every neighborhood of p contains pn for all but finitely many n.

(b) If p, p′ ∈ X and {pn} converges to both p and p′, then p = p′.

(c) If {pn} converges, then {pn} is bounded.

(d) If E ⊂ X and if p is a limit point of E, then there is a sequence {pn} in E such that p = limn→∞ pn.

Proof (a) (⇒) The forward direction is trivial by definition, since for allNε(p), we can chooseN by definition such
thatNε(p) contains all pn for which n ≥ N . (⇐) Conversely, let ε > 0 be given. PutE = {n ∈ Z>0 : pn /∈ Nε(p)},
E is finite. Let N = maxE, then pn ∈ Nε(p) for all n ≥ N + 1.

(b) Suppose {pn} converges to both p and p′. Assume p ̸= p′, let d = d(p, p′)/2. Then there exists N such that
pn ∈ Nd(p) ∩Nd(p

′) for n ≥ N , but Nd(p) ∩Nd(p
′) = ∅, contradiction.

(c) Suppose pn → p. There exists N such that d(pn, p) < 1 for all n ≥ N , then diameter is bounded by
M = max{d(p1, p), · · · , d(pN−1, p), 1}.

(d) For all n ∈ Z>0, choose pn ∈ N1/n(p), then the sequence {pn} converges to p. ■

Proposition 3.2

Suppose {sn}, {tn} are complex sequences, and limn→∞ sn = s, limn→∞ tn = t. Then

(a) limn→∞(sn + tn) = s+ t;



3.1 Convergent Sequences

♠

(b) limn→∞(csn) = cs, limn→∞(c+ sn) = c+ s, for any number c;

(c) limn→∞ sntn = st;

(d) limn→∞ 1/sn = 1/s, given sn ̸= 0 and s ̸= 0.

Proof (d) Choose M such that |sn − s| < |s|/2 if n ≥ M , then we see |sn| > |s|/2 (n ≥ m). Given ε > 0, there
is an integer N > M such that n ≥ N implies |sn − s| < |s|2ε/2, then∣∣∣∣ 1sn − 1

s

∣∣∣∣ = ∣∣∣∣sn − s

sns

∣∣∣∣ < 2

|s|2
|sn − s| < ε.

■

Proposition 3.3

♠

(a) Suppose xn ∈ Rk and xn = (α1,n, · · · , αk,n). Then {xn} converges to x = (α1, · · · , αk) if and only
if limn→∞ aj,n = aj for every j.

1. Suppose {xn} and {yn} are sequences inRk, {βn} is a sequence of real numbers, andxn → x,yn → y,
βn → β. Then limn→∞(xn + yn) = x+ y, limn→∞(xn · yn) = x · y, and limn→∞(βnxn) = βx,

3.1.2 Subsequence and Subsequential Limits

Definition 3.2 (Subsequence)

♣

Given a sequence {pn}, consider a sequence {nk} of positive integers such that n1 < n2 < · · · . The the
sequence {pni} is called a subsequence of {pn}. If {pni} converges, its limit is called a subsequential limit
of {pn}.

Remark {pn} converges to p if and only if every subsequences of {pn} converge to p.

Proposition 3.4

♠

(a) If {pn} is a sequence in a compact metric spaceX , then some subsequence of {pn} converges to a point
of X .

(b) Every bounded sequence in Rk contains a convergent subsequence.

Proof (a) Let E = {pn |n ∈ N}. If E is finite, there is p ∈ E appears infinitely many times, then the subsequence
consisting only p converges to p ∈ X . If E is countable, E has a limit point p in X by Lemma 2.2. Choose ni such
that d(p, pni) < 1/i and ni > ni−1, which exists because N1/i(p) ∩ E contains infinitely many points. Then {pni}
converges to p.

(b) Follows directly from (a), since E bounded means it lies in some k-cell. ■
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3.1 Convergent Sequences

Proposition 3.5

♠The subsequential limits of a sequence {pn} in a metric space X form a closed subset of X .

Proof Let E∗ be the set of all subsequential limits, and let q be a limit point of E∗. Choose {qn} ⊂ E∗ such that
d(qn, q) < 1/n for all n. For every n ∈ N, there exists a subsequence {pn,i}i∈N converging to qn, so there exists
M such that d(pni , qn) < 1/n for i ≥ M , choose mn := ni such that i ≥ M and mn > mn−1. Consider the
subsequence {pmi}, for each i ∈ N, d(pmi , q) ≤ d(pmi , qi) + d(qi, q) = 2/i. Let ε > 0, there exists N such that
2/N < ε, so d(pmi , q) ≤ 2/N < ε for i ≥ N , hence pmi → q. ■

Definition 3.3 (Upper and Lower Limits)

♣

Let {sn} be a sequence, letE be the set of subsequential limits (in the extended real number system), we define
the upper and lower limits of {sn} to be s∗ = supE and s∗ = inf E, denoted by s∗ = lim supn→∞ sn and
s∗ = lim infn→∞ sn.

Proposition 3.6

♠

Let {sn} be a sequence of real number, let E and s∗ be defined as above, then

(a) s∗ ∈ E.

(b) If x > s∗, there is an integer N such that n ≥ N implies sn < x.

Moreover, s∗ is the unique number with both properties. The result for s∗ is analogous.

Proof (a) If s∗ = +∞, E is not bounded, so s∗ = +∞ ∈ E. If −∞ < s∗ < +∞, since E is closed (Proposition
3.5), s∗ ∈ E. If s∗ = −∞, E = {−∞}, so s∗ = −∞.

(b) Assume there is x > s∗ such that sn ≥ x for infinitely many values of n, then there is a subsequential limit y
such that y ≥ x > s∗, contradiction.

Uniqueness: Assume p, q satisfy both (a) and (b) and p ̸= q. WLOG, let p < q, then there is x such that p < x < q.
Since p satisfies (b), sn < x whenever n ≥ N for some N , so q /∈ E, contradiction the fact that q satisfies (a). ■

�

Note Suppose sn ≤ tn for n ≥ N , where N is fixed, then lim infn→∞ sn ≤ lim infn→inf tn and lim infn→∞ sn ≤
lim supn→sup tn.

3.1.3 Cauchy Sequence

Definition 3.4 (Cauchy Sequence)

♣

A sequence {pn}n∈N in a metric space (X, d) is a Cauchy sequence if for all φ > 0, there exists N > 0 such
that m,n ≥ N implies d(pm, pn) < ε.
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3.1 Convergent Sequences

Proposition 3.7

♠In a metric space, every convergent sequence is a Cauchy sequence.

Proof Suppose pn → p. Let ε > 0 be given, there exists N > 0 such that d(pn, p) < ε/2 if n ≥ N . Then for
n,m ≥ N , d(pn, pm) ≤ d(pn, p) + d(p, pm) = ε/2 + ε/2 = ε, so {pn} is Cauchy.

Proposition 3.8

♠

(a) If X is a compact metric space and if {pn} is a Cauchy sequence in X , then {pn} converges to some
point of X .

(b) In particular, every Cauchy sequence converges in Rk.

Proof (a) By Proposition 3.4, there exists a convergent subsequence {pnk
}k∈N and denote by p the point it converges

to. Let ε > 0 be given, There exists N such that d(pn, pm) < ε/2 for n,m ≥ N by Cauchy condition; and there
exists M > N and d(pnk

, p) < ε/2 if nk ≥M , by convergence of the subsequence. For n ≥ max{M,N}, choose
pnk

such that nk > M > N , then d(pn, p) ≤ d(pn, pnk
)+ d(pnk

, p) < ε/2+ ε/2 = ε. Hence {pn} converges to p.

(b) Every Cauchy sequence is bounded in Rk: diam EN < 1 for some N , so the diameter of E is at most
max{x1, · · · , xN , xN + 1}. Hence E has a bounded closure in Rk and the proposition then follows from (a). ■

Remark The property that used in part (a) can be stated as: every Cauchy sequence with a convergent subsequence
is convergent.

Definition 3.5 (Complete)

♣A metric space in which every Cauchy sequence converges is said to be complete.

Example 3.1 The set of all rational, denoted by Q, is not complete. Consider the sequence “approaching” π.

Definition 3.6 (Monotonicity)

♣

A sequence {sn} of real numbers is said to be monotonically increasing if sn ≤ sn+1 (n = 1, · · · ), and it is
monotonically decreasing if sn ≥ sn+1 (n = 1, · · · ).

Proposition 3.9

♠Suppose {sn} is monotonic in R. Then {sn} converges if and only if it is bounded.

Proof One direction follows directly from Proposition 3.1. For the other direction, without loss of generality,
assume {sn} is monotonically increasing. Consider E = {sn}, there exists α = supE by the l.u.b. property. Let
ε > 0 be given, there existsN > 0 such that α− ε < sN ≤ α, then α− ε < sn ≤ α for n ≥ N by the monotonicity.
Hence {sn} converges to α. ■

26



Chapter 4 Continuity

Introduction

h Limit of Functions

h Extreme Value Theorem

h Intermediate Value Theorem

h Normed Vector Space, Banach Space

h Continuity

h Uniform Continuity

h Discontinuity

4.1 Limits of Functions

Definition 4.1 (Limit of Functions)

♣

Let X,Y be metric spaces; suppose E ⊂ X , f : E → Y , and p is a limit point of E. We write f(x) → q as
x→ p or limx→p f(x) = q if there is a point q ∈ Y such that: for every ε > 0 there exists a δ > 0 such that

0 < dX(x, p) < δ =⇒ dY (f(x), q) < ε

Proposition 4.1

♠

Let X,Y,E, f, p be defined as above. Then limx→p f(x) = q if and only if limn→∞ f(pn) = q for every
sequence {pn} such that pn ̸= p and limn→∞ pn = p.

Proof (⇒) Suppose limx→p f(x) = q and ε > 0, there exists δ > 0 satisfying the definition above. For every
sequence {pn} that satisfies the above properties, there exists N such that 0 < dX(pn, p) < δ for n ≥ N , in which
dY (pn, p) < ε. Hence limn→∞ f(pn) = q.

(⇐) Suppose limx→p f(x) ̸= q, there exists ε > 0 such that for all δ > 0, there is x ∈ E such that 0 < dX(p, x) < δ

but dY (q, f(x)) ≥ ε. Construct a sequence {pn} by choosing δn = 1/n, then it satisfies the desired properties but
dY (q, f(pn)) ≥ ε, so limn→∞ f(pn) ̸= q. ■

Proposition 4.2

♠If f has a limit at p, the limit is unique.

Proof Since the limit of a sequence {pn} is unique, the proposition follows directly from Proposition 4.1. ■

Binary Operations Suppose f, g are functions defined on E to Rk, we define addition f + g by (f + g)(x) =

f(x) + g(x) and multiplication fg by (fg)(x) = f(x)g(x). Similarly, we define f − g and f/g (defined only at
points x such that g(x) ̸= 0). The scalar multiplication λf is defined by (λf)(x) = λf(x) for all λ ∈ R. The limit
laws still holds.



4.1 Limits of Functions

Remark The change of variable in limits is stated as follows: If x = g(t) is an invertible function with inverse
g−1 in the deleted neighborhood of t = b, and limt→b g(t) = a, limx→a g

−1(x) = b, then either both the limits
limx→a f(x) and limt→b f(g(t)) exist and are equal or both of them don’t exist.
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4.2 Continuity

4.2 Continuity

4.2.1 Continuous Functions

Definition 4.2 (Continuity)

♣

Suppose (X, dX) and (Y, dY ) are metric spaces. A function f : X → Y is continuous at p if for every ε > 0,
there exists δ > 0 such that dY (f(x), f(p)) < ε for all x such that dX(x, p) < δ.

If f is continuous at every point of X , then f is continuous on X.

Proposition 4.3

♠Suppose f : X → Y and p is a limit point of E. Then f is continuous at p if and only if limx→p f(x) = f(p).

Remark If p ∈ X is an isolated point, then f is continuous at p ∈ X .

Proposition 4.4 (Composition of Continuous Functions)

♠

Suppose X,Y, Z are metric spaces, and E ⊂ X . If f : E → Y is continuous at p ∈ E, and g : f(E) → Z is
continuous at f(p), then g ◦ f : E → Z is continuous at p.

Proof Let ε > 0 be given. Since g is continuous, there exists δ > 0 such that dZ(g(f(p)), g(f(q))) < ε if
dY (f(p), f(q)) < δ. Again since f is continuous, there exists λ > 0 such that dY (f(p), f(q)) < δ if dX(p, q) < λ.
Hence dZ((g ◦ f)(p), (g ◦ f)(q)) < ε if dX(p, q) < λ, so g ◦ f is continuous by definition. ■

Proposition 4.5

♠A mapping f : X → Y is continuous on X if and only if f−1(V ) is open in X for every open set V in Y .

Proof (⇒): Suppose f is continuous and V is open in Y . For every p ∈ f−1(V ), there exists ε > 0 such that
Nε(f(p)) ⊂ V , and by continuity of f there exists δ > 0 such that dY (f(p), f(q)) < ε if dX(p, q) < δ for all q ∈ X .
It follows that Nδ(p) ⊂ f−1(V ), i.e., p is an interior point in f−1(V ), thus f−1(V ) is open.

(⇐) Given p ∈ X and ε > 0, let V = Nε(f(p)) be the open neighborhood of f(p). By the hypothesis f−1(V ) is
open, thus there exists δ > 0 such that Nδ(p) ⊂ f−1(V ). In other words, dY (f(p), f(q)) < ε if dX(p, q) < δ, so f
is continuous at p. The choice of p is arbitrary implies that f is continuous on X . ■

Example 4.1 The converse does not necessarily hold. The function f : R → R defined by f(x) = 1/(x2 + 1) is
continuous on R (which is both open and closed). However, its image f(R) = (0, 1] is not open nor closed.
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4.2 Continuity

Corollary 4.1

♡A mapping f : X → Y is continuous on X if and only if f−1(C) is open in X for every closed set C in Y .

Example 4.2 Thomae’s function f : R → R is defined by

f(x) =

{
0 if x /∈ Q

1/n if x = m/n ∈ Q, where m ∈ Z, n ∈ Z>0, m, n coprime.

This function is continuous at irrationals and discontinuous at rationals.

The function may also be continuous at finitely many points. The function f : R → R defined by f(x) = x if x ∈ Q
and f(x) = 0 otherwise is continuous only at x = 0.

4.2.2 Continuity and Compactness

Definition 4.3 (Bounded Function)

♣

A mapping f : E → Rk is said to be bounded if there is a real number M such that |f(x)| ≤ M for all
x ∈ E.

Proposition 4.6

♠

Suppose f : X → Y is continuous mapping of a compact metric space X into a metric space Y . Then f(X)

is compact.

Proof Suppose {Vα} is an open cover of f(X). Since {f−1(Vα)} is an open cover of X because each f−1(Vα) is
open by Proposition 4.5, the compactness implies that there is a finite subcover {f−1(Vi)}ni=1 of X . Note that hence
{Vi}ni=1 is a finite subcover of f(X) since f(f−1)(E) ⊂ E, it follows that f(X) is compact. ■

Corollary 4.2

♡

Suppose f : X → Rk is continuous mapping of a compact metric space X into Rk, then f(X) is closed and
bounded, and f is thus bounded.

Proposition 4.7 (Extreme Value Theorem)

♠

Suppose f is a continuous real function on a compact metric space X , and M = supp∈X f(p), m =

infp∈X f(p). Then there exists points p, q ∈ X such that f(p) =M and f(q) = m.

Proof Since f(X) is closed and bounded, hence f(X) contains M and m. ■
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4.2 Continuity

Proposition 4.8 (Inverse of Continuous Function)

♠

Suppose f is a continuous bijective mapping of a compact metric space X into metric space Y . Then the
inverse mapping f−1 defined on Y by f−1(f(x)) = x is a continuous mapping of Y onto X .

Proof For every closed set V ⊂ X , V is compact, so (f−1)−1(V ) = f(V ) is compact and thus closed. Therefore,
f−1 is continuous by Corollary (4.1). ■

Definition 4.4 (Uniform Continuity)

♣

Suppose f : X → Y be a mapping of metric spaces, f is said to be uniformly continuous on X if for every
ε > 0, there exists δ > 0 such that dY (f(p), f(q)) < ε for all p, q ∈ X such that dX(p, q) < δ.

Example 4.3 Consider f : R → R defined by f(x) = x2. Let ε > 0, given δ > 0, let p = 1/δ and q = δ/2 + 1/δ.
Then |p− q| = δ/2 < δ, but

|f(p)− f(q)| = |1/δ2 − (δ2/4 + 1 + 1/δ2)| = 1 + δ2 > ε,

so f is not uniformly continuous on R. Note that the issue is that R is not compact.

Proposition 4.9

♠

Let f be a continuous mapping of a compact metric space X into a metric space Y . Then f is uniformly
continuous on X .

Proof Let ε > 0 be given, choose δp > 0 such that dX(p, q) < δp ⇒ dY (f(p), f(q)) < ε/2. Since X is
compact, there exists a finite cover of neighborhoods {Nδi/2(pi)}. Put δ = min δi/2, then for all p, q such that
dX(p, q) < δ, there exists pi such that p ∈ Nδi/2(pi), then p, q ∈ Nδi(pi). Then dY (f(p), f(q)) ≤ dY (f(p), f(pi))+

dY (f(pi), f(q)) < ε/2 + ε/2 = ε. Hence f is uniformly continuous. ■

Example 4.4 The compactness is essential. The continuous function f is not necessarily uniformly continuous even
it is bounded. Consider f : (0,∞) → R defined by f(x) = sin(1/x), and g : R → R defined by g(x) = sin(x2). f
and g are both bounded and continuous, yet they are not uniformly continuous.

4.2.3 Continuity and Connectedness

Proposition 4.10

♠Suppose f : X → Y where X,Y are metric spaces. If E is a connected subset of X , then f(E) is connected.

Proof Proof by contrapositive. Suppose f(E) is not connected and A,B forms a separation of f(E). Let
A′ = f−1(A) ∩ E and B′ = f−1(B) ∩ E, then E = A′ ∪ B′. A′, B′ are nonempty because A,B ⊂ f(E) are
nonempty, and A′ ∩B′ ⊂ f−1(A∩B) = ∅ (WLOG, A∩B′ = ∅). Therefore, A′, B′ form a separation of E, so E
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4.2 Continuity

is not connected. ■

Proposition 4.11 (Intermediate Value Theorem)

♠

Let f : [a, b] → R be continuous. If f(a) < f(b) and f(a) < c < f(b), then there exists a point x ∈ (a, b)

such that f(x) = c.

Proof Since [a, b] is connected, f([a, b]) is connected, so c ∈ f([a, b]) by connectedness. ■
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4.3 Discontinuity, Monotonicity

4.3 Discontinuity, Monotonicity

Definition 4.5 (One-sided Limit)

♣

Let f be defined on (a, b). Consider any point x such that a ≤ x < b, we write f(x+) = q if f(tn) → q as
n→ ∞ for all sequences {tn} in (x, b) converging to x. The definition of f(x−) is analogous.

Remark The limit of f at x exists if and only if the one-sided limits coincide, namely f(x+) = f(x−); in this
case, limt→x f(x) = f(x+) = f(x−).

Definition 4.6 (Discontinuity)

♣

Let f be defined on (a, b). If f is discontinuous at a point x, and if f(x+) and f(x−) exist, then f is said to
have a discontinuity of the first kind (or a simple discontinuity). Otherwise the discontinuity is said to be of
the second kind.

Remark There is two types of simple discontinuity: (a) f(x+) ̸= f(x−) (removable discontinuity), and (b)
f(x+) = f(x−) ̸= f(x) (jump discontinuity).

Definition 4.7 (Monotonicity)

♣

Let f : (a, b) → R, then f is said to be monotonically increasing on (a, b) if a < x < y < b implies
f(a) ≤ f(b). The definition of monotonically decreasing function is analogous.

Proposition 4.12

♠

Let f be monotonically increasing on (a, b). Then

(a) f(x+) and f(x−) exist at every point of x ∈ (a, b).

(b) supa<t<x f(t) = f(x−) ≤ f(x) ≤ f(x+) = infx<t<b f(t).

(c) If a < x < y < b, then f(x+) ≤ f(y−).

Analogous results hold for monotonically decreasing functions.

Proof (a) Consider S = {f(t) | a < t < x}, there exists A := supS since S is nonempty and bounded above
by f(x). Let ε > 0 be given, there exists t0 ∈ (a, x) such that A − ε < f(t0) ≤ A. Put δ = x − t, then
|A− f(t)| < |A− f(t0)| < ε if |x− t| < δ. Thus, f(x−) = A exists, and f(x+) exists WLOG.

(b) By the definition of f(x−) in Part (a), infa<t<x f(t) = f(x−), and f(x−) ≤ f(x) holds by monotonicity. The
inequality for f(x+) holds WLOG.

(c) This assertion follows directly from the inequalityf(x+) = infx<t<b f(t) = infx<t<y f(t) ≤ supx<t<y f(t) =

supx<t<y f(t) = f(y−). ■

�

Note Corollary: Monotonic functions have no discontinuities of the second kind.
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4.3 Discontinuity, Monotonicity

Proposition 4.13

♠

Let f : (a, b) → R be monotonic real function, then the set of points at which f is discontinuous is at most
countable.

Proof WLOG, assume f is monotonically increasing and E = {x ∈ (a, b) | f is discontinuous at x}. Since f is
increasing, f(x−) < f(x+) if x ∈ E, then there exists rx ∈ Q such that f(x−) < rx < f(x+). Define φ : E → Q
by φ(x) = rx, then φ is clearly injective since f(x+) ≤ f(y−) if x < y. Therefore, E ∼ f(E) ⊂ Q, so E is at
most countable. ■
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4.4 Normed Vector Spaces

4.4 Normed Vector Spaces

Definition 4.8 (Norm, Normed Vector Spaces)

♣

A norm on a vector space V is a function ∥·∥ : V → [0,∞) satisfying

(i) (positivity) 0 ≤ ∥x∥ <∞ for all x ∈ V

(ii) (definiteness) ∥x∥ = 0 if and only if x = 0

(iii) (scalar multiplication) ∥αx∥ = |α|∥x∥ for all scalar α and x ∈ V .

(iv) (triangle inequality) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ V .

The pair (V, ∥·∥) is called a normed vector space.

A function ∥·∥ : V → [0,∞) satisfying all properties above except (ii) is called a pseudonorm on V .

If (V, ∥·∥) is a normed vector space, then the function d : X ×X → [0,∞) is defined by d(x, y) := ∥x − y∥ is a
metric on V . This is called the usual metric or induced metric on V .

Definition 4.9 (Convergence)

♣

Suppose {xn} is a sequence in a normed vector space (V, ∥·∥). The series
∑∞

i=1 xi is said to converge
if the sequence of partial sums {sn}, where sn =

∑n
i=1 xi, converges to some x ∈ V in the sense that

limn→∞∥x−
∑n

i=1 xn∥ = 0. In this case, we write
∑∞

i=1 xn = x.

Definition 4.10 (Banach Space)

♣A Banach space is a normed vector space which is complete with respect to the induced metric.

Proposition 4.14

♠

A normed vector space (V, ∥·∥) is Banach (namely complete) if and only if a series
∑∞

i=1 xi converges
whenever

∑∞
i=1∥xi∥ converges.

Proof (⇒): Let Sn =
∑n

i=1 xi and Tn =
∑n

i=1∥xi∥, suppose {Tn} converges. Let ε > 0 be given. Since {Tn} is
Cauchy, so there exists N > 0 such that n > m ≥ N implies |Tn − Tm| < ε. Then

∥Sn − Sm∥ =

∥∥∥∥∥
m∑

i=n+1

xi

∥∥∥∥∥ ≤
m∑

i=n+1

∥xi∥ = |Tn − Tm| < ε.

Hence {Sn} is Cauchy and thus converges since X is complete.

(⇐): Let {xn} be Cauchy in X . For each i ∈ Z>0, choose Ni such that Ni > Ni−1 for which n > m ≥ Ni

implies that ∥xn − xm∥ ≤ 1/2i. Define yi = xni+1 − xni , then ∥yi∥ = ∥xni+1 − xni∥ ≤ 1/2i, so
∑k

i=1∥yi∥
converges, followed by

∑∞
i=1 yi converges. Note that

∑n
i=1 yi = xni+1 − xn1 , then {xni} is convergent. By the
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4.4 Normed Vector Spaces

Cauchy condition and the convergence of {xni}, it is not hard to show that {xn} converges to limi→∞ xni using
triangle inequality. ■

Definition 4.11 (Equivalent Norms)

♣

Two norms ∥·∥1 and ∥·∥2 on a vector space X are called equivalent if there exists c1, c2 > 0 such that
c1∥x∥2 ≤ ∥x∥1 ≤ c2∥x∥2 for all x ∈ X .

Proposition 4.15

♠All norms on a finite dimensional vector space X are equivalent.

Proof Suppose {e1, · · · , en} is a basis ofX , define ∥
∑n

i=1 aiei∥1 :=
∑n

i=1 |ai|, and put S := {u ∈ X | ∥u∥1 = 1}.
Given ∥·∥2, we can define f : (X, ∥·∥1) → R by the equality f(x) = ∥x∥2. We now want to show f is continuous
and S is compact, thus, it follows that im f |S = {∥u∥2 |u ∈ S} has a maximum and a minimum by the extreme
value theorem. Then for x ∈ X , we can put u = x/∥x∥1. As shown above, using the above inequality, multiplying
by ∥x∥1 yields the desired result c1∥x∥1 ≤ ∥x∥2 ≤ c2∥x∥2. ■
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Chapter 5 Differentiation

5.1 Differentiation and Mean Value Theorems

Introduction

h Differentiation

h Darboux

h Taylor’s Theorem

h Operations and Chain Rule

h Mean Value Theorems

5.1.1 Differentiation

Definition 5.1 (Differentiable)

♣

For function f : [a, b] → R, we say f is differentiable at x ∈ [a, b] if the limit of ϕ(t) := [f(t)− f(x)]/(t−x)
exists when t→ x, i.e, the limit

lim
t→x

ϕ(t) = lim
t→x

f(t)− f(x)

t− x

exists. In this case, we denote by the limit f ′(x) := limt→x ϕ(t).

Proposition 5.1

♠If f : [a, b] → R is differentiable at x ∈ [a, b], then f is continuous at x.

Proof Suppose f is differentiable at x, then limt→x(f(t)−f(x)) = limt→x ϕ(t)·(t−x) = f ′(x) limt→x(t−x) = 0,
so f is continuous.

Property Suppose f, g are real-valued functions differentiable at x, then f + g, fg, and f/g are differentiable at x,
and

(a) (f + g)′(x) = f ′(x) + g′(x),

(b) (fg)′(x) = f ′(x)g(x) + f(x)g′(x),

(c) (f/g)′(x) = [f ′(x)g(x)− f(x)g′(x)]/g(x)2 if g(x) ̸= 0.

Theorem 5.1 (Chain Rule)

♡

Suppose f is continuous on [a, b] and differentiable at x ∈ [a, b], and g is defined on f([a, b]) and differentiable
at f(x). If h(t) = g(f(t)), then h differentiable at x and

h′(x) = g′(f(x))f ′(x).



5.1 Differentiation and Mean Value Theorems

Proof Note that f ′(x) and g′(f(x)) exists by the differentiability, so

h′(x) = lim
t→x

g(f(t))− g(f(x))

t− x
= lim

t→x

g(f(t))− g(f(x))

f(t)− f(x)

f(t)− f(x)

t− x
= g′(f(x))f ′(x).

Proposition 5.2 (Derivative of Inverse Function)

♠

Let f : X → Y (X,Y ⊆ R) be an invertible function that is differentiable at p ∈ E. Suppose that
f−1 : F → E is continuous at q := f(p) and that f ′(p) ̸= 0. Then f−1 is differentiable at q = f(p), and we
have (f−1)′(q) = 1/f ′(p).

5.1.2 Mean Value Theorems

Definition 5.2 (Local Extrema)

♣

Let f be a real function on a metric space X . We say that f has a local maximum at p ∈ X if there exists
δ > 0 such that f(q) ≤ f(p) for all q ∈ X with d(p, q) < δ. Local minimums are defined likewise.

Proposition 5.3 (Rolle’s Theorem)

♠

Let f be defined on [a, b]; if f has a local maximum at a point x ∈ (a, b) and if f ′(x) exists, then f ′(x) = 0.
The analogous statement for local minima also holds.

Proof Since f ′(x) exists, limt→x ϕ(x) exists thus ϕ(x+) and ϕ(x−) exists. Note that f(t)− f(x) ≤ 0 for all t, it
follows that ϕ(x+) ≤ 0 and ϕ(x−) ≥ 0. Hence the existence of f ′(x) implies that f ′(x) = limt→x ϕ = 0. ■

Theorem 5.2 (Cauchy Mean Value Theorem)

♡

If f and g are continuous real functions on [a, b] which are differentiable in (a, b), then there is a point
x ∈ (a, b) at which

[f(b)− f(a)]g′(x) = [g(b)− g(a)]f ′(x).

Remark For non-degenerated cases, the condition is equivalent to: there exists x such that g′(x)/f ′(x) =

[g(b)− g(a)]/[f(b)− f(a)].

Proof We may assume f(b)−f(a) ̸= 0, otherwise the results follows directly from 5.3. Define s(x) = f(x)/[f(b)−
f(a)] and t(x) = g(x)/[g(b) − g(a)], then s(b) − s(a) = t(b) − t(a) = 1. Notice that (s − t)(b) = (s − t)(a),
then by Rolle’s Theorem, (s − t)′(x) = 0 for some x ∈ (a, b), then s′(x) = t′(x). Hence g′(x)/f ′(x) =

[g(b)− g(a)]/[f(b)− f(a)]. ■
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5.1 Differentiation and Mean Value Theorems

Corollary 5.1 (Mean Value Theorem)

♡

If f is a real continuous function on [a, b] which is differentiable in (a, b), then there is a point x ∈ (a, b) at
which f(b)− f(a) = (b− a)f ′(x).

Proof Follows immediately from Cauchy MVT by taking g(x) = x. ■

Proposition 5.4

♠

Suppose f is differentiable in (a, b). If f ′(x) ≥ 0 for all x ∈ (a, b), then f is monotonically increasing; if
f ′(x) = 0, then f is constant; and if f ′(x) ≤ 0, then f is monotonically decreasing.

Proof Suppose x1 < x2, then f(x2) − f(x1) = (x2 − x1)f
′(x) for some x ∈ (x1, x2) by MVT. The assertion

follows immediately. ■

Proposition 5.5 (Darboux)

♠

Suppose f : [a, b] → R is differentiable, and f ′(a) < λ < f ′(b). Then there exists x ∈ (a, b) such that
f ′(x) = λ.

Proof Let g(x) = f(x)−λt. Note that g′(a) < 0 < g′(b), there exists t1, t2 such that g(t1) < g(a) and g(t2) < g(b),
so g(a) and g(b) are not the absolute minimum. Then minimum is attained at some x ∈ [t1, t2] ⊂ (a, b), so g′(x) = 0

and thus f ′(x) = λ. ■

Corollary 5.2

♡If f is differentiable on [a, b], then f ′ cannot have any simple discontinuity on [a, b].

Example 5.1 The function f can be differentiable on [a, b] but still have second kind of discontinuity. Suppose

f(x) =

{
x2 sin(1/x) if x ̸= 0

0 if x = 0
, then f ′(x) =

{
2x sin(1/x)− cos(1/x) if x ̸= 0

0 if x = 0
.

f ′ is differentiable and has a second kind of discontinuity at x = 0 since f ′(0+) and f ′(0−) do not exist.
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5.2 Derivative of Higher Order, Vector-Valued Functions

Theorem 5.3 (Taylor’s Theorem)

♡

Suppose f : [a, b] → R, n ∈ Z>0, f (n−1) is continuous on [a, b], and f (n) exists for every t ∈ (a, b). Let α, β
be distinct points of [a, b], and define

P (t) =
n−1∑
k=0

f (k)(α)

k!
(t− α)k.

Then there exists x ∈ (α, β) such that

f(β) = P (β) +
f (n)(x)

n!
(β − α)n.

In general, the theorem shows that f can be approximated by a polynomial of degree n− 1, and it allows us
to estimate the error, if we know bounds on |f (n)(x)|.

Proof Define g(t) = f(t)− P (t)−M(t− α)n, where M is defined for which f(β)− P (β) +M(β − α). Note
that g(α) = g′(α) = · · · = g(n−1)(α) = 0 and g(β) = 0. Then there exists x1 ∈ (α, β) such that g′(x1) = 0 by
MVT; continuing in this manner, we obtain xi ∈ (α, xi−1) such that g(i)(xi) = 0. Therefore, g(n)(xn) = 0, thus
M = f ′(xn)/n!.

Example 5.2 The Mean Value Theorem does not hold explicitly for vector-valued functions. Consider F (t) =

(cos t, sin t). F (2π)− F (0) = (0, 0), but 2πF ′(t) = 2π(− sin t, cos t) ̸= (0, 0). It follows that F ′(t) ̸= [F (2π)−
F (0)]/(2π − 0) for all t. However, the following generalization holds.

Proposition 5.6

♠

Suppose f is a continuous mapping of [a, b] into Rk and f is differentiable in (a, b), then there exists x ∈ (a, b)

such that |f(b)− f(b)| ≤ (b− a)|f ′(x)|.

Proof If f(b)− f(a) = 0, the inequality holds immediately. Suppose z = f(b)− f(a) ̸= 0, define φ(t) = z · f(t),
then φ is a real-valued function differentiable on (a, b). By MVT, φ(b) − φ(a) = (b − a)φ′(x) for some x, so
|z|2 = z · (f(b)− f(a)) = (b− a)z · f ′(x). Then

|z|2 = |(b− a)z · f ′(x)| ≤ (b− a)|z||f ′(x)|,

where the inequality holds by Cauchy-Schwartz. Therefore |z| ≤ (b− a)|f ′(x)|. ■

40



Chapter 6 Sequences and Series of Functions

Introduction

h Pointwise Convergence, Uniform Convergence

h Uniform Convergence Properties

h Criteria of Uniform Convergence

h Equicontinuous Family

6.1 Uniform Convergence

Definition 6.1 (Convergence of Sequence of Functions)

♣

Suppose E ⊂ X where X is a metric space and {fn} is a sequence of complex-valued functions defined on
E. Define a function f by f(x) = limn→∞ fn(x), then f is the limit function of {fn}, and {fn} is said to
converges to f pointwise.

Example 6.1 The double limit of a sequence of continuous function is not interchangeable, i.e., in general,

lim
t→x

lim
n→∞

fn(x) ̸= lim
n→∞

lim
t→x

fn(x).

Suppose m,n ∈ Z>0, let sm,n = m/(m+ n). Then for every fixed n, limm→∞ sm,n = 1, so that
limn→∞ limm→∞ sm,n = 1. On the other hand, for every fixed m, limn→∞ sm,n = 0 so that
limm→∞ limn→∞ sm,n = 0.

Definition 6.2 (Uniform Convergence)

♣

A sequence of functions {fn : E → R} is said to converge uniformly to f on E if for every ε > 0 there is an
integer N such that n ≥ N implies |fn(x)− f(x)| < ε for all x ∈ E.

Remark The difference between pointwise convergence and uniform convergence is that N depends only on ε > 0

in uniform convergence, and N depends on ε > 0 and x ∈ E in pointwise convergence.

Proposition 6.1 (Uniformly Cauchy Criterion)

♠

The sequence of functions {fn} converges uniformly on E if and only if for every ε > 0 there exists an integer
N such that m,n ≥ N and x ∈ E implies |fn(x)− fm(x)| < ε.

Proof (⇒) Suppose {fn} converges uniformly to f . Let ε > 0. There exists N > 0 such that n ≥ N implies
|fn(x)− f(x)| < ε/2 for all x ∈ E, so |fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)| < ε.

(⇐) Suppose {fn} is uniformly Cauchy. The sequence converges pointwise to some f because {fn(x)} is Cauchy



6.1 Uniform Convergence

for all x ∈ E. Let ε > 0 be given, let N be chosen so that |fn(x) − fm(x)| < ε/2. Fix n and let m → ∞, then
|fn(x)− f(x)| = limm→∞ |fn(x)− fm(x)| ≤ ε/2 < ε for all x, so {fn} converges uniformly. ■

Proposition 6.2

♠

Suppose limn→∞ fn(x) = f(x) (x ∈ E), put Mn = supx∈E |fn(x) − f(x)|. Then fn → f uniformly on E
if and only if Mn → 0 as n→ 0.

Proposition 6.3 (Weierstrass M-test)

♠

Suppose {fn} is a sequence of functions, and |fn(x)| ≤Mn. Then
∑
fn converges uniformly on E if

∑
Mn

converges.

Proof {Mn} is convergent and thus Cauchy. Let ε > 0. Forn,m sufficiently large, |
∑n

i=m fn(x)| ≤
∑n

i=mMn < ε

for all x ∈ E, so {
∑n

i=1 fn} is uniformly Cauchy. Then
∑
fn is uniformly convergent. ■
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6.2 Uniform Convergence, Continuity, and Differentiation

6.2.1 Uniform Convergence and Continuity

Theorem 6.1

♡

Suppose fn → f uniformly on E in a metric space. Let x be a limit point of E, and suppose that An :=

limt→x fn(t). Then {An} converges, and limt→x f(t) = limn→∞An. That is,

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t).

Proof (a) Let ε > 0. For sufficiently large N , n ≥ m ≥ N implies |fn(t) − fm(t)| < ε/2 for all t ∈ E, so
|An −Am| ≤ limt→x |fn(t)− fm(t)| ≤ ε/2 < ε. This implies that {An} is Cauchy, so it converges.

(b) Let A := limn→∞An and fn → f uniformly. Let ε > 0 be given. Notice that

|f(t)−A| ≤ |f(t)− fn(t)|+ |fn(t)−An|+ |An −A|.

For all t ∈ E, for sufficiently large N , we have |f(t)− fn(t)| < ε/3 by the uniform convergence given that fn → f

uniformly; |fn(t)−An| < ε/3 by the definition; and |An −A| by the definition of A. Therefore, limt→x f(t) = A,
as desired. ■

Corollary 6.1

♡

Suppose the sequence {fn} is continuous on E for each n, and fn → f uniformly on E, then f is continuous
on E.

Remark The converse does not hold. Consider the below example where we let fn be defined on (0, 1). Then f is
continuous but fn does not converge uniformly.

Example 6.2 Suppose fn : [0, 1] → R is defined by fn(x) = xn. The sequence {fn} converges pointwise to

f(x) =

{
0 if x ̸= 1

1 if x = 1
.

We see that limt→1 limn→∞ fn(t) = limt→1 f(t) = 1, whereas limn→∞ limt→1 fn(t) = limn→∞ 1 = 1. Indeed,
there exists x such that xn > 1/2 for all n by intermediate value theorem, then Mn = supx∈E |fn(x)− 0| > 1/2. It
implies that Mn does not converge to 0, so {fn} does not converge to f uniformly.

Proposition 6.4

Suppose K is compact, and

(i) {fn} is a sequence of continuous functions on K,

(ii) {fn} converges pointwise to a continuous function f on K,

(iii) fn(x) ≥ fn+1(x) for all x ∈ K.

43
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♠Then fn → f uniformly on K.

Proof Set gn = fn − f for each n ∈ Z>0, then gn are continuous and gn → 0 pointwise. Let ε > 0 be given. Let
Kn = {x ∈ X | gn(x) ≥ ε}, Kn is closed because f is continuous, thus Kn is compact by Proposition 2.13. Note
that gn(x) ≥ gn+1(x), so Kn ⊃ Kn+1. Since gn(x) → 0, x /∈ Kn for sufficiently large n, so

⋂
Kn = ∅. Then

there exists Kn = ∅ by the finite intersection property, so |gn(x)| < ε for all x ∈ X . ■

Example 6.3 Compactness is essential in the assumption of the above proposition. Consider fn = 1/(nx + 1)

defined on (0, 1), the sequence {fn} converges to 0. It satisfies all of the three conditions, but fn does not converge
to 0 uniformly.

Definition 6.3 (C (X))

♣

If X is a metric space, then C (X) denotes the set of all complex-valued continuous bounded functions with
domain X .

�

Note C (X) is a normed vector space (over C) by associating the supremum norm ∥f∥ = supx∈X |f(x)| to each
function f .

Proposition 6.5

♠The metric induced by the supremum norm makes C (X) into a complete metric space.

Proof Suppose {fn} is Cauchy in C (X). It is uniformly Cauchy, so it converges uniformly to a function f by
Proposition 6.1. The continuity of f follows from Corollary 6.1. Since there exists N such that ∥fn − f∥ < 1 if
n ≥ N , then f is bounded by ∥fn∥+ 1. ■

6.2.2 Uniform Convergence and Differentiation

The goal is to investigate the relationships between differentiability and uniform convergence. Suppose {fn} is a
sequence of differentiable function on [a, b] ⊂ R, and suppose fn → f pointwise (or uniformly). The questions are

(a) Is the limit function f differentiable?

(b) If f differentiable on [a, b], do we have f ′n(x) → f ′(x) for x ∈ [a, b]?

Example 6.4 Define fn(x) = xn for x ∈ [0, 1]. The limit function is given by f(x) = 1 if x = 1 and f(x) = 0

otherwise. f is clearly not differentiable at x = 0 since it is not continuous, so (a) fails if the convergence is
pointwise.

Define fn(x) =
√
x2 + 1/n for x ∈ [−1, 1]. The limit function is given by f(x) = |x|. Although fn → f uniformly,

f is still not differentiable at x = 0, so (a) fails even under uniform convergence.
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Example 6.5 Define fn : [−1, 1] → R for each n ∈ Z>0 by fn(x) = x/[1 + (n − 1)x2]. If x = 0, fn(0) = 0

for all n; on the other hand, limn→∞ fn(x) = 0 for each fixed x. The limit function is thus f(x) = 0, and it is
differentiable. However,

f ′n(0) = lim
h→0

fn(h)− fn(0)

h
= lim

h→0

h/[1 + (n− 1)h2]

h
= lim

h→0

1

1 + (n− 1)h2
= 1,

so f ′n does not converge to f ′.

Proposition 6.6

♠There exists a real-valued continuous function which is nowhere differentiable.

Example 6.6 (Weierstrass) Define φ(x) = |x| for −1 ≤ x ≤ 1 and let φ(x+ 2) = φ(x), then φ(x) is continuous
on R. Define the function (by a series of fractal sawtooth)

f =

∞∑
n=0

fn :=

∞∑
n=0

(
3

4

)n

φ(4nx).

By Weierstrass M -test, the series
∑
fn convergence uniformly to f , so f is continuous.

Fix x ∈ R and m ∈ Z>0, put δm = ±4−m/2, so there is no integer between 4mx and 4m(x + δm). Define
γn = [φ(4n(x+ δm))− φ(4nx)]/δm. Note that |γn| ≤ 4n because |φ(s)− φ(t)| ≤ |s− t|; in particular, if n = m,
|γn| = 4n, and if n > m, γn = 0 because 4nδm is even. Then∣∣∣∣f(x+ δm)− f(x)

δm

∣∣∣∣ =
∣∣∣∣∣
∞∑
n=0

(
3

4

)n

γn

∣∣∣∣∣ ≥ 3m −
m−1∑
n=0

3n =
1

2
(3m + 1).

Since δm → 0 when m → ∞, the limit of the above expression does not exist, it follows that f is nowhere
differentiable on R.

The Weierstrass function is defined as Fourier series: f(x) =
∑∞

n=0 a
n cos(bnπx), where 0 < x < 1.

Theorem 6.2

Suppose {fn} is a sequence of differentiable functions on [a, b], such that {fn(x0)} converges for some
x0 ∈ [a, b]. If {f ′n} converges uniformly on [a, b], then {fn} converges uniformly on [a, b] to a function f , and
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6.2 Uniform Convergence, Continuity, and Differentiation

♡f ′(x) = limn→∞ f ′n(x).

Proof (a) Let ε > 0 be given. Since {fn(x0)} is convergent and thus Cauchy, there exists N1 such that n,m ≥ N1

implies |fn(x0)− fm(x0)| < ε/2. Since {f ′n} converges uniformly and thus uniformly Cauchy, there exists N2 such
that n,m ≥ N2 implies |f ′n(x)− f ′m(x)| < ε/2(b− a) for all x.

Let N = max{N1, N2}. For n,m ≥ N , by Mean Value Theorem, there exists x ∈ (x, t) such that

|(fn − fm)(x)− (fn − fm)(t)| = |(f ′n − f ′m))(c)(x− t)| < ε

2(b− a)
|x− t| ≤ ε

2
.

Then the triangle inequality implies that

|fn(x)− fm(x)| ≤ |(fn − fm)(x)− (fn − fm)(t)|+ |fn(x0)− fm(x0)| < ε/2 + ε/2 = ε.

Hence {fn} is uniformly Cauchy and thus converge uniformly to some function f .

(b) Let f be the limit function of {fn}, for fixed x, we define ϕn(t) := [fn(t)− fn(x)]/(t− x) for t ̸= x, and define
ϕ(t) = [f(t)− f(x)]/(t− x). As shown above, for n,m ≥ N ,

|ϕn(t)− ϕm(t)| < ε

2(b− a)
,

so {ϕn} converges uniformly, for t ̸= x. Since {fn} converges to f , we conclude that limn→∞ ϕn(t) = ϕ(t).
Applying Theorem 6.1 yields limn→∞ f ′n(x) = limt→x limn→∞ ϕn(t) = limn→∞ limt→x ϕn(t) = limt→x ϕ(t) =

f ′(x). ■
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6.3 Equicontinuous Families of Functions

Definition 6.4 (Pointwise bounded, Uniformly bounded)

♣

Let {fn} be a sequence of functions define on a setE, we say that {fn} is pointwise bounded on E if {fn(x)}
is bounded for every x ∈ E, i.e., |fn(x)| < ϕ(x) for all n and some finite-valued function ϕ.

We say that {fn} is uniformly bounded on E if there exists M such that |fn(x)| < M for all n and x ∈ E.

Remark In C, every bounded sequence contains a convergent subsequence. However, the generalization fails to
hold on the set of functions:

(i) It is not generally true that every sequence {fn} of bounded continuous functions (even if uniformly bounded
on a compact set) contains a pointwise convergent subsequence. For instance, consider fn(x) = sinnx on
[0, 2π].

However, a desired subsequence exists on a countable subset E1 of E for the sequence of pointwise bounded
functions. (See Proposition 6.7)

(ii) It is not generally true that every convergent sequence of functions {fn} (even if uniformly bounded on a
compact set) contains a uniformly convergent subsequence? (See Example 6.7)

Example 6.7 Let fn(x) = x2/[x2+(1−nx)2] for x ∈ [0, 1]. {fn} is uniformly bounded on [0, 1] since |fn(x)| ≤ 1

for all n and x, and limn→∞ fn(x) = 0. However, fn(1/n) = 1 for all n, so that no subsequence converge uniformly
on [0, 1].

The concept needed in this connection is “equicontinuity”.

Proposition 6.7

♠

If {fn} is a pointwise bounded sequence of complex functions on a countable set E, then {fn} has a
subsequence {fnk

} such that {fnk
} converges for every x ∈ E.

Proof SupposeE = {xi}i∈Z>0 . Note that {fn(x1)} is bounded in C, there is a subsequence S1 := {f1,j}j such that
{f1,j(x1)}j is convergent. We define Si = {fi,j} recursively as follows, for every i > 1, Si−1(x) = {fi−1,j(xi)}j
is bounded and infinite, so there is a subsequence Si := {fi,j}j∈Z>0 of Si−1 for which converges at xi.

Consider the subsequence S = {fi,i} (diagonal process). Note that S is a subsequence of Si except for the first i− 1
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6.3 Equicontinuous Families of Functions

terms, so S(xi) converges for every i = 1, · · · . ■

Definition 6.5 (Equicontinuity)

♣

A family F of complex functions f defined on a set E in a metric space X is said to be equicontinuous on E
if for every ε > 0 there exists a δ > 0 such that |f(x)− f(y)| < ε whenever d(x, y) < δ for all x, y ∈ E and
f ∈ F .

Remark The concept of equicontinuity is similar to uniform convergence. In the equicontinuous family, functions
are uniformly continuous in the same extent, whereas in uniformly convergent sequence, functions converge in the
same extent for every point.

Proposition 6.8

♠

If K is a compact metric space, fn ∈ C (K) for n ∈ Z>0, and {fn} converges uniformly on K, then {fn} is
equicontinuous on K.

Proof Let ε > 0 be given, and suppose the limit function is f . By uniform convergence, there exists N such that
|fn(x) − f(x)| < ε/3 for n ≥ N and x ∈ K. Since {fn} is continuous and K is compact, f is continuous by
Corollary 6.1, and thus f is uniformly continuous by Proposition 4.9. Then there exists δ0 such that |f(x)−f(y)| < ε

if d(x, y) < δ0. It follows that

|fn(x)− fn(y)| ≤ |fn(x)− f(x)|+ |f(x)− f(y)|+ |f(y)− fn(y)| = ε/3 + ε/3 + ε/3 = ε

for d(x, y) < δ0.

For n < N , fn is uniformly continuous by Proposition 4.9 since fn is continuous on a compact set. Then there exists
δn > 0 such that |fn(x)− fn(y)| < ε if d(x, y) < δn.

Hence putting δ = min{δ0, δ1, · · · , δN−1} suffices. ■

Remark We use the uniform convergence degenerate the case into finite case. For n ≥ N , we use triangle inequality
to convert fn to f , which is uniformly continuous, and then bound |fn(x) − fn(y)| for all n ≥ N . For n < N , we
can directly use uniform continuity for each individual fn. Then taking the minimum of δ’s suffices.

Theorem 6.3 (Arzelà–Ascoli)

♡

If K is compact, {fn} ∈ C (K) for n ∈ Z>0, and {fn} is pointwise bounded and equicontinuous on K, then

(a) {fn} is uniformly bounded on K,

(b) {fn} contains a uniformly convergent subsequence.

Proof (a) By equicontinuity, there exists δ > 0 such that |fn(x) − fn(y)| < 1 for d(x, y) < δ. By compactness,
K = {Nδ(xi)}1≤i≤N . For every 1 ≤ i ≤ N , there exists Mi such that |fn(xi)| < Mi by boundedness. Put
M = max{M1, · · · ,Mn}. For every x ∈ K, there exists xk such that d(x, xk) < δ, then for every n ∈ Z>0,

|fn(x)| ≤ |fn(x)− fn(xk)|+ |fn(xk)| < 1 +Mk ≤ 1 +M.
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6.3 Equicontinuous Families of Functions

Hence |fn| is bounded uniformly by 1 +M . ■

(b) For each n, K is covered by finite neighborhoods of the form N1/n(xi), let Kn be the set of xi’s. Define
K ′ :=

⋃
Kn, then K ′ is countable, so there exists a subsequence {gn}n∈Z>0 of {fn} for which converges on K ′ by

Proposition 6.7.

Let ε > 0 be given. By equicontinuity, there exists δ > 0 such that |gn(x) − gn(y)| < ε/3 for d(x, y) < δ and all
n. Choose c > 0 such that 1/c < δ, then for every x ∈ K, there exists xi ∈ Kc ⊂ K ′ such that d(x, xi) < δ by the
construction of K ′. Also, by the convergence, for each xi ∈ Kn, there exists Ni such that |gn(xi)− gm(xi)| for all
n,m ≥ Ni. Put N = max{Ni}. For n,m ≥ N and every x ∈ E, choose xi as above, then

|gn(x)− gm(x)| ≤ |gn(x)− gn(xi)|+ |gn(xi)− gm(xi)|+ |gm(xi)− gm(x)| = ε/3 + ε/3 + ε/3 = ε.

Hence {gn} converges uniformly on K. ■

Remark (a) We use compactness to degenerate the problem into finite points {xi}. For every point xi, {fn(xi)}
bounded by pointwise boundedness, then the equicontinuity allows us to bound the function on the neighborhood of
xi.

(b) For each δ, we can choose a finite subset by compactness so that their neighborhoods coversK. The equicontinuity
implies that bounding |fn − fm| on the finite subset allows us to bound |fn − fm| on their neighborhoods. Then
it suffices to prove a subsequence converges on the finite subset; this can be done because there exists a countable
dense subset of K and thus a subsequence converging on it.
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6.4 The Stone-Weierstrass Theorem

Property The following equalities hold by considering the binomial distribution:
n∑

k=0

(
n

k

)
xk(1− x)n−k = 1,

n∑
k=0

k

(
n

k

)
xk(1− x)n−k = E[X] = nx,

n∑
k=0

(nx− k)2
(
n

k

)
xk(1− x)n−k = Var[X] = nx(1− x).

Proposition 6.9 (Weierstrass Approximation Theorem)

♠

If f is a continuous complex function on [a, b], there exists a sequence of polynomials Pn such that
limn→∞ Pn(x) = f(x) uniformly on [a, b]. If f is real, then Pn may be take real.

Proof Without loss of generality, we may assume [a, b] = [0, 1]. Let Bn(f)(x) =
∑n

k=0 f(k/n) · bk,n(x) where
bk,n(x) =

(
n
k

)
xk(1− x)n−k is the Bernstein polynomial, we therefore want to show Bn(f) → f uniformly.

Since f is continuous on a compact set, f is uniformly continuous and bounded by some M . Let ε > 0 be given.
There exists δ > 0 such that |f(x) < f(y)| < ε/2 whenever |x− y| < δ. Choose N = M/δ2ε. For n ≥ N , since
f(x) = f(x) ·

∑n
k=0

(
n
k

)
xk(1− x)n−k,

|Bn(f)(x)− f(x)| ≤
n∑

k=0

|f(k/n)− f(x)|
(
n

k

)
xk(1− x)n−k

=
∑

|x−k/n|<δ

|f(k/n)− f(x)| bk,n(x)︸ ︷︷ ︸
A

+
∑

|x−k/n|≥δ

|f(k/n)− f(x)| bk,n(x)︸ ︷︷ ︸
B

.
(6.4.1)

For |x− k/n| < δ, |f(k/n)− f(x)| < ε/2, then

A ≤ |f(k/n)− f(x)|
n∑

k=0

bk,n(x) = |f(k/n)− f(x)| = ε/2.

For |x− k/n| ≥ δ, (Chebyshev’s inequality)

B ≤ 2M
∑

|x−k/n|≥δ

bk,n(x) ≤
n∑

k=0

(x− k/n)2

δ2
bk,n(x) =

2M

δ2n2

n∑
k=0

(nx− k)2bk,n(x)

=
2M

δ2n2
· nx(1− x) ≤ 2M

δ2N
· 1
4
=
ε

2
.

Then |Bn(f)(x)− f(x)| ≤ A+B = ε for all x ∈ [0, 1], so Bn(f) converges uniformly to f . ■

Remark The polynomial Bn(f)(x) may be viewed as the weighted average of f on [0, 1] where the weight is given
by the binomial distribution. For every x0, when n approaches ∞, the binomial distribution is concentrated at x0, so
the term bk,n(x0) vanishes when k/n is far from x, i.e, the polynomial Bn(f)(x0) converges to f(x0).
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Corollary 6.2

♡

For every interval [−a, a], there is a sequence of real polynomials Pn such that Pn(0) = 0 and such that
limn→∞ Pn(x) = |x| uniformly on [−a, a].

Definition 6.6 (Algebra of Functions, Uniform Closure)

♣

Let A be a family of of functions on a set E, then A is an algebra if f + g, fg, cf ∈ A for all f, g ∈ A and
constant c.

If A has the property that f ∈ A whenever fn → f uniformly for fn ∈ A , then A is said to be uniformly
closed. The uniform closure of A is the set of all limit functions of uniformly convergent sequences in A .

Example 6.8 The set of polynomials on R is an algebra. C([a, b]) is the uniform closure of the set of all polynomials
on [a, b], by the Weierstrass approximation problem.

Proposition 6.10

♠

Suppose B is the uniform closure of an algebra A of bounded functions. Then B is a uniformly closed
algebra.

Proof Sketch: Suppose fn → f uniformly and gn → g uniformly. It is not hard to see that f, g are (uniformly)
bounded on E, and fn + gn → f + g, fngn → fg, and cfn → cf . Hence f + g, fg, cf ∈ B, i.e., B is an algebra.

By Proposition 2.9, the uniform closure B is (uniformly) closed. ■

Definition 6.7 (Separate Points, Vanish at No Points)

♣

Let A be a family of functions on a metric spaceE. A said to separate points onE if to every pair of distinct
x1, x2 ∈ E, there corresponds a function f ∈ A such that f(x1) = f(x2).

If to each x ∈ E there corresponds a function g ∈ A such that g(x) ̸= 0, we say that A vanishes at no point
of E.

Example 6.9 The algebra of all polynomials in one variables separates points and vanishes at no points. The algebra
of all even polynomials on [−1, 1] does not separate points on [−1, 1] since f(−1) = f(1) for all even polynomials
f .

Proposition 6.11

♠

Suppose A is an algebra of function on a set E, A separate points on E and vanishes at no point of E.
Suppose x1, x2 are distinct points ofE, and c1, c2 are constants (real if A is a real algebra). Then A contains
function f such that f(x1) = c1 and f(x2) = c2.
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Proof Since A separate points and vanishes at no point of E, there exists g, h, k ∈ A such that g(x1) ̸= g(x2),
g(x1) ̸= 0, and g(x2) ̸= 0. Set u = gk − g(x1)k and v = gh− g(x2)h. It is not hard to show u(x1) = v(x2) = 0

and u(x2), v(x1) ̸= 0. Then the function f := c1v/v(x1) + c2u/u(x2) is the desired function. ■

Theorem 6.4 (Stone-Weierstrass Theorem)

♡

Let A be an algebra of real continuous functions of a compact set K. If A separates points on K and if A

vanishes at no point of K, then the uniform closure B of A consists of all real continuous functions on K.

Proof Step 1: If f ∈ B, then |f | ∈ B.

Proof : Let a = supx∈K |f(x)|, and let ε > 0 be given. By Corollary 6.2, there exists c1, · · · , cn ∈ R such that
|
∑n

i=1 ciy
i− |y|| < ε for all y ∈ [−a, a]. Since B is an algebra, g(x) =

∑n
i=1 cif(x)

i ∈ B, and |g(x)− f(x)| < ε

for all x ∈ K. Hence |f | is an uniform limit of sequence in B, so |f | ∈ B since B is uniformly closed.

Step 2: If f, g ∈ B, then max(f, g) ∈ B and min(f, g) ∈ B.

Proof : Notice that max(f, g) = ((f + g) + |f − g|)/2, so max(f, g) ∈ B follows immediately from the fact that
|f − g| ∈ B. The result holds for min(f, g), and the result may be extended to any finite set of functions.

Step 3: Given a real function f , continuous on K, a point x ∈ K, and ε > 0, there exists a function gx ∈ B such
that gx(x) = f(x) and gx(t) > f(t− ε) for all t ∈ K.

Proof : For each y ∈ K, there exists hy ∈ B such that hy(x) = f(x) and hy(y) = f(y) by Proposition 6.11.
By the continuity of hy there exists an open set Jy such that hy(t) > f(t) − ε, and the compactness implies that
K ⊂ Jy1 ∪ · · · ∪ Jyn for some y1, · · · , yn. Then setting gx := max(hy1 , · · · , hyn) suffices.

Step 4: Given a real function f , continuous onK, and ε > 0, there exists a functionh ∈ B such that |h(x)−f(x)| < ε

for x ∈ K.

Proof : Consider gx for each x ∈ K. By the continuity of gx, there exists open set Vx containing x such that
gx(t) < f(t) + ε. Since K is compact, K ⊂ Vx1 ∪ · · · ∪ Vxm for some m. The setting h := min(gx1 , · · · , gxm)

suffices since h(t) > f(t)− ε by Step 3 and the construction implies that h(t) < f(t) + ε. ■

Remark The Stone-Weierstrass Theorem does not hold for complex algebra.

Definition 6.8 (Self-Adjoint Algebra)

♣An algebra A of complex functions is said to be self-adjoint if the complex conjugate f ∈ A for all f ∈ A .

Theorem 6.5

♡

Suppose A is a self-adjoint algebra of complex continuous functions on a compact set K, and A separates
points and vanishes at no point of K. Then the uniform closure B of A consists of all complex continuous
functions on K. In other words, A is dense in C (K).

52



Part II

Analysis II



Chapter 7 Measure Theory

Introduction

h Lebesgue exterior measure

h Properties of exterior measure and measure

h Cantor set and Vitali Set

h Littlewood’s three principles of real analysis

h Lebesgue measure

h σ-algebra and Borel set

h Measurable Functions

7.1 Preliminaries

7.1.1 Riemann Integral Recitation

Suppose f : I → R is abounded function defined on a rectangle I ⊂ Rn. We define Riemann integral as follows:

We partition I into a finite collection of almost disjoint rectangles Γ = {In}Nn=1 (whose interiors are pairwise
disjoint), select points ξk ∈ Ik, and define the Riemann partial sum be

RΓ(ξ1, · · · , ξN ) :=

N∑
k=1

f(ξk)v(Ik)

where v(I) denotes the volume of the rectangle I .

f is said Riemann integrable if the limit of RΓ exists as the norm of partition Γ (|Γ| := maxk diam(Ik))
satisfies |Γ| → 0.

More precisely, the Riemann integral of f , denoted as
∫
I f(x) dx = A, exists if for all ε > 0, there exists

δ > 0 such that for any partition Γ of I such that |Γ| < δ with any choice of {ξk}Nk=1, the inequality
|RΓ(ξ1, · · · , ξN )−A| < ε.

Alternatively, we may use upper and lower Riemann sum to define Riemann integral:

Definition 7.1 (Riemann Integral)

♣

Define the upper and lower Riemann sum by

UΓ :=

N∑
k=1

v(Ik) sup
x∈Ik

f(x), LΓ :=

N∑
k=1

v(Ik) inf
x∈Ik

f(x),

then f is Riemann integrable if and only if lim|Γ|→0 UΓ = lim|Γ|→0 LΓ = A, and its Riemann integral is
denoted by

∫
I f(x) dx.

Example 7.1 Riemann integral is very restrictive. For instance, Dirichlet function χQ∩[0,1], i.e., the characteristic
function on rationals on [0, 1], is not Riemann integrable, because UΓ = 1 and LΓ = 0 for any partition Γ.

Indeed, for a function to be Riemann integrable, it need to be continuous “almost everywhere”.



7.1 Preliminaries

7.1.2 Rectangles and Cubes

A rectangleR in Rd is given by the product of d one-dimensional closed and bounded intervalsR =
∏

1≤j≤d[aj , bj ]

where aj ≤ bj are real numbers, and its volume is given by |R| =
∏

1≤j≤d |bj − aj |. A cube is rectangle for which
the all its side lengths are equal.

Two rectangles A,B are said to almost disjoint (non-overlapping) if their interior are disjoint, then we use the
convention A ⊔B to denote their (almost) disjoint union.

Proposition 7.1

♠

If a rectangle I is the union of finitely many non-overlapping rectangles, i.e., I =
⊔N

n=1 In, then |I| =∑N
n=1 |In|. In particular, if rectangle I, I1, · · · , In satisfy I ⊂

⋃N
k=1 Ik then |I| ≤

∑N
k=1 |Ik|.

Proof Sketch: For each rectangle In, we may divide it into grids of rectangles {Ĩn,j}Mn
j=1 of non-overlapping

rectangles, for which {Ĩn,j}n,j is a grid of rectangles that forms I . Then |I| =
∑

n,j |In,j | =
∑N

n=1

∑Mn
j=1 |In,j | =∑N

n=1 |In|. The second statement follows from the first statement by breaking I1, · · · , In into (not necessarily
distinct) non-overlapping rectangles.

�

Note Lemma: Every open set G ⊂ R can be written as a countable union of disjoint open intervals.

Remark The above lemma does not hold in general Euclidean space Rn.

Lemma 7.1

♡Every open set G ⊂ Rn can be written as a countable union of non-overlapping (closed) cubes.

Proof Consider the collection F̃0 of all cubes of side length 1 whose vertex points are integer lattice points in Zn, let
F0 ⊂ F̃0 denotes the collection of cubes in F̃0 which are contained in G. Repeatedly, for step k, subdivide all cubes
in F̃k that are not contained in

⊔k
i=1Fi into 2n cubes (i.e., divide side length by 2 for each dimension), denoted by

F̃k+1. Define Fk+1 to be the collection of cubes Q ∈ F̃k+1 contained in G. Note that for each k, Fk is a countable
collection of non-overlapping cubes of side length 2−k, so does their union F :=

⋃
Fk. Denote by H :=

⊔
Q∈F Q

the union of all chosen cubes.

It suffices to prove G = H . H ⊃ G is obvious because Q ⊂ G for all Q ∈ F . Conversely, for every x ∈ G, there
exists an open ballB of radius contained inG. By the Archimedean principle, there exists a cubeQ in some F̃k such
that x ∈ Q ⊆ B. This contradicts to the construction of Fk. Hence any open set G can be written as a countable
union of non-overlapping cubes. ■
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Remark The decomposition shown in the proof is the “dyadic decomposition of Rn”
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7.2 Lebesgue Exterior Measure

7.2.1 Lebesgue Exterior Measure

Definition 7.2 (Exterior Measure)

♣

Let E ⊂ Rn, we define the exterior (outer) measure of E by

m∗(E) := inf

{ ∞∑
n=1

|Qj |
∣∣∣Qj are cubes, E ⊂

∞⋃
n=1

Qj

}
where the infimum is taken over all countable covering of E by (closed) cubes and |Q| denotes the volume of
Q.

Remark It is not suffice to allow finite sums (Jordan outer measure). In this case, we obtain m∗(Z) = ∞ and
m∗([0, 1]) = 1, while Z is countable and [0, 1] is uncountable.

Example 7.2 Suppose E = {x} is a singleton, the outer measure is m∗(E) = 0 since we can cover the point x with
an arbitrarily small cube.

Suppose E = {xn}∞n=1 is countable. For all ε > 0, we may cover each xn with a cube Qn whose volume is no
greater than ε/2n+1, then m∗(E) ≤

∑∞
n=1 |Qn| ≤

∑∞
n=1 ε/2

n+1 = ε. It follows that m∗(E) = 0, i.e., the outer
measure of countable set is zero.

Example 7.3 The outer measure of a cube Q equal to its volume |Q|.

Proof m∗(Q) ≤ |Q| because Q covers itself. Suppose {Qj} is a countable covering of Q by cubes. For each Qj ,
find Q∗

j such that (Q∗
j )

◦ ⊃ Qj , |Q∗| ≤ |Qj |+ 2−jε. Since Q is compact and {(Q∗
j )

◦} forms a open covering of Q,
there exists N ∈ N such that Q ⊂

⋃N
j=1Q

∗
j . By Proposition 7.1,

|Q| ≤
N∑
j=1

|Q∗
j | ≤

N∑
j=1

(
|Qj |+ 2−jε

)
≤
∑
j

|Qj |+ ε.

It follows that |Q| ≤
∑

j |Qj | for arbitrary covering {Qj}, so m∗(Q) ≥ |Q|. Hence m∗(Q) = |Q|. ■

Remark The approach is to prove |Q| ≤
∑∞

k=1 |Qk| for any covering {Qk}, which we proved by reduce it to finite
cubes by compactness (through enlarging each Qj to a slightly larger open cube) and apply Proposition 7.1.

�

Note It is valid to replace the coverings by cubes with rectangles or closed balls.

Proof Denote by mR
∗ the outer measure by rectangles. Notice that every cube is a rectangle, mR

∗ (E) ≤ m∗(E).
Suppose {Rj}∞j=1 is a covering of E by rectangles. For each j, there exists a countable covering {Qj,k}∞k=1 of Rj by
cubes such that

∑∞
k=1 |Qj,k| < |Rj |+ 2−jε. Since {Qj,k}j,k form a covering,

m∗(E) ≤
∞∑
j=1

∞∑
k=1

|Qj,k| <
∞∑
j=1

(
|Rj |+ 2−kε

)
=

∞∑
j=1

|Rj |+ ε.

It follows that m∗(E) ≤
∑∞

j=1 |Rj |, then m∗(E) ≤ mR
∗ (E). Hence m∗(E) = mR

∗ (E). ■
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Remark One direction is trivial, and for the other direction, we use the fact that every rectangle is almost a countable
union of cubes.

Example 7.4 For a rectangle I , m∗(I) = |I|.

Proof The proof is analogous to the previous example since cubes can be replaced by rectangles. ■

Example 7.5 m∗(Rn) = +∞.

Proof Since cubes Q ⊂ Rn can have arbitrarily large volume, we must have m∗(Rn) = +∞ by monotonicity (see
Proposition 7.2 (a)). ■

7.2.2 Properties of The Exterior Measure

Proposition 7.2

♠

(a) Monotonicity: If E1 ⊂ E2, then m∗(E1) ≤ m∗(E2).

(b) Countable sub-additivity: If E =
⋃∞

j=1Ej , then m∗(E) ≤
∑∞

j=1m∗(Ej).

Proof (a) This proposition follows directly from the fact that every covering of E2 covers E1.

(b) Let ε > 0 be given. For each j, there exists a covering {Qj,k}k such that
∑∞

k=1 |Qj,k| < m∗(Ej)+ 2−jε. Notice
that {Qj,k}j,k forms a covering, then

m∗(E) ≤
∞∑
j=1

∞∑
k=1

|Qj,k| ≤
∞∑
j=1

(
m∗(Ej) + 2−jε

)
=

∞∑
j=1

m∗(Ej) + ε.

Hence m∗(E) ≤
∑∞

j=1m∗(Ej). ■

Corollary 7.1

♡

(a) Completeness: If m∗(F ) = 0 and E ⊂ F , then m∗(E) = 0.

(b) If m∗(Ek) = 0 for all k, then m∗(
⋃
Ek) = 0.

Proposition 7.3 (Approximation by Open Sets)

♠If E ⊂ Rd, then m∗(E) = infm∗(O), where the infimum is taken over all open sets O containing E.

Proof m∗(E) ≤ infm∗(O) follows immediately from the monotonicity. Conversely, let ε > 0 be given, there
exists a covering {Qj} such that

∑
|Qj | < m∗(E) + ε/2. For each Qj , there exists Q∗

j such that (Q∗
j )

◦ ⊃ Qj and
|Q∗

j | < |Qj |+ 2−(j+1)ε. Let O =
⋃
(Q∗

j )
◦, then O is open and E ⊂ O ⊂

⋃
Q∗

j . Note that

m∗(O) ≤
∞∑
j=1

|Q∗
j | ≤

∞∑
j=1

(
|Qj |+ 2−(j+1)ε

)
≤

∞∑
j=1

|Qj |+ ε/2 < m∗(E) + ε,
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it follows that infm∗(O) ≤ m∗(E). Hence m∗(E) = infm∗(O). ■

Remark It suffices to prove
∑

|Qj | ≥ infm∗(O)− ε for all covering {Qj} and ε > 0 by the properties of infimum.
Note that we have a slightly larger open cube Q∗

j contains Qj for each j, adjoining Q∗
j ’s gives an open set that is

slightly larger than
⋃

j Qj ⊇ E.

Proposition 7.4

♠If E = E1 ∪ E2 and d(E1, E2) > 0, then m∗(E) = m∗(E1) +m∗(E2).

Proof By subadditivity, m∗(E1 ∪ E2) ≤ m∗(E1) +m∗(E2). Conversely, for any covering {Qj} of E1 ∪ E2, we
can subdivide each Qj into finitely many nonoverlapping cubes whose diameter is less than d(E1, E2), forming a
covering {Ik} of E1 ∪ E2. Let S1 and S2 denotes all Ik’s which intersects E1 and E2, respectively. Notice that no
cubes Ik intersects both E1 and E2, namely S1 ∩ S2 = ∅, and S1, S2 form a covering of E1, E2, resp. Then∑

|Qj | =
∑

|Ik| ≥
∑
Ik∈S1

|Ik|+
∑
Ik∈S2

|Ik| ≥ m∗(E1) +m∗(E2),

followed by m∗(E1 ∪ E2) ≥ m∗(E1) +m∗(E2). Hence m∗(E) = m∗(E1) +m∗(E2). ■

Remark The approach is to divide each cube in the covering to smaller cubes so that no cubes intersect both E1

and E2, then it is not hard to show the equality.

Proposition 7.5

♠
If a set E is the countable union of almost disjoint cubes E =

⋃∞
j=1Qj , then m∗(E) =

∑∞
j=1 |Qj |.

Proof m∗(E) ≤
∑∞

j=1 |Qj | by monotonicity. Conversely, let ε > 0 be given. For each Qj , choose Q∗
j be a cube

contained in Qj such that |Q∗
j | > |Qj | − 2−jε. Note that d(Q∗

j , Q
∗
k) > 0 for j ̸= k; by Proposition 7.4, for every N ,

m∗(E) ≥
N∑
j=1

m∗(Q
∗
j ) =

N∑
j=1

|Q∗
j | ≥

M∑
j=1

(|Qj | − 2−jε) =
N∑
j=1

|Qj | − ε.

Let n→ ∞, m∗(E) ≥
∑∞

j=1 |Qj | − ε, followed by m∗(E) ≥
∑∞

j=1 |Qj |. Hence m∗(E) =
∑∞

j=1 |Qj | − ε. ■

Remark The approach is to take slightly smaller cubeQ∗
j for eachQj (so they have positive distance), then applying

Proposition 7.4 gives the desired result for finite case, thus letting N → +∞ yields the desired equality.
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7.3 Lebesgue Measure

Definition 7.3 (Lebesgue Measure)

♣

A set E ⊂ Rn is said to be (Lebesgue) measureable if for all ε > 0, there exists an open set G such that
E ⊂ G and m∗(G \ E) < ε. If E is measurable, we define its (Lebesgue) measure to be m(E) := m∗(E).

That is, E is measurable if it can be approximated by open set from above.

Property Every open set and every rectangle are measurable.

Proof It is trivial that open set is open by definition. For rectangle R, there exists rectangle R∗ such that
m∗(R

∗) < m∗(R) + ε, then (R∗)◦ is the desired open set. ■

Property Every set with zero outer measure (aka, null sets) is measurable.

Proof Suppose m∗(E) = 0, Proposition 7.3 implies that for all ε > 0, there exists open G ⊃ E such that
m∗(G) < m∗(E) + ε = ε. Then m∗(G \ E) ≤ m∗(G) < ε, so E is measurable. ■

Property A countable union of measurable sets is also measurable.

Proof Let E1, · · · be measurable sets and E =
⋃
Ek. For all ε > 0, for each Ek, there is an open set Gk such

that m∗(Gk \ Ek) < 2−kε. Let G =
⋃
Gk, then G is open, and m∗(G \ E) ≤

∑
m∗(Gk \ Ek) ≤ ε. Hence E is

measurable. ■

Property Every closed set is measurable.

Proof Suppose F is closed. Proposition 7.3 implies that for all ε > 0, there exists G open such that m∗(G) <

m∗(F ) + ε. Suppose F is bounded and thus compact. Note that G \ F can be written as the countable union
of non-overlapping cubes,

⋃∞
j=1Qj . For each N , note that

⋃N
j=1Qj is compact and F is closed implies their

distance is positive, Proposition 7.4 implies that m∗(G) = m∗(F ) +m∗(
⊔N

j=1Qj) = m∗(F ) +
∑N

j=1 |Qj |, then∑N
j=1 |Qj | ≤ m∗(G)−m∗(F ) ≤ ε. Let N → +∞, the subadditivity yields m∗(G \ F ) ≤

∑∞
j=1 |Qj | ≤ ε.

If F is not bounded, let Qk be cubes of side length k, note that Rn =
⋃
Qk. Since F ⊔Qk is closed and bounded,

thus measurable, F =
⋃
(F ∩Qk) is also measurable. ■

Proof Consider the bounded case, for any open setG ⊇ F , we see thatm(G) = m(F )+m(G \F ) by the property
of compactness, thus m∗(G \ F ) can be arbitrarily small.

Property The complement of any measurable set is measurable.

Proof For every k ∈ N, there exists Gk ⊃ E open such that m∗(Gk \E) ≤ 1/n, and the complement Gc
k is closed

and thus measurable. Then S =
⋃∞

n=1G
c
n is measurable. Note that S ⊂ Ec and Ec \ S ⊂ Ec \Gc

k = Gk \E, then
m∗(E

c \ S) ≤ 1/n for all n, followed by m∗(E
c \ S) = 0 and Ec \ S is measurable. Hence Ec = S ∪ (Ec \ S) is

measurable. ■
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Property A countable intersection of measurable sets is also measurable.

Proof Follows immediately from property 3 and 5. ■

Theorem 7.1 (Countable Additivity)

♡If E1, E2, · · · are disjoint measurable sets, then m(
⊔∞

k=1Ek) =
∑∞

k=1m(Ek).

Proof Let E :=
⊔∞

k=1Ek. One direction m(E) ≤
∑

km(Ek) follows immediately from countable subadditivity.
Conversely, suppose all Ek are bounded, let ε > 0 be given. For each k, there exists a closed set Fk ⊂ Ek such
that m∗(E \ F ) ≤ 2−kε (since Ec is measurable). Note that Fk’s have positive distance since they are disjoint, then
for each N ∈ N, m(

⊔N
k=1Ek) ≥ m(

⊔N
k=1 Fk) =

∑N
k=1m(Fk) ≥

∑N
k=1m(Ek) − ε. Let N → +∞, we have

m(E) ≥
∑

km(Ek)− ε, followed by m(E) ≥
∑

km(Ek). Hence m(E) =
∑

km(Ek).

For Ek that is not bounded, choose cubes Qj ↗ Rn. Then {Ek,j := Ek ∩ (Qj \ Qj−1)}j is a pairwise disjoint
collection of bounded sets, for which Ek =

⊔
j Ek,j . Apply the previous result, we have m(Ek) =

∑
j m(Ek,j),

hence m(E) =
∑

k,j m(Ek,j) =
∑

km(Ek). ■

Remark Consider the bounded case, note that E can be approximated by closed set from inside, this gives sets with
positive distance. We obtain the desired equality for finite case by applying Proposition 7.4, and this can be easily
extended to the countable case.

Corollary 7.2

♡Let {Ik} be a countable collection of non-overlapping rectangles, then m(
⊔

k Ik) =
∑

km(Ik).

Definition 7.4 (Monotonicity)

♣

IfE1, E2, · · · is a countable collection of subsets that increases toE, i.e.,Ek ⊂ Ek+1 for all k andE =
⋃

k Ek,
we write Ek ↗ E. Similarly, if E1, E2, · · · is a countable collection of subsets that decreases to E, i.e.,
Ek ⊃ Ek+1 for all k and E =

⋂
k Ek, we write Ek ↘ E.

Theorem 7.2 (Continuity from above/below)

♡

Suppose E1, E2, · · · are measurable subsets of Rd.

(a) If Ek ↗ E, then m(E) = limk→∞m(Ek).

(b) If Ek ↘ E and m(Ek) <∞ for some k, then m(E) = limk→∞m(Ek).

Proof (a) We may assume Ek’s have finite measure, otherwise the equality holds obviously. Denote by G1 = E1

and Gk = Ek \ Ek−1 for k > 1, then E =
⊔

kGk. It follows that

m(E) =

∞∑
k=1

m(Gk) = lim
k→∞

m

(
k⊔

n=1

Gn

)
= lim

k→∞
m(Ek).
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(b) Without loss of generality, we may assume m(E1) < ∞, then m(Ek) < ∞ for all Ek. Define Gk’s as above,
then E1 = E ⊔ (

⊔
kGk). By the previous result,

m(E1) = m(E) + lim
n→∞

n∑
k=1

m (Ek \ Ek−1) = m(E) +m(E1)− lim
k→∞

m(Ek),

hence m(E) = limk→∞m(Ek). ■
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7.4 σ-Algebra and Borel Sets

Definition 7.5 (σ-Algebra)

♣

A collection Σ of subsets of some universal set U is called a σ-algebra if it satisfies:

(1) U ∈ Σ

(2) Closed under complement: If E ∈ Σ, then Ec ∈ Σ

(3) Closed under countable union: If Ek ∈ Σ for all k ∈ N, then
⋃

k Ek ∈ Σ

Example 7.6 The collection of all (Lebesgue) measurable sets in Rn is a σ-algebra.

Definition 7.6 (Borel σ-Algebra)

♣

The smallest σ-algebra containing all open sets in Rn is called the Borel σ-algebra, denoted B, and the sets
in B are Borel sets.

Example 7.7 All open sets, closed set, Fσ-sets (countable union of closed sets), andGδ-sets (countable intersection
of open sets) are in Borel σ-algebra.

Remark B is a proper subset of M (the collection of Lebesgue measurable sets).

Proposition 7.6

♠

A subset E of Rd is measurable

(a) if and only if E differs from a Gδ by a null set (set of measure zero),

(b) if and only if E differs from a Fσ by a null set.

Proof Suppose H is a Gδ set and Z = H \ E is a null set for some Z,H . Since H and Z are measurable, then
E = H \Z is measurable. Conversely, for all k, there exists Gk ⊃ E such that m(Gk \E) < 1/k. Let H =

⋂
kGk

be a Gδ set, then m(H \ E) = 0. The second statement is analogous. ■

63



7.5 Vitali Sets

7.5 Vitali Sets

Lemma 7.2 (Invariance of Lebesgue measure)

♡

Translation invariance: Suppose E ∈ M and h ∈ Rn, then E + h = {x+ h | x ∈ E} is measurable and the
measure is m(E + h) = m(E).

Dilation invariance: Suppose E is measurable, δE = {(δ1x1, · · · , δnxn) | x ∈ E}, then δE is measurable
and m(δE) = δ1 · · · δnm(E).

Define an equivalence relation on [0, 1] as follows: x ∼ y if and only if x − y ∈ Q. The equivalence classes
[x] = {x+ q ∈ [0, 1] | q ∈ Q} are either disjoint or coincide. They form a partition of [0, 1] =

⊔
α∈V [xα] (under the

axiom of choice), where V consists of one representative from each class.

Theorem 7.3

♡The Vitali set V is not measurable.

Proof Let Vq := V + q = {x + q |x ∈ V }, and denote by Q = [−1, 1] ∩ Q. We have the following three
observations:

(a) [0, 1] ⊂
⋃

q∈K Vq: suppose x ∈ [0, 1], then x ∼ y for some y ∈ V by the definition of V . That is, y − x ∈ Q,
in particular x− y ∈ [−1, 1] ∩Q = Q, so there exists q ∈ Q such that x = y + q, i.e., x ∈ Vq.

(b) Vq’s are disjoint: If x ∈ Vp ∩ Vq, then x = y + p = y′ + q for some y, y′ ∈ V , p, q ∈ Q. Then
y′ − y ∈ [−1, 1] ∩Q = Q, so y = y′ by the definition of V , followed by p = q, hence Vp = Vq.

(c)
⊔

q∈Q Vq ⊂ [−1, 2]: the statement is trivial since V ⊂ [0, 1] and q ∈ [−1, 1].

Combining the above observations, we have the following claim:

[0, 1] ⊂
⊔
q∈Q

Vq ⊂ [−1, 2]. (7.5.1)

Assume FSOC that V is measurable, then Vq is measurable and m(Vq) = m(V ) for all q ∈ Q. By the Equation
(7.5.1) and monotonicity, given that m(

⊔
q∈Q Vq) =

∑
q∈Qm(V ) by additivity,

1 = m([0, 1]) ≤ m

( ⊔
q∈Q

Vq

)
=
∑
q∈Q

m(V ) ≤ m([−1, 2]) = 3

which is impossible since
∑

q∈Qm(V ) = |Q| ·m(V ) and Q is countable. Hence V is not countable. ■
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7.6 Measurable Functions

7.6.1 Measurable Functions

Definition 7.7 (Measurable Functions)

♣

Consider the real-valued function f defined on a measurable set E ⊂ Rn, f : E → R ∪ {±∞} (NB: we
say f is finite-valued if −∞ < f(x) < ∞ for all x ∈ E). The function f is measurable, if for all α ∈ R,
{f < α} := {x ∈ E | f(x) < α} is measurable.

Proposition 7.7

♠

The equivalent definition/characterization of measurable functions includes: f is measurable if and only if
{f ≤ a} (or {f > a}, or {f ≥ a}) is measurable for all a ∈ R.

In particular, if f is finite-valued, then f is measurable if and only if {a < f < b} is measurable for all
a, b ∈ R.

Proof The equivalence between {f < a} and {f ≤ a} follows from {f ≤ a} =
⋂

n∈N{f < a + 1/n} and
{f < a} =

⋃
n∈N{f ≤ a − 1/n}. The equivalence between {f < a} and {f ≥ a} and between {f ≤ a} and

{f > a} follows directly from taking complement.

For finite-valued f , note that {f < a} =
⋃

b∈Z{b < f < a} and {b < f < a} = {f < a} −
⋃

q∈Q,q≤b{f < b},
therefore f is measurable if and only if {a < f < b} is measurable. ■

Proposition 7.8

♠A finite valued function f is measurable if and only if f−1(G) is measurable for every open set G ⊂ R.

Proof (⇒) Suppose G is open in R, G can be written as a union of open intervals G =
⊔

k(ak, bk). Since the
preimage of intervals f−1((ak, bk)) = {ak < f < bk} are measurable, f−1(G) =

⊔
k f

−1((ak, bk)) is measurable.

(⇐) Conversely, the statement follows immediately from the fact that every {f < a} is a preimage of an open
interval. ■

Proposition 7.9

♠

(a) If f is continuous on Rn, then f is measurable.

(b) If f is measurable and finite-valued, and φ is continuous on R, then φ ◦ f is measurable.

Proof (a) follows immediately from the fact that f−1(G) is open and thus measurable for every open set G by
continuity.

(b) Note that {φ ◦ f < a} = {x ∈ E | f(x) ∈ φ−1((−∞, a))}, and G := φ−1((−∞, a)) is open by the continuity
of φ, then {φ ◦ f < a} = f−1(G) is measurable by Proposition 7.8. ■
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Proposition 7.10

♠

Suppose {fk} is a sequence of measurable functions f defined on E, then supk fk, infk fk, lim supk fk, and
lim infk fk are all measurable functions.

Proof Note that {supn fk > a} =
⋃

n{fn > a}, so sup fk is measurable, and similarly inf fk is measurable. The
result holds for lim sup since lim supk→∞ fk(x) = infn{supk≥n fn}, and it holds for lim inf wlog. ■

Corollary 7.3

♡Suppose {fk} is a sequence of measurable functions, and f(x) = limk→∞ fk(x), then f(x) is measurable.

Proposition 7.11

♠Suppose f, g are finite-valued measurable functions, then f + g and fg are measurable.

Proof Note that {f + g > a} = {f > a− g} =
⋃

q∈Q{f > q > a− g}, and {f > q > a− g} = {f > q} ∩ {g >
a− q} is measurable, so {f + g > a} is measurable, followed by f + g is measurable.

Notice that fg = 1
4 [(f + g)2 + (f − g)2], and f + g, f − g are measurable thus (f + g)2, (f − g)2 are measurable,

then fg is measurable. ■

Definition 7.8 (Almost Everywhere)

♣

A property is said to hold almost everywhere in E (abbreviated as a.e.) if it holds in E except for a subset of
E with zero measure.

Proposition 7.12

♠If f is measurable, f = g a.e., then g is measurable and m({g < a}) = m({f < a}) for all a ∈ R.

7.6.2 Approximate Measurable Functions by Simple Functions

Definition 7.9 (Characteristic Function, Simple Function)

♣

The characteristic function (indicator function) of a set A is defined as χA(x) = 1 if x ∈ A and otherwise
χA(x) = 0.

A simple function is a function of the form f(x) =
∑N

k=1 akχEk
where ak ∈ R andEk is measurable of finite

measure for all k.

Remark Without loss of generality, we may assume ak’s are distinct and Ek’s are disjoint in a simple function.
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Proposition 7.13

♠

(a) Suppose f is a non-negative measurable function, then there exits an increasing sequence of non-negative
simple functions fk converge to f pointwise.

(b) Suppose f is a measurable function, then there exists an increasing sequence of simple functions fk
such that |fk(x)| ≤ |fk+1(x)| and fk converge to f pointwise.

Proof (a) Suppose f is a non-negative measurable function; for each k ∈ N, define

fk(x) =


0 if |x| > k

k if f(x) ≥ k

j − 1

2k
if f(x) ∈

[
j − 1

2k
,
j

2k

)
for j ∈ {1, · · · , k · 2k}.

Each fk(x) is simple because fk = kχ{f>k} +
∑k·2k

j=1

(
j−1
2k

)
χEj,k

, where each Ej,k = [(j − 1)/2k, j/2k) is
measurable with finite measure.

fk is clearly nonnegative.

To prove fk(x) ≤ fk+1(x) is increase, consider the following three cases:

(i) If |x| > k, fk+1(x) ≥ 0 = fk(x);

(ii) If f(x) ≥ k, assume f(x) ∈
[

j−1
2k+1 ,

j
2k+1

)
, then fk+1(x) ≥ min(k + 1, j−1

2k+1 ) ≥ k = fk(x);

(iii) If f(x) < k, assume f(x) ∈
[
j−1
2k
, j
2k

)
, then fk+1(x) ≥ 2j−2

2k+1 = j−1
2k

= fk(x).

Lastly, we want to prove fk → f pointwise. If f(x) = +∞, then for k ≥ x, fk(x) = k, so fk(x) ↗ +∞.
Suppose f(x) < +∞, let ε > 0 be given. There exists N such that 1/2N < ε, then for k ≥ max(f(x), N),
f(x)− fk(x) ≤ 1/2k < ε, so limk→∞ fk(x) = f(x).

Hence there exists an increasing sequence of nonnegative simple functions that converge to f .

(b) Suppose f is a measurable function, let f+ = max(f, 0) and f− = −min(f, 0). By part (a), there exists
sequences of simple functions gk → f+ and hk → f−. Let fk = gk − hk. |fk(x)| ≤ |fk+1(x)| because
|fk| = gk(x) + hk(x) ≤ gk+1(x) + hk+1(x) = |fk+1(x)| since either gk(x) or hk(x) will be zero for every x. In
addition, limk→∞ fk(x) = limk→∞[g(x)− h(x)] = f+(x)− f−(x) = f(x). Hence fk converges to f . ■
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7.7 Littlewood’s Three Principles of Real Analysis

Theorem 7.4 (Littlewood’s Three Principles of Real Analysis)

♡

(a) Every (measurable) set is nearly a finite union of cubes. [Proposition 7.14]

(b) Every (measurable) function is nearly continuous. [Lusin’s Theorem, 7.15]

(c) Every convergent sequence (convergent almost everywhere) of function is nearly uniformly convergent.
[Egorov’s Theorem, 7.16]

Note that “nearly” means the condition holds for E \N where N is a set with small measure.

Proposition 7.14

♠

Ifm(E) is finite, then there exists a finite union F =
⋃N

j=1Qj of closed cubes such thatm(E△F ) ≤ ε (where
E△F := (E \ F ) ∪ (F \ E) is the symmetric difference).

Proof Suppose E is measurable with finite measure. Choose {Qj} such that
∑∞

j=1m(Qj) ≤ m(E) + ε/2. Since⋃n
j=1Qj ↗ E, there exists N s.t.

∑∞
j=N+1m(Qj) < ε/2. Define F =

⋃N
j=1Qj , then

m(E△F ) = m(E \ F ) +m(F \ E) ≤ m

( ∞⋃
j=N+1

Qj

)
+

( ∞∑
j=1

m(Qj)−m(E)

)
≤ ε

2
+
ε

2
= ε.

Proposition 7.15 (Egorov’s Theorem)

♠

Suppose {fk} is a sequence of measurable functions that converge (a.e.) to a finite-valued function f on a
measurable set E of finite measure. Then for all η > 0, there exists closed F ⊃ E such that m(E \ F ) < η

and fk → f uniformly on F .

Lemma: Under the same hypothesis, for all ε > 0 and η > 0, there exists a closed set F ⊃ E and N ∈ N such that
m(E \ F ) < η and |f(x)− fk(x)| < ε for all x ∈ F and k ≥ N .

Proof : Define En =
⋂∞

k=n{f(x) − ε < fk < f(x) + ε}, then En is measurable. Note that En ↗ E, so
m(E) = limn→∞m(En), followed by there exists N such that m(E \ EN ) < η/2. We may choose a closed set
F ⊂ EN such thatm(EN \F ) < η/2. Therefore,m(E \F ) < η and |f(x)− fk(x)| < ε for all x ∈ F and k ≥ N .

Proof For all n ∈ N+, there exists a closed set Fn such that m(E \Fn) < η/2n such that |f(x)− fk(x)| < 1/n on
Fn for k ≥ Nn. Put F =

⋂∞
n=1 Fn, then F is closed and m(E \F ) < η. For all ε > 0, there exists N s.t. 1/N < ε,

so |f(x)− fk(x)| < 1/N < ε on F ⊂ FN for n ≥ NN . Therefore, fk → f uniformly on F . ■
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Proposition 7.16 (Lusin’s Theorem)

♠

Let f be a finite-valued measurable function defined on a measurable set E, then for all ε > 0, there is a
closed set F ⊂ E such that m(E \ F ) < ε, and f |F is continuous.

Lemma: A simple measurable function f defined on E satisfies: for all ε > 0, there is a closed set F ⊂ E such that
m(E \ F ) < ε and f |F is continuous.

Proof : Suppose f =
∑N

k=1 akχEk
. We may choose a closed set Fk ⊂ Ek s.t. m(Ek \ Fk) < 2−kε for each k, and

let F =
⊔N

k=1 Fk. Then m(E \ F ) =
∑

km(Ek \ Fk) < ε. It suffices to prove f |F is continuous: note that the
Fkfor all {xi} ⊂ F such that xi → x ∈ FK , there existsN such that xi ∈ FK for all i ≥ N since {Fk} have positive
distance pairwise, so f(xi) → aK = f(x).

Proof There exists a sequence of simple functions fk converges to f pointwise. Suppose m(E) < +∞. By the
above lemma, for each k, there is a closed set Fk such that fk|Fk

is continuous and m(E \ Fk) < 2−(k+1)ε. Then
m(E \

⋂
Fk) ≤

∑
m(E \ Fk) ≤ ε/2, and fk|⋂Fk

is continuous for all k. By Egorov’s Theorem, there is a closed
set F ′ such that fk → f uniformly on F ′ and m(E \ F ′) < ε/2. Let F := F ′ ∩

⋂∞
k=1 Fk. Then F is closed,

m(E \ F ) ≤ m(E \ F ′) +m(E \
⋂
Fk) = ε. In addition, since fk|F is continuous for all k and fk → f converges

uniformly, f |F is continuous.

On the other hand, suppose m(E) = +∞. Let Ek = E ∩ {x | k ≤ |x| < k + 1}, and choose a closed set Fk ⊂ Ek

s.t.fk|Fk
is continuous and m(Ek \ Fk) < 2−kε for all k. Let F =

⋃∞
k=1 Fk, then m(E \ F ) < ε. Note that F is

closed (by proving every point in F c is open since Fk’s are closed sets with positive distance pairwise), and f |F is
continuous (since fk|Fk

is continuous and Fk’s have positive distance pairwise). Hence the statement holds even if
m(E) = +∞. ■
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Chapter 8 Lebesgue Integration Theory

Introduction

h

h

8.1 The Lebesgue Integral

We are going to define integration progressively on (i) simple function, (ii) bounded functions supported on a set of
finite measure, (iii) non-negative functions, and then (iv) integrable functions (the general case).

8.1.1 Stage One: Simple Functions

Suppose φ is a simple function with canonical form φ(x) =
∑N

k=1 akχEk
where ak’s are distinct and nonzero, and

Fk’s are disjoint. Then we define the Lebesgue integral of φ by∫
φ(x) dx :=

N∑
j=1

ajm(Ej).

If E is measurable with finite measure, then we define the integral on E by
∫
E φ =

∫
φχE .

Property

(a) Independence of the representation: Ifφ =
∑N

k=1 akχEk
is any representation ofφ, then

∫
φ =

∑N
j=1 ajm(Ej).

(b) Linearity: If φ and ψ are simple and a, b ∈ R, then
∫
(aφ+ bψ) = a

∫
φ+ b

∫
ψ.

(c) Additivity: If E and F are disjoint subsets of Rd with finite measure, then
∫
E∪F φ =

∫
E φ+

∫
F φ.

(d) Monotonicity: If φ ≤ ψ are simple, then inf φ ≤
∫
ψ.

(e) Triangle inequality: If φ is a simple function, then so is |φ|, and
∣∣∫ φ∣∣ ≤ ∫ |φ|.

8.1.2 Stage Two: Bounded Functions Supported on a Set of Finite Measure

Definition 8.1 (Support)

♣

The support of a measurable function f is defined to be the set of all points where f does not vanish,
supp(f) = {x | f(x) ̸= 0}; f is said to be supported on E if supp(f) ⊂ E.

Suppose f is a bounded function supported on a set E with finite measure, there is a sequence of simple functions
{φk} such that φk → f . The goal is to define

∫
f := limk→∞ φk.



8.1 The Lebesgue Integral

Lemma 8.1 (Well-definedness of Lebesgue Integral)

♡

Let f be a bounded function supported on a set E of finite measure. Suppose {φk} is a sequence of simple
function bounded by M , support on E, and φk → f a.e.. Then

(a) The limit lim
∫
φk exists.

(b) If f = 0 a.e., lim
∫
φk = 0.

Proof (a) By Egorov’s Theorem, φk → f uniformly on some Fη ⊂ E s.t. m(E \ Fη) < η, then there exists N s.t.
|φk − f | < ε/2 for k ≥ N . Then for k, j ≥ N ,∫

|φk − φj | =
∫
Fη

|φk − φj |+
∫
E\Fε

|φk − φj | ≤ m(E)ε+ 2Mη.

By choosing appropriate ε and η, we can bound |φk − φj | by an arbitrarily small number. Therefore {
∫
φk} is

Cauchy thus converges.

(b) We may choose Fη such that m(E \Fη) < η, and φk|Fη < ε for sufficiently large k, applying the same argument
as above yields that

∫
|φk| ≤ m(E)ε+Mη, hence we see that lim

∫
φk = 0. ■

Remark Consequently, it is valid to define the Lebesgue integral
∫
f = limk→∞

∫
φk. The linearity, additivity

monotonicity, and triangle inequality holds.

Proposition 8.1

♠Let f be a nonnegative bounded function supported on a set of finite measure. If
∫
f = 0, then f = 0 a.e.

Proof For an arbitrary α,
∫
f ≥

∫
αχ{f≥α} = αm({f ≥ α}) by monotonicity, then m({f ≥ α}) ≤ 1

α

∫
f

[Chebyshev’s Inequality]. Since
∫
f = 0, m({f ≥ 1/k}) = 0 for all k, then {f > 0} =

⋃
k{f ≥ 1/k} has measure

0, followed by f = 0 a.e. ■

Theorem 8.1 (Bounded convergence theorem (B.C.T.))

♡

Suppose {fk} is a sequence of measurable bounded byM and supported on a setE of finite measure, fk → f

a.e. Then f is measurable, bounded and support on E a.e., and
∫
|fk − f | → 0. Consequently

∫
fk →

∫
f .

Proof Similar to Lemma 8.1, there is a Fη such thatm(E \Fη) < η and fk → f uniformly on Fη, then |fk−f | < ε

on Fη for sufficiently large k. Then
∫
|fk − f | ≤

∫
Fη

|fk − f | +
∫
E\Fη

|fk − f | ≤ m(E)ε + 2Mη, followed by
lim
∫
|fk − f | = 0, and

∫
fk →

∫
f follows immediately from Proposition 8.1. ■

Remark The bounded convergence theorem implies the validity of interchanging the integral and limit: lim
∫
fn =∫

lim fn.

Proposition 8.2

♠

Suppose f is Riemann integrable in [a, b]. Then f is Lebesgue measurable, and
∫
[a,b] f =

∫R
[a,b] f , namely two

integrals agree over [a, b].
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Proof For each lower Riemann sum, we may write it as an integral of simple functions

LΓ(f) =
N∑
k=1

inf
[xk−1,xk]

f(x) · (xk − xk−1) =

∫
[a,b]

φ where φ =
N∑
k=1

inf f(x) · χ[xk−1,xk].

By taking the refinement, we have a sequence φ1 ≤ φ2 ≤ · · · ≤ f . Analogously, we have a sequence ψ1 ≥
ψ2 ≥ · · · ≥ f corresponding to upper Riemann sums. The sequences {φk}, {ψk} are bounded. Then the Riemann
integrablity implies that lim

∫
φk = lim

∫
ψk. Let φ̃, ψ̃ be the limits of {φk}, {ψk}, resp (the limit exists because

they are monotonic and bounded). Note that
∫
(ψ̃−φ̃) = lim

∫
ψ− lim

∫
φ = 0, then f = φ̃ = ψ̃ a.e. by Proposition

8.1. Hence
∫
[a,b] f =

∫
[a,b] φ̃ =

∫R
[a,b] f . ■

8.1.3 Stage Three: Nonnegative Measurable Functions

Definition 8.2 (Lebesgue Integral)

♣

Let f ≥ 0 be a measurable function. Define the (extended) Lebesgue integral
∫
f(x) dx := sup

∫
g(x) dx

where the supremum is taken over all measurable functions g such that 0 ≤ g ≤ f , and where g is bounded
and supported on a set of finite measure. We say f is Lebesgue integrable if

∫
f(x) dx < +∞.

Proposition 8.3

♠

The integral of non-negative measurable functions enjoys the following properties:

(a) Linearity: If a, b ≥ 0, f, g are nonnegative measurable functions, then
∫
(af + bg) = a

∫
f + b

∫
g.

(b) Additivity: If E and F are disjoint subsets of Rd, and f ≥ 0, then
∫
E⊔F =

∫
E f +

∫
F f .

(c) Monotonicity: If 0 ≤ f ≤ g, then
∫
f ≤

∫
g.

(d) If h is integrable, and 0 ≤ f ≤ h, then f is integrable.

(e) If f is integrable, then f < +∞ a.e.

(f) If
∫
f = 0, then f = 0 a.e.

Example 8.1 The analogy of bounded convergence theorem does not necessarily hold, i.e. fk → f a.e. ̸⇒
∫
fk →∫

f . Consider the sequence of functions
fk = nχ(0,1/k).

Note that fk → f := 0, yet
∫
fk = 1 for all k, it follows that

∫
f = 0 ̸= 1 = lim

∫
fk.

Lemma 8.2 (Fatou)

♡

Suppose {fn} is a sequence of measurable functions with fn ≥ 0. If limn→∞ fn(x) = f(x) for a.e. x, then∫
f ≤ lim infn→∞

∫
fn.

Proof Choose an arbitrary g for which 0 ≤ g ≤ f are bounded function supported on a finite measure set. Let

72



8.1 The Lebesgue Integral

gk := min{g, fk} ≤ g, then note that gk → g a.e. By the bounded convergence theorem (8.1),
∫
g = lim

∫
gk, then

we have
∫
g = lim

∫
gk ≤ lim inf

∫
fk since gk ≤ fk, hence

∫
f = sup

∫
g ≤ lim inf

∫
fk

Corollary 8.1

♡

Suppose f is a non-negative measurable function, and {fn} a sequence of non-negative measurable functions
with fn(x) ≤ f(x) and fn(x) → f(x) for almost every x. Then limn→∞

∫
fn =

∫
f .

Proof Since fn(x) ≤ f(x), we have
∫
fn ≤

∫
f , it follows that lim sup

∫
fn ≤

∫
f . Combined with Fatou (Lemma

8.2), we have
∫
f = lim

∫
fn. ■

Corollary 8.2 (Monotone convergence theorem (M.C.T))

♡

(a) Suppose {fn} is a sequence of non-negative measurable functions with fn ↗ f . Then limn→∞
∫
fn =∫

f .

(b) Consider the series
∑

k ak(x) where ak ≥ 0 is measurable for all k, then
∫ ∑

k ak(x) dx =∑
k

∫
ak(x) dx. Moreover, if

∑∫
ak is finite, the series

∑
ak(x) is convergent for a.e. x.

Proof (a) follows immediately from Corollary 8.1.

(b) The first statement follows by taking fj =
∑j

k=1 ak(x) and note that fj ↗
∑

k ak. The second statement follows
from Proposition 8.3 (e). ■

8.1.4 Stage Four: General Case

Definition 8.3 (Lebesgue Integral)

♣

Let f be a real-valued measurable function on Rd, we say that f is Lebesgue integrable if |f | is integrable as
a nonnegative function.

If f is Lebesgue integrable, let f+(x) = max(f, 0) and f−(x) = max(−f, 0), and define the Lebesgue
integral of f by

∫
f =

∫
f+ −

∫
f−.

Property The integral of Lebesgue integrable functions is linear, additive, monotonic, and satisfies the triangle
inequality.

Proposition 8.4

♠

Suppose f is integrable on Rd, then for every ε > 0:

(a) There exists a set of finite measure B such that
∫
Bc |f | < ε.

(b) There is a δ > 0 such that
∫
E |f | < ε whenever m(E) < δ, i.e., the absolute continuity holds.
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8.1 The Lebesgue Integral

Remark (a) implies that integrable function vanish near ∞ (however, is is not true that lim|x|→∞ f(x) = 0).

(b) implies that the map M → R+ defined by E 7→
∫
E |f | is (absolute) continuous.

Proof (a) WLOG, assume f ≥ 0. Let Bk be the ball centered at the origin with radius k, and put fk = fχBk
↗ f .

By monotone convergence theorem (Corollary 8.2), limk

∫
fk =

∫
f . Then there is N such that |

∫
f −

∫
fk| < ε

for k ≥ N , followed by BN is the desired set.

(b) Let Ek = {f ≤ k} and fk = fχEk
, then fk ↗ f . Then for sufficiently large k, |

∫
f −

∫
fk| < ε/2. Choose

δ = ε/2k, then for E such that m(E) < δ,∫
E
f ≤

∫
E
fk +

∫
E
(f − fk) ≤ m(E)k +

ε

2
< ε. ■

Theorem 8.2 (Dominated convergence theorem (D.C.T))

♡

Suppose {fn} is a sequence of measurable functions such that fn(x) → f(x) a.e. x. If |fn(x)| ≤ g(x) a.e.,
where g is integrable, then lim

∫
fk =

∫
f .

Remark In fact, lim
∫
|fk − f | → 0.

Proof Note that −g ≤ fk ≤ g for all k, then each fk and f are integrable. By Fatou (Lemma 8.2), since
g ± fk, g ± f ≥ 0 a.e. and g ± fk → g ± f ,∫

(g + f) ≤ lim inf

∫
(g + fk) =

∫
g + lim inf

∫
fk =⇒

∫
f ≤ lim inf

∫
fk,∫

(g − f) ≤ lim inf

∫
(g − fk) =

∫
g − lim sup

∫
fk =⇒

∫
f ≥ lim sup

∫
fk.

Combining both inequalities gives lim
∫
fk =

∫
f . ■

8.1.5 Complex-valued Functions

A complex-valued function f : Rd → Cmay be written as f(x) = u(x)+iv(x)where u, v are the real and imaginary
parts of f , resp. The complex-valued function f is Lebesgue integrable if |f | :=

√
|u|2 + |v|2 is integrable, if and

only if u, v are integrable. In such case, we define its Lebesgue integral as∫
f(x) dx =

∫
u(x) dx+ i

∫
v(x) dx.

Note that |(f + g)(x)| ≤ |f(x)|+ |g(x)|, the monotonicity yields that f + g is integrable if f, g are integrable; and
similarly af is integrable if f is integrable. Therefore, the integral is linear over C.
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8.2 The Space L1 of Integrable Functions

8.2.1 L1 Space

Definition 8.4 (Norm, L1 Space)

♣

For any integrable function f on Rd (over C) we define the norm of f , ∥f∥L1 =
∫
Rd |f(x)| dx. The space

L1(Rd) is the space of equivalence classes of integrable functions, where the define f ∼ g if f = g a.e.

Property L1(Rd) inherits the property of vector spaces: suppose f, g are two functions in L1(Rd),

(i) ∥αf∥L1(Rd) = |a|∥f∥L1(Rd) for all a ∈ C.

(ii) ∥f + g∥L1(Rd) ≤ ∥f∥L1(Rd) + ∥g∥L1(Rd).

(iii) ∥f∥L1(Rd) = 0 if and only if f = 0 a.e.

(iv) d(f, g) = ∥f − g∥L1(Rd) defines a metric on L1(Rd).

Theorem 8.3 (Riesz-Fischer)

♡The vector space L1 is complete in its metric.

Proof Suppose {fn} is Cauchy in L1(Rd). For each k, we may choose fnk
such that nk > nk−1 and ∥fnk

− fm∥ <
2−k form ≥ nk; then the subsequence {fnk

} satisfies that ∥fnk
− fnk+1∥ < 2−k. Define f = fn1 +

∑∞
k=1(fnk+1

−
fnk

) and g = |fn1 |+
∑∞

k=1 |fnk+1
− fnk

|.

By M.C.T. (monotone convergence theorem),
∫
g =

∫
|fk1 |+

∑∞
j=1 |fkj+1

− fkj | ≤
∫
|fn1 |+

∑∞
k=1 2

−k <∞, so
g is integrable. By D.C.T. (dominated convergence theorem), since |fnk

| ≤ g and the partial sum of f is simply fnk
,

i.e., fnk
↗ f , then ∥fnk

− f∥ =
∫
|fnk

− f | → 0, namely fnk
converges to f both pointwise a.e. and in L1. Finally,

{fk} → f in L1 since {fk} is Cauchy and contains a convergence subsequence. ■

Remark Summary: We first find a subsequence {fnk
} whose norm stabilizes rapidly, then apply D.C.T. to prove the

convergence of {fnk
} → f in L1, finally we show that containing a convergent subsequence implies the convergence

of {fn}.

Corollary 8.3

♡If {fn}∞n=1 converges to f in L1, then there exists a subsequence {fnk
} such that fnk

→ f(x) a.e. x.

Remark Note that {fn} converges in L1 does not implies that fn → f a.e., indeed, fn may converge nowhere to f .

Proposition 8.5

The following families of functions are dense in L1(Rd):

(a) simple functions
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♠

(b) step functions

(c) the continuous functions of compact support (denoted by Cc(Rd))

Proof It suffices to consider nonnegative real-valued functions f .

(a) By Proposition (7.13), there exists a sequence of nonnegative simple functionsφk ↗ f . Note that lim
∫
φk =

∫
f

by M.C.T, then ∥f − φk∥ =
∫
(f − φk) → 0.

(b) It suffices to approximate χE by step functions. By Littlewood’s first principle, there exists rectangles {Qj}j
such that m(E△Q) < ε where Q :=

⋃
Qj . Then ∥χQ − χE∥ ≤ m(E△Q) < ε.

(c) It suffices to approximate χQ by functions in Cc(Rd). Let Q′ ⊇ Q be a rectangle such that m(Q′ \ Q) < ε.
Define f such that f |Q = 1, f |Q′c = 0, and f |Q′\Q is linear, then f is continuous and supported on Q′. Note that
∥f − χQ∥ = ∥f |Q′\Q∥ ≤ m(Q′ \Q) < ε. ■

8.2.2 Invariance Properties, Translation and Continuity

Proposition 8.6 (Invariance Properties)

♠

(a) Translation Invariance: For all f ∈ L1(Rd),
∫
f(x− h) dx =

∫
f(x) dx.

(b) Dilation Invariance: δd
∫
Rd f(δx) dx =

∫
Rd f(x) dx for δ > 0.

(c) Reflection Invariance:
∫
f(−x) dx =

∫
f(x) dx

Proof By Proposition 8.5, the family of simple functions are dense, it suffices to show the translation invariance for
χE :

∫
χE(x− h) dx =

∫
x−h∈E dx =

∫
x∈E+h dx = m(E + h) = m(E) =

∫
χE dx. The proof for (b) and (c) are

analogous. ■

In particular, suppose f, g ∈ L1(Rd) such that y 7→ f(x − y)g(y) is integrable for some fixed x. In such case,∫
f(x− y)g(y) dx =

∫
f(y)g(x− y) dx.

Definition 8.5 (Convolution)

♣Suppose f, g ∈ L1(Rd), we define the convolution for f, g by (f ∗ g)(x) :=
∫
f(y)g(x− y) dy.

Proposition 8.7

♠Let fh(x) := f(x− h). Suppose f ∈ L1(Rd), then ∥fh − f∥L1 → 0 as h→ 0.

Proof Let g ∈ Cc(Rd) (continuous function of compact support), clearly ∥gh − g∥ → 0 as |h| → 0. For every
f ∈ L1(Rd), ∥g − f∥ can be bounded arbitrarily small for some g ∈ Cc(Rn) by Proposition 8.5. Then the triangle
inequality

∥fh − f∥ ≤ ∥fh − gh∥+ ∥gh − g∥+ ∥g − f∥ = 2∥g − f∥+ ∥gh − g∥
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implies that ∥fh − f∥ → 0 as |h| → 0. ■
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8.3 Fubini’s Theorem

8.3.1 Fubini’s Theorem and Tonelli’s Theorem

For a set E ⊆ Rm ×Rn, we define its slices by Ey = {x ∈ Rm | (x, y) ∈ E}. Suppose f(x, y) is a function defined
on Rm × Rn, we then define its slices corresponding to y ∈ Rn by fx(y) : x 7→ f(x, y).

Example 8.2 It is not necessarily true that E being measurable in Rm+n implies that Ex if measurable for all
x ∈ Rm. Consider the Vitali set V and let E = V ×{0}. E is clearly measurable in R2 because E is the subset of a
null set R× {0}, but the slice Ey with y = 0 is not measurable.

Note that the above statement holds for “almost every” x ∈ Rm. This is an immediately corollary of Fubini’s
Theorem by taking the function f = χE .

Theorem 8.4 (Fubini’s Theorem)

♡

Suppose f(x, y) is integrable on Rm+n = Rm × Rn, then for almost every x ∈ Rm:

(a) The slice fx : y 7→ f(x, y) is (measurable and) integrable on Rn for each x ∈ Rm fixed.

(b) The function defined by
∫
Rn fx(y) dy is (measurable and) integrable on Rm.

Moreover,

(c)
∫
Rm+n f(x, y) dx dy =

∫
Rm

(∫
Rn f(x, y) dy

)
dx.

Proof Let F denotes the family of functions in L1(Rm+n) who satisfy the above conditions.

Step 1: (F is closed under linear combination): Suppose {fk}Nk=1 is a finite collection of functions in F , then∑N
k=1 akfk ∈ F for ak ∈ R.

Proof : The above three conditions follow from the linearity of Lebesgue integral.

Step 2: (F is closed under (monotonic) limit) Suppose {fk}k is a sequence of functions in F such that fk ↗ f (or
respectively fk ↘ f ) where f ∈ L1(Rm+n), then f ∈ F .

Proof : (i) For a.e. x (on where all fk satisfy the above conditions), note that fx : y 7→ f(x, y) = supk fk(x, y) and
fk(x, y) is measurable, then fx measurable. Since fk(x, ·) ↗ f(x, ·), by M.C.T. (NB: the nonnegative condition can
be easily satisfied by subtracting each function by f1(x, y)), we see that hk(x) :=

∫
fk(x, y) dy ↗

∫
f(x, y) dy =:

h(x). We will prove the integrability after part (iii).

(ii) For a.e. x, since x 7→ h(x) = suphk(x) and hk(x) is measurable, then x 7→ h(x) is measurable.

(iii) For a.e. x, apply M.C.T. (to hk − h1 as above), we have
∫
hk(x) dx ↗

∫
h(x) dx. It suffices to show

that
∫
hk(x) ↗

∫∫
f(x, y) dx dy. Apply the third condition for fk and M.C.T again, we see that

∫
hk(x) dx =∫∫

fk(x, y) dx dy ↗
∫∫

f(x, y) dx dy.

Note that
∫
h(x) dx =

∫∫
f(x, y) dx dy < +∞, this proves the integrability of h(x) =

∫
fx(y) dy in (ii); indeed,∫

fx(y) dy = h(x) < +∞ for a.e. x, proving the integrability of fx in (i).

Remark Step reduced the proof to 0 ≤ f ∈ L1(Rm+n). Step 2 and the fact that any f ≥ 0 can be approximated
by {φk} simple functions s.t. φk ↗ f a.e. implies that if we know φk ∈ F and f ∈ L1(Rm+n), then f ∈ F .
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Therefore, we may reduce the proof to characteristic functions χE whereE is measurable with finite measure, which
can be further deduced to Gδ set by Proposition 7.6.

Step 3: Let E be a Gδ set in Rm+n with finite measure, then χE ∈ F .

Proof : It suffices to show the statement for open set G of finite measure, by step 2. We can write G as G =
⊔
Qj

where Qj’s are almost disjoint cubes, thus G = (
⊔
Q◦

j ) ⊔ (
⊔
Fj) where Ej ⊆ ∂Qj .

(a) In order to show χ⊔
Q◦

j
∈ F , by step 1 and 2, it suffices to show χQ◦

j
∈ F . Suppose χI1×I2 ∈ F where I1 and

I2 are open cubes in Rm and Rn, resp. (i) For x ∈ Rm, if x ∈ I1, (I1 × I2)x = I2 is finite-measurable in Rn;
on the other hand if x /∈ I1, (I1 × I2)x = ∅. (ii) x 7→ mRn((I1 × I2)x) is v(I2)χI1 , thus it is measurable. (iii)∫∫

Rm+n χI1×I2 = m(I1 × I2) = |I1 × I2| =
∫
Rn m(I1)χI2 =

∫
Rm(

∫
Rn χ(I1×I2)xdy)dx.

(b) We want to show that E ⊆ ∂Q where Q is a cube in Rm+n, then χE ∈ F . It is not hard to show this statement
since E is a hyperplane in Rm+n

Hence G ∈ F and thus we proved the statement.

Step 4: (null set belongs to F) Let N be a null set in Rm+n, then χN ∈ F . In particular, the slice Nx is a null set
for a.e. x ∈ Rn.

Proof : There exists a Gδ set H s.t. N ⊆ H and mRm+n(H) = 0. Then Nx ⊆ Hx by definition. By step 3,
mRm+n(H) =

∫
Rn mRn(Hx) dx implies mRn(Hx) = 0 for a.e. x ∈ Rm, therefore mRn(Nx) = 0 a.e.. Therefore,

N ∈ F .

Step 5: χE ∈ F if E is finite-measurable in Rm+n.

Proof : The statement follows immediately from Proposition 7.6, E differs from a Gδ set by a null set.

Step 6: Every function f ∈ L1(Rm+n) belongs to F , namely Fubini’s Theorem holds.

Proof : For all f ∈ L1(Rm+n), φk ↗ f for some increasing sequence of simple functions {φk}, and φk ∈ F by
step 6 and step 1, then f ∈ F by step 2. ■

Remark The converse does not necessarily hold, i.e., it is not the case that f measurable in Rm+n and∫
Rm(

∫
Rn fx(y) dy) dx being finite implies that f ∈ L1(Rm+n).

Example 8.3 Consider the union of cubesQj ⊆ R2 aligning in the diagonal with side length 2−j . For each cube, we
subdivide it into 4 sub-cubes, and assign f(x) = 1/|Qj | for upper left and lower right sub-cubes and f(x) = −1/|Qj |
for the other two. It is not hard to show that the slices are zero everywhere. However,

∫∫
R2 f is not defined because∫∫

R2 |f | =
∑

j m(Qj) · (1/|Qj |) = +∞.

Theorem 8.5 (Tonelli’s Theorem)

♡

Let f(x, y) be a nonnegative measurable function in Rm+n. Then

(i) for a.e. x ∈ Rm, the slice fx : y 7→ f(x, y) is measurable in Rn;

(ii) the function x 7→
∫
Rn fx dy is measurable in Rm (in the extended real number system); and moreover,

(iii)
∫
Rm+n f(x, y) dx dy =

∫
Rm

(∫
Rn f(x, y) dy

)
dx (in the extended real number system).
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Remark Fubini-Tonelli’s Theorem: we commonly apply Tornell’s theorem to |f | to check f ∈ L1(Rm+n) ⇔ |f | ∈
L1(Rm+n), then we may compute

∫∫
Rm+n f(x, y) dy dx using Fubini’s Theorem.

Proof Cosntruct fk ∈ L1(Rm+n) s.t. fk ↗ f by defining

fk(x, y) :=

{
0 if |(x, y)| > k

min{f(x, y), k} if |(x, y)| ≤ k

Since fk is nonnegative, bounded and supported on a set of finite measure, fk is integrable. Moreover, fk(x, y) ↗
f(x, y) for all (x, y), and fk ∈ F for all k. M.C.T. implies that (i)

∫∫
Rm+n fk ↗

∫∫
Rm+n f . For a.e. x, (fk)x is

measurable and integrable, then (fk)x ↗ fx for a.e. x, so hk(x) :=
∫
Rn fk(x, y) dy ↗

∫
Rn f(x, y) dy =: h(x),

and thus (ii)
∫
Rn hk(x) dx =

∫
Rn h(x) dx. Note that

∫∫
Rm+n fk =

∫
Rn hk(x) dx by Fubini’s Theorem, hence∫

Rm+n f(x, y) dx dy =
∫
Rm

(∫
Rn f(x, y) dy

)
dx follows from (i), (ii), and the uniqueness of limit. ■

8.3.2 Application of Fubini’s Theorem

Proposition 8.8

♠

LetE1, E2 be measurable sets inRm,Rn, resp. ThenE = E1×E2 is measurable inRm+n withmRm+n(E) =

mRm(E1)mRn(E2), with the understanding that if one of the sets has measure 0, then m(E) = 0.

Proof If E is measurable in Rm+n, apply Tonelli’s theorem to χE , we see that

mRm+n(E) =

∫
Rm

mRn(Ex) dx

∫
E1

mRn(E2) dx = mRm(E1)mRn(E2).

It suffices to show E is measurable. Note that there is Gδ set H1 s.t. H1 ⊇ E1 and mRm(H1 \ E1) = 0, and
analogously there is H2 corresponding to E2. E ⊆ H1 ×H2 is a Gδ set in Rm+n, and

(H1 ×H2) \ E = (H1 ×H2) \ (E1 × E2) ⊆ ((H1 \ E1)×H2) ∪ (H1 × (H2 \ E2)) .

Lemma 1: m∗(A1 × A2) ≤ m∗(A1)×m∗(A2) where A1 ⊆ Rm and A2 ⊆ Rn, with the understanding that if one
of the sets has exterior measure 0, then m∗(A1 ×A2) = 0..

Proof : Let ε > 0. By the definition of outer measure, there exists {Q1
j}, {Q2

j} covering of A1, A2 by cubes s.t.∑
j |Q1

j | ≤ m∗(A1) + ε, and similarly for A2. Then A1 ×A2 ⊆
(⋃

j Q
1
j

)
×
(⋃

j Q
2
j

)
=
⋃

i,j(Q
1
i ×Q2

j ), followed
by

m∗(A1 ×A2) ≤
∑
i,j

|Q1
i ×Q2

j | ≤
∑
j

|Q1
j | ·
∑
j

|Q2
j | ≤ (m∗(A) + ε)(m∗(B) + ε).

Ifm∗(A1),m∗(A2) < +∞, pass ε→ 0, we see thatm∗(A1×A2) ≤ (m∗(A)+ε)(m∗(B)+ε). On the other hand, if
m∗(A1) = 0 andm∗(A2) = +∞, thenAj

2 := A2∩{y ∈ Rn | |y| ≤ j} ↗ A2, we see thatA1×A2 =
⋃

j(A1×Aj
2)

is a null set. ■

Apply the lemma to the above equality, we see that (H1 \ E1) × H2 and H1 × (H2 \ E2) are null sets, so E is
measurable since it differs from a Gδ set by a null set. ■
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Proposition 8.9

♠

Let f be a nonnegative function on Rn and A := {(x, y) ∈ Rn × R | 0 ≤ y ≤ f(x)}. Then

(i) f is measurable on Rn if and only if A is measurable in Rn+1.

(ii) If the condition in (i) holds,
∫
Rn f(x) dx = mRn+1(A).

Remark The Riemann integral of f ≥ 0 can be viewed as area below the graph of f , we generalize it to Lebesgue
integral to be the measure below the graph.
Proof (ii) Apply Tonelli’s theorem to χA,

mRn+1(A) =

∫
Rn

mR(Ax) dx =

∫
Rn

f(x) dx,

where the second equality holds by the fact that Ax := {y ∈ R | (x, y) ∈ A} = [0, f(x)]. ■
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Chapter 9 Lebesgue Differentiation Theory

9.1 Differentiation of the Integral

Theorem 9.1 (Lebesgue Differentiation Theorem (L.D.T.))

♡

If f ∈ L1(Rn), then

lim
Q→x

1

m(Q)

∫
Q
f = f(x) for a.e. x ∈ Rn,

where Q’s are cubes containing x passing to the limit m(Q) → 0.

Proof The desired statement holds for all g ∈ CC(Rn) (continuous function on compact support) because they are
uniformly continuous.

Let f ∈ L1(Rn) and ε > 0. There exists g ∈ CC(Rn) such that ∥f − g∥L1 < ε since CC(Rn) is dense. Note that
1

m(Q)

∫
Q f − f(x) = [ 1

m(Q)

∫
Q(f − g)] + [ 1

m(Q)

∫
Q g − g(x)] + [g(x)− f(x)], by taking the limit,

lim sup
Q→x

∣∣∣∣ 1

m(Q)

∫
Q
f − f(x)

∣∣∣∣ ≤ lim sup
Q→x

∣∣∣∣ 1

m(Q)

∫
Q
(f − g)

∣∣∣∣+ lim sup
Q→x

∣∣∣∣ 1

m(Q)

∫
Q
g − g(x)

∣∣∣∣︸ ︷︷ ︸
=0

+ |g(x)− f(x)| .

For any α > 0, define

Eα :=

{
x ∈ Rn : lim sup

Q→x

∣∣∣∣ 1

m(Q)

∫
Q
f − f(x)

∣∣∣∣ > 2α

}
,

it suffices to prove m(Eα) → 0 as α→ 0. Note that

Eα ⊆

{
x ∈ Rn : lim sup

Q→x

∣∣∣∣ 1

m(Q)

∫
Q
(f − g)

∣∣∣∣ > α

}
︸ ︷︷ ︸

Aα

∪

{
x ∈ Rn : |g(x)− f(x)| > α

}
︸ ︷︷ ︸

Bα

.

By Tchebychev’s inequality, m(Bα) ≤ 1
α

∫
|g(x) − f(x)| dx = ∥f − g∥/α < ε/α, thus m(Bα) = 0 as ε can be

arbitrarily small. We now consider the measure of Aα, let’s first define the maximal function.

Definition 9.1 (Hardy-Littlewood Maximal Function)

♣

Let h ∈ L1(Rn), we define its Hardy-Littlewood maximal function of h as

h∗(x) := sup
Q∋x

1

m(Q)

∫
Q
|h|.



9.1 Differentiation of the Integral

Lemma 9.1 (Elementary version of Vitali lemma)

♡

Suppose F = {Q1, · · · , QN} is a finite collection of cubes in Rd, then there exists a disjoint subcollection
{Qij}j of F s.t. m(

⋃N
i=1Qi) ≤ 3d

∑l
j=1m(Qij ).

Proof We claim that if two cubes Q,R intersect, where l(Q) ≤ l(R), then Q ⊆ 3R (where 3R is defined to be the
cube centered at the center ofR with triple side length). LetQi1 be the cube in F with largest side length, and define
F1 = {Qk ∈ F : Qk ∩Qi1 = ∅} to be the set of cubes which does not intersects Qi1 . We then recursively choose
Qij to be the largest cube in Fj−1 and define the corresponding Fj . Then we see {Qij} are pairwise disjoint and
covers all cubes in F , thus m(

⋃
iQi) ≤ m(

⋃
j 3Qij ) ≤ 3d

∑
j m(Qij ) as desired. ■

Lemma 9.2 (Hardy-Littlewood)

♡

Suppose h is integrable on Rd. Then

(a) h∗ is measurable.

(b) h∗ belongs to weak-L1(Rd): for some constant C, h∗ satisfies m({h∗ > α}) ≤ (C/α) · ∥h∥L1 for all
α > 0.

Proof (a) For any λ > 0. For x s.t. f∗(x) > λ, there exists Q ∋ x s.t. 1
m(Q)

∫
Q |f | > λ. Then for all y ∈ Q,

f∗(y) ≥ 1
m(Q)

∫
Q |f | > λ, i.e., Q ⊆ {f∗ > λ}, hence {f∗ > λ} is open thus f∗ is measurable.

(b) For each x ∈ {f∗ > α}, there is Qx ∋ x s.t. 1
m(Qx)

∫
Qx

|f | > α. Let K ⊆ {h∗ > α} be an arbitrary compact
subset, there exists {x1, · · · , xN} such that K ⊆

⋃N
i=1Q

◦
i ⊆

⋃N
i=1Qi where Qi := Qxi by the compactness.

Apply Lemma 9.1, there exists pairwise disjoint collection {Qij}j s.t. m(
⋃

iQi) ≤ 3d
∑

j m(Qij ), therefore
m(K) ≤ 3d

∑
j m(Qij ).

Recall that each Qx satisfies that m(Qx) <
1
α

∫
Qx

|f |, then m(Qij ) < (1/α) ·
∫
Qij

|f |, followed by
l∑

j=1

m(Qij ) ≤
1

α

∫
⊔l

j=1 Qij

|f | ≤ 1

α

∫
Rd

|f |.

Combining the above inequality m(K) ≤ 3d
∑

j m(Qij ), we see m(K) ≤ (3d/α) · ∥f∥L1 for any compact
K ⊆ {f∗ > α}, hence the desired statement holds. ■

Remark It is not necessary that f ∈ L1(Rd) implies f∗ ∈ L1(Rd). (Ex. 4)

Proof (cont. Theorem 9.1) By Lemma 9.2, we see that m(Aα) ≤ (C/α) · ∥f − g∥L1 < Cε/α, then m(Aα) = 0

since ε can be arbitrarily small. Therefore, m(E) ≤ m(Aα) +m(Bα) = 0, completing the proof. ■

Definition 9.2 (Locally integrable)

♣A measurable function f is locally integrable, denoted f ∈ Lloc(Rd), if f ∈ L1(B) for all balls B in Rd.
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9.1 Differentiation of the Integral

Remark

(a) L.D.T holds even if f ∈ Lloc(Rd): suppose f ∈ Lloc(Rd), then limQ→x
1

m(Q)

∫
Q f = f(x) for a.e. x.

(b) For any measurable E ⊆ Rd, χE ∈ Lloc(Rd). Apply L.D.T. to χE we obtain limQ→x
1

m(Q)

∫
Q χE = χE(x)

for a.e. x ∈ Rd. Therefore,

lim
Q→x

m(E ∩Q)

m(Q)
= lim

Q→x

1

m(Q)

∫
Q
χE =

{
1 for a.e. x ∈ E,

0 for a.e. x /∈ E,

and we refer to a point such that limQ→x
m(E∩Q)
m(Q) = 1 as Lebesgue density point of E.

(c) We have shown limQ→x
1

m(Q)

∫
Q(f − f(x)) dy = 0 for a.e. x. In fact, limQ→x

1
m(Q)

∫
Q |f(y)− f(x)| dy = 0

for a.e. x ∈ Rn; a point satisfies the above equality is called a Lebesgue point of f .

Corollary 9.1

♡

If f ∈ Lloc(Rd), then limQ→x
1

m(Q)

∫
Q |f(y)− f(x)| dy = 0 for a.e. x ∈ Rn. That is, almost every point is

a Lebesgue point.

Proof For each q ∈ Q, apply L.D.T. to |f(y)−q| gives that limQ→x
1

m(Q)

∫
Q |f(y)−q| = |f(x)−q| for x ∈ Rd\Zq,

where Zq is a null set; then the above equality holds for a.e. x (i.e., x /∈
⋃

q∈Q Zq). Let ε > 0 be given. For such
x ∈ Rd, there is q ∈ Q such that |f(x)− q| < ε, then

lim
Q→x

1

m(Q)

∫
Q
|f − f(x)| ≤ lim

Q→x

1

m(Q)

∫
Q
|f − q|+ |q − f(x)| < 2ε. ■
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9.2 Approximations to the Identity

9.2 Approximations to the Identity

Let k be a bounded integrable function in Rn s.t.
∫
k = 1. Let kδ(x) := 1

δnk(
x
δ ). We obtain the following

observations∫
Rn kδ(x) dx =

∫
Rn k(x) dx (analogous for |kδ(x)|) by the dilation invariance.

If k has compact support, denoted BR0 , then kδ is supported in BδR0 .

For any f ∈ L1(Rn), consider the convolution f ∗ kδ(x) :=
∫
f(y)δk(x − y) dy. Recall that ∥f ∗ kδ∥L1 ≤

∥f∥L1∥kδ∥L1 = ∥f∥L1∥k∥L1 .

Remark Under some additional assumptions on k, f ∗ kδ → f , this is known as the approximation to the identity.

Proposition 9.1

♠

Let k be a bounded integrable function in Rn s.t.
∫
k = 1. Suppose k has compact support, then f ∗ kδ(x) →

f(x) as δ → 0, for any x that is a Lebesgue point of f (in particular, for a.e. x).

Remark Approximation to the identity: the proposition asserts that the map f 7→ f ∗ kδ converges to the identity
map f 7→ f as δ → 0.

Proof Suppose |f(x)| is bounded by M , and supported on BR0 . Note that

f ∗ kδ(x)− f(x) =

∫
f(x− y)kδ(y) dy − f(x) =

∫
f(x− y)kδ(y) dy − f(x)

∫
kδ(y)dy

=

∫
[f(x− y)− f(x)] kδ(y) dy

(9.2.1)

Suppose x is a Lebesgue points, the above equality yields

|f ∗ kδ(x)− f(x)| ≤
∫
|y|≤δR0

|f(x− y)− f(x)||kδ(y)| dy ≤ M

δn

∫
|y|≤δR0

|f(x− y)− f(x)| dy

=
M

δn
w0(δR0)

n · 1

w0(δR0)n

∫
|z−x|≤δR0

|f(z)− f(x)|,

where w0(δR0)
n represents the volume of the ball BδR0 . The first part of the expression is equivalent to Mw0R

n
0 ,

which is a constant independent of δ, and the second part converges to 0 as δ → 0 by the definition of Lebesgue
point, hence we see f ∗ kδ(x)− f(x) → 0 as δ → 0. ■

Proposition 9.2

♠Let k be a bounded integrable function in Rn s.t.
∫
k = 1. Then f ∗ kδ(x) → f(x) in L1 as δ → 0.

Remark Since CV inL1, there is {δj} → 0+ s.t. f ∗kδ(x) → f(x) for a.e. x (this does not imply f ∗kδ(x) → f(x)

for a.e. x).

Proof Apply Equation (9.2.1), f ∗ kδ(x)− f(x) =
∫
[f(x− y)− f(x)]kδ(y) dy. Apply Tonelli’s theorem, we see

that
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9.2 Approximations to the Identity

∫
|f ∗ kδ(x)− f(x)| dx ≤

∫∫
|f(x− y)− f(x)| · |kδ(y)| dx dy =

∫
|kδ(y)| · a(y) dy,

where a(y) :=
∫
|f(x − y) − f(x)| dx, and it is clear that ∥a(y)∥L1 ≤ 2∥f∥L1 . Fix ε > 0, there is η > 0 s.t.

a(y) < ε for y < η by Proposition 8.7. Then∫
|kδ(y)| · a(y) dy ≤

∫
|y|<η

|kδ(y)| · a(y) dy +
∫
|y|>η

|kδ(y)| · a(y) dy

≤ ε

∫
|kδ(y)| dy + 2∥f∥L1

∫
|y|>η

|kδ(y)| dy = ε∥k∥L1 + 2∥f∥L1

∫
|y|>η

|kδ(y)| dy.

Note that
∫
|y|>η |kδ(y)| dy = δ−n

∫
|y|>η |k(y/δ)| dy =

∫
|z|>η/δ |k(z)| dz < ε for sufficiently small δ. Therefore,∫

|f ∗ kδ(x)− f(x)| dx ≤ ε∥k∥L1 + 2ε∥f∥L1 , it follows that f ∗ kδ → f(x) in L1. ■

Lemma 9.3

♡

Let f ∈ L1(Rn) and x be a Lebesgue point of f . Let

a(r) =
1

rn

∫
|y|<r

|f(x− y)− f(y)| dy.

Then a(r) → 0 as r → 0; and moreover, a(r) is bounded for all r > 0.

Proof The convergence follows immediately by the definition of Lebesgue point. Then there exists r0 > 0 s.t.
a(r) ≤ 1 whenever r < r0. For r ≥ r0,

a(r) ≤ 1

rn

∫
|y|<r

|f(x− y)| dy + 1

rn

∫
|y|<r

|f(x)| dy

≤ 1

rn0

∫
|f(x− y)| dy + 1

rn
· (wnr

n)|f(x)| = 1

rn0
∥f∥L1 + w|f(x)|,

so a(r) is bounded. ■

Proposition 9.3

♠

Let k be a bounded integrable function in Rn s.t.
∫
k = 1. Suppose k(x) ∈ O(1/|x|n+λ) for some λ > 0,

then f ∗ kδ(x) → f(x) as δ → 0.

Proof Similarly to previous two propositions,

|f ∗ kδ(x)− f(x)| ≤
∫

|f(x− y)− f(x)||kδ(y)| dy =

∫
|y|<δ︸ ︷︷ ︸
(1)

+

∫
|y|>δ︸ ︷︷ ︸
(2)

.

Let k be bounded by M , then

(1) =

∫
|y|<δ

|f(x− y)− f(x)| · 1

δn
|k(y/δ)| dy ≤ M

δn

∫
|y|<δ

|f(x− y)− f(x)| dy =Ma(δ).

We denote by
∫
(a) the integration on annulus 2kδ < |y| < 2k+1δ. For sufficiently small δ, k(y/δ) < c/|y/δ|n+λ,

then
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9.2 Approximations to the Identity

(2) =

∞∑
k=0

∫
2kδ<|y|<2k+1δ

|f(x− y)− f(x)||kδ(y)| dy ≤
∑
k

∫
(a)

|f(x− y)− f(x)| · 1

δn
· c

|y/δ|n+λ
dy

= cδλ
∑
k

∫
(a)

|f(x− y)− f(x)| · 1

|y|n+λ
dy ≤ cδλ

∑
k

1

(2kδ)n+λ

∫
(a)

|f(x− y)− f(x)| dy

≤ cδλ
∑
k

(2k+1δ)n

(2kδ)n+λ
· 1

(2k+1δ)n

∫
|y|<2k+1δ

|f(x− y)− f(x)| dy

= c2n
∑
k

2−kλa(2k+1δ).

Combining both parts and the fact that a(x) is bounded by some A, we see that

|f ∗ kδ(x)− f(x)| ≤ (1) + (2) ≤Ma(δ) + c2n
∑
k

2−kλa(2k+1δ).

For sufficiently large N , we have
∑

k≥N 2−kλ < ε; and for sufficiently small δ, we have a(δ) < ε, and a(2k+1δ) <

ε/
∑

k<N 2−kλ for k < N . Therefore,

|f ∗ kδ(x)− f(x)| ≤MA+
∑
k<N

2−kλa(2k+1δ) +
∑
k≥N

2−kλa(2k+1δ)

≤Mε+
∑
k<N

2−kλ ε∑
k<N 2−kλ

+A
∑
k≥N

2−kλ =Mε+ ε+Aε,

i.e., |f ∗ kδ(x)− f(x)| → 0 as δ → 0. ■

Proposition 9.4

♠If k ∈ Cm
c (Rn) is m-th order differentiable, then f ∗ k ∈ Cm(Rn), with bounded derivatives.

Proof Claim: If k ∈ Cc(Rn), then f ∗ k is continuous and bounded (HW question). It thus suffices to show
∂
∂xi

(f ∗ k(x)) = f ∗ ∂
∂xi
k(x), then the desired statement follows from induction. Note that

f ∗ k(x+ hei)− f ∗ k(x)
h

=

∫
f(y) · k(x+ hei − y)− k(x− y)

h
dy.

Since the integrand is bounded above by |f(y)| sup | ∂
∂xi
k| (the supremum exists because k is continuous on a

compacts set), which is independent of h. Apply D.C.T., we see that as h→ 0,

f ∗ k(x+ hei)− f ∗ k(x)
h

→
∫
f(y)

∂

∂xi
k(x− y) dy = f ∗ ∂

∂xi
k.

■
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Chapter 10 Hilbert Spaces

10.1 The Hilbert Space L2

Definition 10.1 (L2(Rn))

♣

L2(Rn) is the collection of complex-valued measurable function in Rn such that
∫
Rn |f(x)|2 dx < +∞. We

define the L2-norm of f as
∥f∥L2 :=

(∫
Rn

|f(x)|2 dx
)1/2

Remark We take 1/2-th power on L2-norm to preserve the linearity of the operator.

Remark

(i) Suppose f, p ∈ L2(Rn) for which f = p a.e., then ∥f − g∥L2 = 0, we may identify them as the same element
in L2.

(ii) We say f ∈ L2(E) if fχE ∈ L2(Rn).

(iii) For 1 ≤ p < +∞, we define Lp-norm by ∥f∥Lp := (
∫
|f(x)|p dx)1/p.

Definition 10.2 (Inner product in L2)

♣We define the inner product for any f, g ∈ L2(Rn) by ⟨f, g⟩ :=
∫
f(x)g(x) dx.

Proof The inner product is well-defined because fg is integrable:∫
|fg| =

∫
|f ||g| ≤

∫
1

2
(|f |2 + |g|2) < +∞ (10.1.1)

where the first inequality follows from ab ≤ (a2 + b2)/2 for a, b ≥ 0 by AM-GM inequality, and the second follows
from the fact that f, g ∈ L2(Rn).

Proposition 10.1

♠

(a) The inner product ⟨·, ·⟩ in L2(Rn) satisfies the Cauchy-Schwartz inequality: |⟨f, g⟩| ≤ ∥f∥∥g∥.

(b) For any g ∈ L2(Rn) fixed, f ∈ L2(Rn) 7→ ⟨f, g⟩ is linear, and ⟨g, f⟩ = ⟨f, g⟩.
(c) L2(Rn) is a vector space over C, and ∥ · ∥L2 is a norm of L2.

Proof (a) If ∥f∥ = 0 or ∥g∥ = 0, wlog, ∥f∥ = 0, then f = 0 a.e., then the statement is trivial. On the other hand,
suppose ∥f∥ = ∥g∥ = 1. Apply inequality (10.1.1),

∣∣∫ fḡ∣∣ ≤ ∫ 1
2

(
|f |2 + |g|2

)
= 1. Then for f, g, consider f/∥f∥

and g/∥g∥, we see that ∣∣∣∣∫ f

∥f∥
ḡ

∥g∥

∣∣∣∣ ≤ 1 =⇒
∣∣∣∣∫ fḡ

∣∣∣∣ ≤ ∥f∥∥g∥.



10.1 The Hilbert Space L2

(b) follows from the linearity of the integral.

(c) It suffices to prove the triangle inequality: for f, g ∈ L2,

∥f + g∥2 = ⟨f + g, f + g⟩ = ∥f∥2 + ⟨f, g⟩+ ⟨f, g⟩+ ∥g∥2

≤ ∥f∥2 + 2 Re⟨f, g⟩+ ∥g∥2 ≤ ∥f∥2 + 2∥f∥∥g∥+ ∥g∥2 ≤ (∥f∥+ ∥g∥)2,

where the second last inequality in line 2 holds by Cauchy-Schwartz inequality. Taking the square root gives the
desired statement. ■

Theorem 10.1

♡The space L2(Rn) is complete with respect to the metric d(f, g) = ∥f − g∥L2 induced by the L2-norm.

Proof Let {fk} be a Cauchy sequence, we want to show ∃ f ∈ L2(Rn) s.t. d(fk, f) = ∥fk − f∥ → 0. Choose a
subsequence {fki}i of {fk} s.t. ki+1 > ki and ∥fki+1

−fki∥ < 2−i for all i. Define f(x) := fk1+
∑∞

k=1(fki+1
−fki)

and g(x) := |fk1 |+
∑∞

k=1 |fki+1
− fki |.

Step 1: g ∈ L2(Rn), then f ∈ L2(Rn).

Denote by PN (f)(x), PN (g)(x) the partial sum of f(x) and g(x), resp. Then

∥PN (g)∥ ≤ ∥fk1∥+ ∥PN (g)− |fk1 |∥ ≤ ∥fk1∥+
N∑
k=1

∥fki+1
− fki∥ ≤ ∥fk1∥+

N∑
i=1

2−i < +∞.

Apply M.C.T.,
∫
|g|2 = limN→∞

∫
|PN (g)|2 < +∞, therefore g ∈ L2(Rn). Hence |f | ≤ g implies f ∈ L2(Rn).

Step 2: ∥fki − f∥ → 0, i.e., fki → f in L2.

Since PN (f)(x) = fkN+1
(x) by telescoping series, we see fkN (x) = PkN−1

(f)(x) → f(x) a.e. Note that
|f − fki | = |f − Pi(f)|2 ≤ (2g)2. Apply D.C.T, ∥f − fki∥ =

∫
|f − fki |2 → 0, namely ∥fki − f∥ → 0.

Step 3: fk → f in L2, namely fk converges.

Given ε > 0. There isN s.t. ∥fn− fm∥ < ε/2 for n ≥ m ≥ N , and ∥fkn − f∥ < ε/2 for n ≥ N . Then for n ≥ N ,
∥fn − f∥ ≤ ∥fn − fkn∥+ ∥fkn − f∥ < ε. ■

Theorem 10.2

♡The space L2(Rn) is separable, i.e., it contains a countable dense subset.

Proof Let C be the collection of all finite linear combinations of χD where D is a dyadic cube in Rn, with the
coefficients being complex numbers whose real and imaginary parts are rational (i.e., Q(i)), then C is countable.

It suffices to prove C is dense in L2(Rn).

(1) Given f ∈ L2(Rn). Let

gk(x) :=

{
f(x) if |x| ≤ k and |f(x)| ≤ k

0 otherwise

Then gk(x) → f(x) a.e., and |gk − f |2 ≤ |f |2. Apply D.C.T.,
∫
|gk − f |2 → 0; in particular, there exists gN s.t.

89



10.1 The Hilbert Space L2

∥gN − f∥L2 < ε.

(2) Let g := gN , then g ∈ L1(Rn) since it is bounded and supported on a compact set. Then there exists a step
function φ s.t.

∫
|g − φ| < ε2/2N . Therefore,

∫
|g − φ|2 ≤ 2N

∫
|g − φ| < ε2, hence ∥g − φ∥ < ε.

(3) Note that open sets can be decompose into dyadic cubes, there exists ψ ∈ C such that ∥φ− ψ∥.

Consequently ∥f − ψ∥ < 3ε, hence C is dense in L2(Rn). ■
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10.2 Hilbert Spaces

10.2.1 Hilbert Spaces

Definition 10.3 (Hilbert space)

♣

A set H is a Hilbert space if it satisfies the following:

(H1) H is a vector space over C (or R).

(H2) H is equipped with an innter product ⟨f, g⟩ so that

f 7→ ⟨f, g⟩ is linear on H for every fixed g ∈ H,

⟨g, f⟩ = ⟨f, g⟩, and

⟨f, f⟩ ≥ 0 for all f ∈ H, with equality hold iff f = 0.

We let ∥f∥ = ⟨f, f⟩1/2.

(H3) H is complete with respect to the metric d(f, g) = ∥f, g∥.
∗(H4) H is separable.

Remark Cauchy-Schwarz inequality and the triangle inequality follows from (H1) and (H2).

Example 10.1 (L2(Rn), ⟨·, ·⟩) is a Hilbert space over C.

Example 10.2 Finite dimensional vector space CN = {(z1, · · · , zN ) | zi ∈ C}, equipped the inner product
⟨z, w⟩ =

∑N
i=1 ziwi, is a Hilbert space over C.

RN with the standard Euclidean inner product is a Hilbert space over R.

Example 10.3 Denote l2 := l2(N) = {(x1, x2, · · · ) |xi ∈ C,
∑

i |xi|2 < +∞}. Define the inner product
⟨x, y⟩ =

∑
i xiyi. Then (l2, ⟨·, ·⟩) is a Hilbert space over C.

Example 10.4 (Supplementary example) Denote W 1,2(Rn) := {f ∈ L2(Rn) | |∇f | ∈ L2(Rn)}. Define the inner
product ⟨f, g⟩ := ⟨f, g⟩L2 +

∑n
i=1⟨∂if, ∂ig⟩L2 . Then (W 1,2, ⟨·, ·⟩) is a Hilbert space over C.

10.2.2 Orthogonality

Remark A Banach space is a normed vector space + (H3), thus all Hilbert spaces are Banach. The advantage of
Hilbert space is that it equips an inner product, containing the notion of orthogonality.

Definition 10.4 (Orthogonality)

♣

Two elements f and g in a Hilbert space H with inner product ⟨·, ·⟩ are orthogonal or perpendicular if
⟨f, g⟩ = 0, and we then write f ⊥ g.
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Remark The Pythagorean Theorem holds: if f ⊥ g, then ∥f + g∥2 = ∥f∥2 + ∥g∥2.

Definition 10.5 (Orthonormal)

♣A collection {eα}α∈A in H is orthonormal if ⟨eα, eβ⟩ = 1 if α = β and otherwise ⟨eα, eβ⟩ = 0.

Remark Any orthonormal collection in H is at most countable, since H has a countable dense subset. Therefore,
we may use N as the index set A.

Proposition 10.2

♠If {ek} is orthonormal in H, and f =
∑N

k=1 akek ∈ H, then ∥f∥2 =
∑N

k=1 |ak|2.

Proof The proof follows from Pythagorean theorem and the fatc that ak = ⟨f, ek⟩. ■

Definition 10.6 (Orthonormal basis)

♣

We say an orthonormal collection {ek} of H is an orthonormal basis if the finite linear combination of ek’s
over C is dense in H.

Theorem 10.3

♡

Let {ek} be a orthonormal collection {ek} in H, then the following are equivalent:

(a) Finite linear combinations of elements in {ek} are dense in H (i.e., {ek} is a orthonormal basis).

(b) If f ∈ H and ⟨f, ej⟩ = 0 for all j, then f = 0.

(c) If f ∈ H, and SN (f) :=
∑N

k=1 akek, where ak = ⟨f, ek⟩, then SN (f) → f in the norm as N → ∞;
i.e.,

∑N
k=1⟨f, ek⟩ek → f .

(d) If ak = ⟨f, ek⟩, then ∥f∥2 =
∑

k |ak|2. (Parseval’s identity)

Proof (a) ⇒ (b): Let ε > 0 be given. Suppose f ⊥ ej for all j. By (a), there exists {ak}nk=1 s.t. ∥f −∑N
k=1 akek∥ < ε. Then

∥f∥2 = ⟨f, f⟩ =

〈
f −

n∑
k=1

akek, f

〉
+

��
���

���*
0〈

n∑
k=1

akek, f

〉
≤

∥∥∥∥∥f −
n∑

k=1

akek

∥∥∥∥∥ ∥f∥ ≤ ε∥f∥,

so either ∥f∥ = 0 or ∥f∥ < ε. Hence ∥f∥ = 0 since the choice of ε is arbitrary, so f = 0.

(b) ⇒ (c): For any k, by orthonormal condition, ⟨SN (f), ek⟩ = ak = ⟨f, ek⟩. Then f − SN (f) ⊥ ek for each k,
followed by f − SN (f) ⊥ SN (f). By Pythagorean theorem,

∥f∥2 = ∥f − SN (f)∥2 + ∥SN (f)∥2 = ∥f − SN (f)∥2 +
N∑
k=1

|ak|2. (10.2.1)

To prove SN (f) converges, it suffices to prove it is Cauchy. For N,M , ∥SN (f)− SM (f)∥2 =
∑

M<k≤N |ak|2. By
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(10.2.1), we have Bessel’s inequality
∞∑
k=1

|ak|2 = lim
N→∞

N∑
k=1

|ak|2 ≤ ∥f∥2. (10.2.2)

Then we see ∥SN (f)−SM (f)∥2 =
∑

M<k≤N |ak|2 can be arbitrarily small for sufficiently largeM,N , thus SN (f)

is Cauchy thus convergence in H.

Lastly, we prove SN (f) → f . Let k be fixed, ⟨f − SN (f), ek⟩ = ak − ⟨SN , ek⟩ = 0 for N > k, then the hypothesis
(b) implies that f − SN (f) → 0 in H, as desired.

(c) ⇒ (d): By (c), SN (f) → f in H. Apply (10.2.1) as N → ∞ yields
∑N

k=1 |ak|2 → ∥f∥ as N → ∞.

(d) ⇒ (a): Letφ :=
∑N

k=1⟨f, ek⟩ek ∈ H, let ε > 0. Apply (10.2.1), then ∥f−φ∥2 = ∥f∥2−
∑N

k=1 |⟨f, ek⟩|2 < ε2

by the hypothesis, by choosing sufficiently large N . ■

Theorem 10.4

♡Any Hilbert space has an orthonormal basis.

Proof H has a countable dense subset F = {fk} by definition. We may assume F is linearly independent by
removing elements that are linearly dependent with previous terms. We then apply the Gram-Schmidt algorithm:
Let e1 = f1/∥f1∥. For each k > 1, define recursively

ek =
fk −

∑
j<k⟨fk, ej⟩ej

∥fk −
∑

j<k⟨fk, ej⟩ej∥
.

Then e1, · · · , eN are orthonormal for all N , because ∥ek∥ = 1 and ⟨ek, el⟩ = c⟨fk −
∑

j<k⟨fk, ej⟩ej , el⟩ =

⟨fk, el⟩ − ⟨⟨fk, el⟩el, el⟩ = 0 for k > l (where c denotes a constant).

It suffices to show e1, · · · , eN has the same span as f1, · · · , fN . Note that eN = c · eN = c(fN −
∑
λiei), then fN

may be written as the linear combination of e1, · · · , eN . By induction, we see that the span remains the same. ■

Remark We say H is finite-dimensional if there exists a finite orthonormal basis, i.e., the Gram-Schmidt algorithm
terminates.

Definition 10.7 (Unitary isomorphism)

♣

Let H and H′ be Hilbert spaces, we say a mapping T : H → H′ is a unitary isomorphism if

(i) T is a linear map, i.e., T (αf + βg) = αT (f) + βT (g),

(ii) T is a bijection, and

(iii) ∥Tf∥H′ = ∥f∥H for all f ∈ H.

Remark The condition (iii) implies that inner products are preserved under T , namely ⟨Tf, Tg⟩H′ = ⟨f, g⟩H.
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Proposition 10.3

♠Any two infinite dimensional Hilbert spaces are unitary equivalent.

Proof Let {e1, · · · } and {e′1, · · · } denote the orthonormal basis of H1 and H2, resp. Define T : H1 → H2 by
T (ei) = e′i. Suppose f ∈ H, we can identify it with

∑
i∈N aiei where ai = ⟨f, ei⟩H1 by Theorem 10.3 (c), then by

the definition T (f) =
∑

i aie
′
i.

It suffices to show T is a unitary isomorphism. (1) T is linear. (2) T is bijective follows from that T−1 : e′i 7→ ei

is the inverse of T . (3) For all f =
∑

i aiei ∈ H, since ∥T (f)∥ = ∥
∑

i aiei∥ =
∑

i |ai|2 < +∞, then T (f) is
well-defined (as a convergent series) and ∥T (f)∥ = ∥f∥ by Parseval identity. ■

Remark Any infinite dimensional Hilbert space is equivalent to l2.
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10.3 Fourier Series

Consider L2([−π, π]) with inner product ⟨f, g⟩ := 1
2π

∫ π
−π f(x)g(x) dx.

Theorem 10.5

♡{eikx}k∈Z is an orthonormal basis for L2([−π, π]).

Remark Suppose k, j ∈ Z, then

⟨eikx, eijx⟩ = 1

2π

∫ π

−π
eikxeijx =

1

2π

∫ π

−π
ei(k−j)x =

{
0 if k ̸= j

1 if k = j

where the last equality follows from the periodicity of sin and cos. Therefore, we see that {eikx} is orthonormal.

Example 10.5 Suppose f is Riemann integrable or piecewise continuous function on [−π, π]. Define ak =
1
2π

∫ π
−π f(x) sin(kx) dx and bk = 1

2π

∫ π
−π f(x) cos(kx) dx. Then we may write f as

f =
∑
k∈N

ak sin(kx) + bk cos(kx).

Here the basis is {sin(kx), cos(kx)}k∈N.

Remark 1: e−ikx = cos kx − i sin kx for k ∈ N, we may establish that the two bases are approximately identical:
{e−ikx, eikx}k∈N ≈ {sin kx, cos kx}k∈N.

Remark 2: If f is Riemann integrable or piecewise continuous function (they are pre-Hilbert space), then f ∈ L2.

Let f ∈ L2([−π, π]), we extend f to be defined on R, and we define the Fourier coefficient to be

ak := ⟨f, e−kx⟩ = 1

2π

∫ π

−π
f(x)eikx dx =

1

2π

∫ π

−π
f(x)e−ikx dx.

Proposition 10.4

♠

(a) If ak = 0 for all k ∈ Z, then f(x) = 0 for a.e. x.

*(b)
∑

k∈Z akr
|k|e−ikx → f(x) for a.e. x as r → 1.

Proof (b) is beyond the scope of this class. Note that
∑

k≥0 z
k = 1/(1− z) from Harmonic Analysis, then letting

z = reix yields ∑
k∈Z

r|k|eikx =
∑
k≥0

rkeikx +
∑
k<0

r−keikx =
∑
k≥0

(reix)k +
∑
k<0

(re−ix)−k

=
1

1− z
+

z̄

1− z̄
=

1− zz̄

(1− z)(1− z̄)
=

1− r2

1− 2r cosx+ r2
.

We claim that Pr(x) =
1
2π

1−r2

1−2r cosx+r2
is a good kernel with δ = 1− r. The proof is omitted.

(a) follows immediately from (b). ■
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Remark It follows from this proposition that {eikx}k forms an orthonormal basis of L2([−π, π]), proving Theorem
10.5.

Corollary 10.1

♡

For any f ∈ L2([−π, π]),
1

2π

∫ π

−π
|f(x)|2 =

∑
k∈Z

|ak|2.

Moreover, the Fourier series of f converges to f in L2 norm, i.e., SN (f)(x) :=
∑

|k|≤N ake
ikx in L2.
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Chapter 11 Abstract Measure Theory

11.1 Abstract Measure

Definition 11.1 (Measure space)

♣

A measure space on a set X is a triple (X,M, µ) where

(1) M is a σ-algebra, which is a (i) non-empty collection of subsets of X closed under (ii) complements
and (iii) countable unions (thus countable intersections). We refer to elements in M as measurable
sets.

(2) µ : M → [0,∞] is a function satisfying countable additivity: for any countable collection of disjoint
sets in M, E1, E2, · · · ,

µ

( ∞⊔
k=1

Ek

)
=

∞∑
k=1

µ(Ek).

We refer to µ(E) as the measure of E.

Example 11.1 Consider Lebesgue measure, X = Rn, M = collection of Lebesgue measurable sets, and µ = m is
the Lebesgue measure.

Example 11.2 Let X = {xk}k, M be all subsets of X , and define µ({xk}) = µk where {µk} is a sequence of
numbers in [0,∞]. Then for any E ∈ M, µ(E) =

∑
xk∈E µk (intuition: µ(E) is the weighted sum of the entries in

E). The triple (X,M, µ) is measure space. In particular, if µk ≡ 1, then µ is the counting measure.

Example 11.3 Let X = Rn, M be all Lebesgue measurable sets in Rn, and for any E ∈ M, define µ(E) =
∫
E f

where f is a nonnegative measurable function on Rn. The triple (X,M, µ) is measure space. In particular, if f ≡ 1,
the measure corresponds the Lebesgue measure.

Remark Lebesgue-Radon–Nikodym theorem implies that any measure on Rn must be a combination of measurable
spaces in example 11.2 and 11.3.

More precisely, let µ be a measure on Rn. Then µ = µas + µs, where µas(E) =
∫
E f dx where f is some

non-negative integrable function, and µs is singular w.r.t. m (i.e., µs and m are supported on disjoint sets of Rn).

Definition 11.2 (Outer measure)

An outer measure on a set X is a function µ∗ from all subsets of X to [0,+∞] satisfies

(1) µ∗(∅) = 0

(2) Monotonicity: If E1 ⊆ E2, then µ∗(E1) ≤ µ∗(E2).

(3) Countable subadditivity: For any countable collection of sets E1, E2, · · · in X , we have µ∗(
⋃
Ek) ≤



11.1 Abstract Measure

♣
∑
µ∗(Ek).

Definition 11.3 (Caratheodory measurable sets)

♣

A set E ⊆ X is (Caratheodory) measurable if for any A ⊆ X ,

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec).

Remark

(i) By the countable subadditivity, the condition can be reduced to one direction µ∗(A) ≥ µ(A∩E)+µ∗(A∩Ec).

(ii) The definition of Lebesgue measurable set is equivalent to Caratheodory criterion in Lebesgue measure space.

Theorem 11.1

♡

Given an outer measure µ∗ on a set X , the collection M of all measurable sets form a σ-algebra. Moreover,
µ∗ restricted to M is a measure.

Proof (i) ∅ ∈ M because µ∗(E ∩∅) + µ∗(E ∩∅c) = µ∗(∅) + µ(E) = µ(E) for all E. (ii) M is closed under
complement because the criterion is symmetry to complement.

(iii) Claim: M is closed under finite unions and is finite additive.

Proof : Let E1, E2 ∈ M, then

µ∗(A) = µ∗(E1 ∩A) + µ∗(E
c
1 ∩A) = µ∗(E1 ∩A) + µ∗(E

c
1 ∩ E2 ∩A) + µ∗(E

c
1 ∩ Ec

2 ∩A)

≥ µ∗((E1 ∪ E2) ∩ E) + µ∗(E
c
1 ∩ Ec

2 ∩A),

where the inequality follows from the countable subadditivity; it follows that E1 ∪ E2 is measurable. If E1 and E2

are disjoint, then

µ∗(E1 ⊔ E2) = µ∗((E1 ⊔ E2) ∩ E1) + µ∗((E1 ⊔ E2) ∩ Ec
1) = µ∗(E1) + µ∗(E2),

followed by the finite additivity. *

Claim: M is closed under countable union and is countable additive.

Proof : Suppose G =
⋃
Ek where Ek ∈ M, we may assume Ek’s are disjoint WLOG. For any N , µ∗(A) ≥∑N

k=1 µ∗(A ∩ Ek) + µ∗(A ∩Gc) by Caratheodory criterion. Let N → +∞, then

µ∗(A) ≥
∞∑
k=1

µ∗(A ∩ Ek) + µ∗(A ∩Gc) ≥ µ∗(A ∩G) + µ∗(A ∩Gc) (11.1.1)

where the second inequality follows from countable subadditivity. It follows that (11.1.1) becomes an equality, and
G ∈ M. Take A = G in (11.1.1), we see that µ∗(G) =

∑∞
k=1 µ(Ek) + 0, followed by the countable additivity

property. ■
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Definition 11.4 (σ-finite)

♣

Ww say a measure space (X,M, µ) is σ-finite ifX can be written as the union of countable many measurable
sets of finite measure.

11.2 Metric Outer Measure

Definition 11.5 (Borel σ-algebra)

♣The Borel σ-algebra BX is the smallest σ-algebra containing all open sets.

Definition 11.6 (Metric outer measure)

♣

We say an outer measure µ∗ on (X, d) is a metric outer measure if µ∗(A ∪ B) = µ∗(A) + µ∗(B) for any
A,B ⊆ X such that d(A,B) := inf{d(x, y) |x ∈ A, y ∈ B} > 0.

Theorem 11.2

♡

If µ∗ is a metric outer measure on (X, d), then Borel sets inX are Caratheodory measurable and µ∗ restricted
to Bx is a measure.

Proof By Theorem 11.1, M is a σ-algebra and µ∗|M is a measure. To show BX ⊆ M, it suffices to show all
open/closed sets are measurable.

Let F be a closed set in X and A ⊆ X . We may assume µ∗(A) < +∞, otherwise the statement is trivial.
Define Ek := {x ∈ A ∩ F c | d(x, F ) > 1/k}. Then by monotonicity and the definition of metric outer measure,
µ∗(A) ≥ µ∗((A ∩ F ) ∪ Ek) = µ∗(A ∩ F ) + µ∗(Ek).

It suffices to show limk→∞ µ∗(Ek) = µ∗(A ∩ F c), and ≤ direction is trivial. Let Ck = Ek+1 \ Ek. Note that
d(Ek, Ck+1) > 0, then

µ∗(Ek+2) ≥ µ∗(Ck+1 ∪ Ek) = µ∗(Ck+1) + µ∗(Ek).

Inductively, µ∗(E2k) ≥
∑k

i=1 µ∗(C2i−1) and µ∗(E2k+1) ≥
∑k

i=1 µ∗(C2i); it follows that the series
∑∞

i=1 µ∗(Ci) is
bounded thus convergent. Notice that

µ∗(Ek) ≤ µ∗(A ∩ F c) ≤ µ∗(Ek) +

∞∑
i=k

µ∗(Ci),

and the
∑∞

i=k µ∗(Ci) can be arbitrarily small as k → ∞. Hence µ∗(A ∩ F c) = limk→∞ µ∗(Ek). ■
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Proposition 11.1

♠

Suppose the Borel measure µ is finite on all balls in X with finite radii. Then for any Borel set E, any ε > 0,
there exists an open set G ⊇ E, closed set F ⊆ E such that µ(G \ E) < ε and µ(E \ F ) < ε.

Lemma: Let (X,M, µ) be a measure space. If measurable sets Ek ↗ E, then µ(Ek) ↗ µ(E).

Proof Let F be the collection of Borel sets satisfying these properties, F is nonempty because ∅ ∈ F .

(1) We first show F is a σ-algebra. (i) ∅ ∈ F . (ii) IfE ∈ F thenEc ∈ F . (iii) SupposeEk ∈ F , and letE =
⋃
Ek.

Let G =
⋃
Gk where Gk ⊇ Ek is the open set s.t. µ(Gk\Ek) < 2−kε. Then µ(G\E) ≤ µ(

⋃
k(Gk\Ek)) ≤∑

µ(Gk\Ek) < ε. On the other hand, we may choose F =
⋃
Fk where Fk ⊆ Ek is closed and µ(Ek \Fk) < 2−kε,

then µ(E\F ) < ε. By the continuity from below, FN :=
⋃N

k=1 Fk ↗ F implies µ(FN ) ↗ µ(F ); then choosing a
sufficiently large N yields a closed set FN s.t. µ(E\FN ) ≤ µ(E\F ) + µ(F\FN ) < 2ε. Hence E =

⋃
Ek ∈ F .

(2) It suffices to show F contains all open sets. It is clear that open sets can be approximated by themselves,
so it suffices to show that an open set G can be approximated by a closed set F ⊆ G s.t. µ(G\F ) < ε. Let
Fk := {x | d(x,Gc) ≥ 1/k} be a closed set, and put G =

⋃
Ek. Then Fk ↗ G, and thus µ(Fk) ↗ µ(G); taking

sufficiently large k yields Ek s.t. µ(G\F ) < ε. ■
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11.3 Premeasure and The Extension Theorem

Definition 11.7 (Algebra)

♣

Given a setX , an algebra inX is a non-empty collection of subsets ofX which are (i) closed under complement
and (ii) closed under finite unions (and thus intersections).

Definition 11.8 (Premeasure)

♣

A premeasure on an algebra A is a function µ0 : A → [0,+∞] such that

(1) µ0(∅) = 0,

(2) IfA1, A2, · · · is a countable collection of disjoint sets in A such that
⊔∞

k=1Ak ∈ A, then µ0(
⊔

k Ak) =∑
k µ0(Ak).

Remark The monotonicity follows immediately from (2).

Example 11.4 Consider the Lebesgue premeasure: let X = Rn, µ0 defined rectangles is their the volume, and A
is the algebra generated by rectangles. The definition above give rise to a premeasure because (1) is obvious and (2)
follows from Proposition 7.5.

By the premeasure, it give rises to the Lebesgue outer measure µ∗ = m∗ (we are going to justify the extension in the
following lemma) defined on all subsets of Rn and satisfies the countable sub-additivity. Then we can extend it to
the Lebesgue measure µ = m using Caratheodory criterion.

Lemma 11.1

♡

If µ0 is a premeasure on an algebra A, define an outer measure µ∗ on any subset E of X by

µ∗(E) = inf

{ ∞∑
k=1

µ0(Ek)

∣∣∣∣∣ E ⊆
∞⋃
k=1

Ek, where Ej ∈ A for all j

}
.

Then µ∗ satisfies:

(a) µ∗ is an outer measure on X .

(b) µ∗(A) = µ0(A) for all A ∈ A.

(b) Any set in A is Caratheodory measurable w.r.t. µ∗.

Proof (a) It is clear thatµ∗(∅) = 0, and the monotonicity and countable subadditivity follow from the corresponding
conditions in premeasure.

(b) By the definition of µ∗, µ∗(A) ≤ µ0(A). For all Aj ∈ A s.t. A ⊆
⋃
Aj , we map assume {Aj} are pairwise

disjoint, thenA =
⊔

j(Aj ∩A). By the definition of µ0 and monotonicity, we see that µ0(A) =
∑

j µ0 ∗ (A∩Aj) ≤∑
j µ0(Aj). Therefore, µ0(A) ≤ µ∗(A).

(c) Let A ∈ A and B ⊆ X . Let Aj ∈ A s.t. B ⊆
⋃
Aj . Then B ∩A ⊆

⋃
(Aj ∩A), followed by
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∑
j

µ0(Aj) =
∑
j

µ0(Aj ∩A) +
∑
j

µ0(Aj \A) ≥ µ∗(B ∩A) + µ∗(B\A).

Therefore, µ∗(A) ≥ µ(B ∩A) + µ∗(B\A). ■

Remark The above extension is unique: Let M be a σ-algebra containing A, let µ be the measure generated from
µ∗. Assume that µ is σ-finite, then for any other measure ν defined on M s.t. ν|A = µ0, the two measure are
identical, i.e., ν(E) = µ(E) for any E ∈ M.

Example 11.5 Let (X1,M1, µ1), (X2,M2, µ2) be two σ-finite measure space. Construct a measure space on
X := X1 × X2. Define the premeasure µ0 as: for sets of the form A × B (“measurable rectangles”) where
A ∈ M1, B ∈ M2, we defined µ0(A × B) = µ1(A) · µ2(B). Let A be the algebra generated by measurable
rectangles.

We may extend this premeasure into a measure of the product space X = X1 ×X2.
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