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Chapter 1 The Real and Complex Number Systems

Introduction

(1 Ordered Set and Least-upper-bound [ Real Field and Properties
(d The Complex Field

1.1 Ordered Set

Definition 1.1 (Ordered Set)

Suppose S be a set. An order on S is a relations, denoted by <, with the following properties:

(1) Trichotomy: If x,y € S, then exactly one of the following x =y, x < y, y < x is true.
(2) Transitivity: If x,y,z € S, x <y, andy < z, then x < z.

The ordered set is a set S in which an order is defined. &

Definition 1.2 (Supremum, Infimum)

Suppose S is a ordered set, E C S, and F is bounded above. Suppose there exists o € S such that:

(1) «is an upper bound of E.
(2) If v < «, then 7y is not an upper bound of E.

Then o € S is called the least upper bound of E (or the supremum of F) and is denoted by o = sup F.

The definition of greatest lower bound (infimum) is an analogous. &

Remark The second statement is equivalent to: for all upper bounds vy, we have v > «.

Definition 1.3 (Least Upper Bound Property)

An ordered set S has the least-upper-bound property if for all nonempty E C S that is bounded above, then
sup F exists in S. &

Suppose S is an ordered set the least-upper-bound property, then S has the greatest-lower-bound property,
that is, for all nonempty E C S that is bounded below, then inf E exists in S. v

Proof Let L be the set of all lower bounds of F, L # &. Since L is bounded above by elements in F, there exists



1.1 Ordered Set

a =sup Lin S. It follows that « = inf E because (1) for all z € E, a < x since x is an upper bound of L, it follows

that « € L, and (2) v < « for all lower bounds v € L by definition. This completes the proof.

We construct the set of lower bounds to convert the l.u.b. property to g.1.b. The construction of L gives

the following relationships: L < o < Fandsup L = o = inf E.



1.2 The Real Field

1.2 The Real Field

Definition 1.4 (Field, Ordered Field)

Afield (F,+, ") is aset F such that (F,+) and (F'\ {0}, -) are abelian group, and multiplicative is distributive
to addition.
An ordered field is a field (F,+ - - - ) which is also an ordered set such that

. x+y<zxz+zife,y,z€ Fandy < z, and

2. xy > 0ifz,y € F,z,y > 0. &

Example 1.1 There exists no order that turns C into an ordered field.

Proposition 1.1 (Existence Theorem)

There exists an ordered field R which has the least upper bound property. o

Remark Suppose E C S, @ = sup F if and only if for all € > 0, there exists x € F suchthat o — e < z < a.

@ Note Well-ordering principle of N: if E is a nonempty subset of N, the E has a least element in it.

1. Archimedean property: if v,y € R and x > 0, there exists N € Z~q such that nxz > y.

2. QisdenseinR: ifx,y € Rand x < y, there exists ¢ € Q such that x < q < y. O

Proof (1) For the sake of contradiction, suppose there exists x,y such that nx < y for all n € Z~g. Let
E = {nx|n € Z-o}, clearly E is nonempty and bounded above by y, there exists « = sup E. There exists nx € E
such that &« — x < nx < a, it follows that (n + 1) > «, contradicting the fact that « = sup E.

(2) There exists n € N such that n(y — x) > 1, namely ny — 1 > nx. Apply the Archimedean property again,
we obtain my, mo € Z~q such that m; > nx, mg > —nx, o0 —mgy < nx < mji. It follows that there exists m

(—ma < m < my) such that m — 1 < nz < m. Then nx < m < ny, sox < m/n <y where m/n € Q. [ |

Remark Indeed, the set of all irrationals Q¢ is also dense in R.

For every real x > 0 and every integer n > 0, there exists a unique real y > 0 such that y" = x; in other

1/n

words, ©/™ exists and is unique. v

Proof  Forthe existence, let E = {t > 0|¢" < z}. Itis not hard to show E is nonempty (by choosing ¢ < min(x,1))
and bounded above (by 1 + x), so there exists &« = sup E by the least-upper-bound property.



1.2 The Real Field

We now prove a” = z by contradiction. Notice that " —a™ = (b—a)(b" ' +ab? ' +---+a" 1) < (b—a)nb" L.
o Assume " > z, put h = (o™ — x)/na™"!, then
" —(a—h)"<h-na"'<a" -
That is, x < (o — h)™ < ", contradicting to the fact that o« = sup E.
o Assume o” < z, put h = min{1, (z — a")/n(a + 1)"1}, then
(a+h)"—a” <h-nla+h)" P <h-nla+1)"<z—a™
That is, o™ < (o + h)™ < z, contradicting to the fact that « is an upper bound.

Hence, o = x. [ ]

Definition 1.5 (Extended Real Number System)

The extended real number system consists of the real field R and two symbols, 400 and —oo. We preserve the

original order in R, and define —oco < x < 400 for every x € R. &

The extended real number system does not form a field.



1.3 The Complex Field and The Euclidean Spaces

1.3 The Complex Field and The Euclidean Spaces

Definition 1.6 (Complex Number)

A complex number is an ordered pair (a,b) of real numbers. Let x = (a,b) and y = (¢, d), we define the

addition and multiplication by x +y = (a + ¢,b + d) and xy = (ac — bd, ad + bc). Iy

Remark The complex number along with addition and multiplication forms a field C, and it contains R as a subfield.

1/2

We define the conjugate of x = (a,b) by Z = (a, —b) and define the absolute value |z| = (2Z)'/. The complex

numbers have the following properties:

o zZ is real and positive (exception when z = 0), so |z| > 0;

o 2] = lz];
o [zw] = [2||wl;
o [Re(2)| < |z;

o (triangle inequality) |z + w| < |z| + |w]

Proof:
|z +w]? = (2 + w)(Z+ @) = 22 + 20 + Zw + wd
= |2|? + 2Re(zw) + |wl|?
< 2?4 2le@] + [w]* = |2 + 2|zl jw] + |w]?
= (|2 + |w])?,
it follows that |z + w| < |z| + |w]. [ ]
Proposition 1.2 (Schwarz Inequality)
Ifay,- - ,an and by, - -- , by, are complex numbers, then
n B 2 n n
D abi| <> e (bl
j=1 j=1 j=1 .
Proof PutA =73 la;|%, B=>|bj|*>,and C =Y a;b;. f B=0,b; = --- = b, = 0, so the conclusion is trivial.

Suppose therefore B > 0, then
0< ) |Baj—Cbj> =) (Baj — Cb;)(Bdj — Cb;)

=B*) |a;* = BCY ajbj — BCY ajb; + |C[* ) |b,[?
= B?A— BCC — BCC + B|C)?
= B(AB — |C]?).



1.3 The Complex Field and The Euclidean Spaces

Therefore, AB — |C|? > 0. [ |

Proof  (Alternative) We use the same notation of A, B, C' as above. Notice that AB = ), . a;bja;bj and |C|* =
Zi,j azl)}d]bl Then

AB = (; aidi) (Z bjb_j>
- (S0) (S05) + Susan -0

2 _ _
= ‘Z al-bj’ + ) (aibj — azbi)(aib; — dazb;)

i i<
=[CP+)_ laib; — ajbif?
1<j
> |C”
Hence AB > |C]2. [ |

Definition 1.7 (Euclidean Space)

Fork € Zso, R¥ = {x : x = (x1,--- , %), 2; € Rforall i}

Letx = (21, -+ ,x%) andy = (y1,--- ,yr). The addition is defined by x +y = (1 + y1, -+ , Tk + Yk ), the scalar
multiplication is defined by ax = (az1,- - - ,axy), the inner product is defined by x - y = Zle x;¥i, and the norm
is defined by x| = (x - x)'/2 = (X5, 22)1/2,
Letx,y,z € R*, a € R, the following properties holds:

o |x| > 0, and the equality holds if and only if z = 0;

o Jax| = |a] x|

o (Cauchy-Schwartz) |x - y| < |x]|y];

o (triangle inequality) |x + y| < |x| + |y

b}

o |x—z|<|x—y|+ |y —z|

10



Chapter 2 Basic Topology

Introduction

(1 Countable and Uncountable Sets [ Neighborhoods, Open Sets
(1 Limit Point, Closed Set, Closure 1 Bounded Set, Dense Subset
' Open Relative (Subspace topology) d Open Cover, Compact Set

(1 Heine-Borel Theorem [ Perfect Set, Connected Sets

2.1 Countable Sets

Definition 2.1 (1-1 Correspondence)

Suppose A, B are sets, we say A and B are in 1-1 correspondence if there exists a bijection f : A — B. We

write A ~ B, and this relation is a equivalence relation. &

Definition 2.2 (Countability)

For anyn € 7", define J,, :== {1,--- ,n}, and let J = {1,--- } = Z~o. For any set A, we say:

o A is finite if A ~ J, for some n (the empty set is considered finite).
o Ais countable if A ~ J.

o A is at most countable if A is finite or countable, and A is uncountable if it is not at most countable. &

Example 2.1 Z is countable, because f : N — Z, defined by f(n) =n/2if nisevenand f(n) = —(n—1)/2ifn
is odd, is a bijection.

Definition 2.3 (Sequence)

A sequence is a function defined on N. If f is a sequence, we denote x,, = f(n), and we write f as {xy,}.

.

Proposition 2.1

Every infinite subset of a countable set A is countable. o |

Proof Let E C A be an infinite subset. Since A is countable, there exists {z,} = A. Let n; be the least
positive integer such that z,,, € E, which exists by the well-ordering principle. Recursively, choose n; from
E\ {z1, -+ ,zp—1}, which is nonempty since E is infinite, such that n; is the least positive integer such that

Zp, € E. Putting f(k) = x,, (k € Z4), we obtain an 1-1 correspondence between E and J. [ |



2.1 Countable Sets

Note: That is, every subset of a countable set is at most countable.

Proposition 2.2

Let {E,}, n=1,2,--- be a sequence of countable sets, and put S = | J;~_| Ep, then S is countable. In other

words, the countable union of countable sets is countable. o

Proof Let B, = {x, 1}, for all n, S can be enumerated as:

PR R R R R B N R S R R A SR S )

namely S = {11,221, 212,231, -- }. Then S is at most countable. Since E; C S is countable thus infinite, S is
countable. [ |

The at most countable union of at most countable sets is at most countable. v

Proposition 2.3

Let A be a countable set, and let B, be the set of all n-tuples (ai,- - ,a,) where a, € A(k =1,---,n),
and the element need not be distinct. Then B, is countable. In other words, the finite cartesian product of

countable sets is countable. P

Proof We proceed by induction on n. If n = 1, the statement is trivial. For n > 1, suppose B,,_1 is countable.
Fix b € By,—1, let B := {(a,b) |a € A}, which is countable since A is countable. Then B, = |Jycp , Epis a

countable union of countable sets, then B, is countable by proposition 2.2. |

Q is countable. v ’

Proof The set of Z x Z is countable by proposition 2.3, and (Q can be view as the subset of Z x Z* C Z x Z by the
map f : (z,y) — z/y, followed by Q is countable by 2.2. [ |

Proposition 2.4 (Cantor)

R is uncountable. P ’

Proof For the sake of contradiction, suppose R is countable, then so is (0,1) C R. Clearly, (0, 1) is infinite. We

o

can enumerate (0, 1) as {z,}7° , and let z,, = 0.zp1 2,2 - - - be the decimal representation. Choose y = 0.b1by - - -

12



2.1 Countable Sets

for which b, # xy,,, for all n. It follows that y # x,, for all n since b, # . s0y ¢ {xy, }o2,, contradicting the fact
that y € (0,1). [ ]

13



2.2 Metric Spaces Topology

2.2 Metric Spaces Topology

Definition 2.4 (Metric Spaces)

A metric space is a set X with a distance function (metric) d : X — X — R such that:
(a) d(z,y) > 0ifp # q, and d(p,p) = 0;
(b) d(p,q) = d(q,p);
(c) d(p,q) < d(p,r)+ d(r,q) foranyr € X.

L3

Example 2.2 Let X = R¥, defined d(x,y) = |x —y]| to be the usual Euclidean distance. d satisfies all the conditions
in the above definition, so (R¥, d) is a metric space, and we called the Euclidean distance the “usual” distance in RF.

Definition 2.5 (Neighborhood, Open Set)

Let (X, d) be a metric space,

(a) A neighborhood of p is a set N, (p) consisting of all ¢ € X such that d(p,q) < r, for some r > 0. The

number r is called the radius of N, (p).
(b) A point E is an interior point of E if there is a neighborhood N of p such that N C E.

(c) A set E is open if every point of E is an interior point. &

Remark A set E is open if and only if for all p € E, there exists > 0 such that NV,.(p) C E.

Proposition 2.5

Every neighborhood is an open set. o

Proof Consider the neighborhood E = N, (p). Forall p’ € E, let h = d(p,p’) < r, then N,_,(p’) C E, because
forallg € F, d(p,q) < d(p,p') +d(p',q) < h+ (r—h) = r. Hence p’ is an interior point for all p’ € F, thus E is
open. |

Definition 2.6 (Closed Set)

Let (X, d) be a metric space, suppose E C X,

(a) A point p is a limit point of the set E if every neighborhood of p contains a point ¢ # p such that q € E.
If p € E and p is not a limit point of E, then p is called the isolated point of E.

(b) E is closed if every limit point of E is a point of E. &

Remark Equivalently, p is a limit point if and only if V;¥(p) N E # &, where we denote N,*(p) := N,(p) \ {p}.

14



2.2 Metric Spaces Topology

Proposition 2.6

If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of E.

Proof Proof by contradiction. Suppose p is a limit point of F/, and there exists a neighborhood of p containing
finitely many points ¢i, - - - , ¢,. Put r = min; d(p, g;), then r > 0 since {g;} is finite. It follows that N, (p) contains
no points of E \ {p}, contradicting that p is a limit point. [ |

Remark Corollary: A finite point set has no limit points.

Definition 2.7 (Boundedness, Dense)

Let (X, d) be a metric space, suppose E C X,
(a) The complement of E, denoted by E¢, is E = {p € X |p ¢ E}.
(b) E is bounded if there exists M > 0 and p € E such that d(p,q) < M forall g € E.
(c¢) Eisdense in X if every point of X is a limit point of E or in E.

DeMorgan’s Law: Let { £, } be a collection of sets F,, then (|, Fa)® = (), (ES).

A set E is open if and only if its complement is closed.

Remark Corollary: A set F'is closed if and only if its complement is open.

Proof (=) Suppose F is open, and let = be a limit point of E. If x € E, there exists r’ such that N,»(z) C FE, so
N,/ (z) N E¢ = @, contradicting that x is a limit point of E€. Thus z € E¢, implying that E° is closed.

(<) Suppose E° s closed, and let x € E. Since x ¢ E°, x is not a limit point of E°, implying that there exists r > 0
such that N;*(z) N E€ = N, (z) N E¢ = @. It follows that N, (x) C E, thus E is open. [ |

Proposition 2.7

(a) Arbitrary unions and finite intersections of open sets are open.

(b) Arbitrary intersections and finite unions of closed sets are closed.

Proof (a) (i) Suppose € G = |J, Ga, « is a point G5 thus an interior point of Gz for some /3. Then z is an
interior point of G since Gg C G, so the arbitrary union of open sets is open. (ii) Suppose z € G = (), G, then
for all 4, there exists r; such that N,,(x) C G;. Put r = min{r;}, we have N,(z) C G; for all i, so N,.(z) C G.
Thus, x is an interior point of G, so G is open.

(b) By taking the complement and using DeMorgan’s Law, we obtain (b) from (a).

Remark The infinite intersection of open sets is not necessarily open. For instance, G,, = (—1/n,1/n) forn € N,

then () G,, = {0} is not an open subset.

15



2.2 Metric Spaces Topology

Definition 2.8 (Closure)

If X is a metric, E C X, and E' denotes the set of all limit points of E in X, the the closure of E is the set
E=EUE. &

@ Note The interior E° is defined to be the set of all interior points of E. The boundary OF is defined to be
OE .= E\ E°.

Proposition 2.8

If X is a metric space and E C X, then
(a) E is closed,
(b) E = E ifand only if E is closed, and
(c) E C F for every closed set F containing E.

Remark By (a) and (c), £ is the smallest closed subset that contains E.

Proof (a) Letp € E¢, pis not in E nor a limit point of E, so there exists » > 0 such that N,.(p) N E = @. If
q € N,(p) N E', letd = d(p, q), then there exists ¢ € E N N,_4(q) C N,(p) N E = &, contradiction. Therefore,
N,(p) N E = N,(p) N (E U E') = @, then p is the interior point of £, so E¢ is open, followed by E is closed.

(b) Suppose E = E, then F is closed by (a). Conversely, suppose Eisclosed, E C E=ENE =FE,soE = E.

(c) Since E C F, E' C F because E’ are limit points of F' and thus in F' because F is closed. Therefore,
E=FEUE' CF.

Remark For (a), we show that for p € E¢, N,.(p) contains no points of F, and it contains no limit points of E,

otherwise it intersects . Then we conclude p is an interior point.

Proposition 2.9

Let E be a nonempty set of R which is bounded above, and let y = sup E. Theny € E, thusy € E if E is
closed. P

Proof  Suppose y € E, then obviously y € E. Suppose y ¢ FE, then for all ¢ > 0, there exists 3 such that
Yy € N.(y)NE = N*(y) N E. Ttimplies thaty € E',soy € E. [ |

Definition 2.9 (Open Relative)

Let Y C X be a non-empty subset. E C Y is open relative to Y if for each p € E, there exists r > 0 such

that N, (p) NY C E. Equivalently, there exists r > 0 such that ¢ € E whenever d(p,q) <randq €Y. Iy

16



2.2 Metric Spaces Topology

Proposition 2.10

Suppose Y C X. A subset E of Y is open relative to Y if and only if E =Y N G for some open subset G of
X. P

Remark F is open relative to Y C means F is open in the subspace topology Y on X.

Proof (=) Suppose E is open relative to Y. To each p € E there is a positive number r,, such that N,. (p) NY C E.
Let G = Uyep Nr, (p), G is clearly open. Note thatforallp € E,p € N, (p) Y, then £ = {J  p(N,,(p) NY) =
(Upep Nr,) NY =GNY.

(<) Suppose E = Y NG for some open set G in X. Forallp € F = GNY, there exists » > 0 such that N, (p) C G
since G is open in X, then N,.(p) NY C GNY = E. Thus, E is open relative to Y. [ |

Example 2.3 Consider £ = (0,1) x {0}. E is open (relative) to Y = R x {0}, considering E as a subset of Y.
However, if we consider E as a subset of X = R?2, F is not open.

17



2.3 Compact Space

2.3 Compact Space

Definition 2.10 (Open cover, Compactness)

Suppose (X, d) is a metric space. An open cover of a set E C X is a collection of open sets {Gq | o € A}
such that E C ¢ 4 Ga-

K C X is compact if every open cover contains a finite subcover. Iy

Proposition 2.11

Suppose K C'Y C X. Then K is compact relative to X if and only if K is compact relative to Y . o

Proof (=) Suppose K is compact relative to X, and assume {V, = G, N Y} is an open cover open relative to
Y. Then {G,} is an open cover of K, so there is a finite subcover {G;} since K is compact relative to X. Thus,
Kc(NL,Gi)NY =N (GinY) =, V;. It follows that there exists a finite subcover {V; = G; "Y'} of K
open relative to Y, so K is open relative to Y.

(<) The converse is an analogous. [ |

Proposition 2.12

Compact subsets of a metric space are closed. o

Proof  Suppose K is compact, we want to show K¢ is open. Let ¢ € K€ be given. For all p € K, let
d = d(p,q)/2 > 0, we define the neighborhoods p € U, = Ny(p) and ¢ € V), = Ny(q). Note that {U, |p € K}
forms an open cover of K, so there exists a finite subcover {U,, }. Consider V' = (", V},,. Note that V" is open, and
VN K = @,since for all Up,, K N U,, C V,, NU,, = &. Therefore, p is an interior point, so K is closed since the
choice of p is arbitrary. n

Proposition 2.13

Closed subsets of compact sets are compact. o |

Proof Suppose F' C K C X where F is closed relative to K and K is compact. Assume {U,, } is an open cover of
F'. Adding the open set F*° to {U, } yields an open cover of K, so there exists a finite subcover {V;} of K since K
is compact. Removing F¢ from {V;} (if exists) gives a finite subcover of F'. Hence F is compact. |

The intersection of a compact set and a closed set is compact. v ’
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2.3 Compact Space

Proposition 2.14 (Finite intersection property)

If {K,} is a collection of compact subsets of a metric space X such that the intersection of every finite

subcollection of { K} is nonempty, then (| K, is nonempty. .

Proof For the sake of contradiction, suppose (| K, = @. Fix K; € {K,}, then K; C |J K. By the compactness,
there exists av, - -+, a, such that Ky C i) K§, = (N2, Ko,)¢ Then Ky N, Ko, = @, contradicting that

finite intersections are nonempty. |

Note Corollary: If { K, }nen is a sequence of nonempty compact sets such that K,, D K1 for alln € N, then
N2, Ky, is nonempty.

k-cell A k-cellis aset I C R of the fork I = [a1,b1] X - -+ X [ay, by] where a; <bjforj=1,--- k.

If {I,} is a sequence of intervals in R* such that I, D I,+1, then (\°o, I, is nonempty. o

Proof Let I, = [ay,by] for all n, and put £ = {a,}. F is nonempty and bounded above by by, so there exists
x = sup E. For all m, notice that a1 < ag < -+ ay < by, < -+ < by < by, s0ox < by,. Also note that clearly
@ < x by the definition of supremum, thus z € I,,,. Hence = € ﬂfrle I, [ ]

Remark It is nor hard to show the intersection of a sequence of k-cells is nonempty.

Proposition 2.15
Every k-cell is compact. o
Proof  Proof by contradiction. Suppose I C R¥ is a k-cell and is not compact. Put § = /> (a; — b;)2. Let

c¢j = (a; +bj)/2, dividing [a;, b;] into [a;, ¢;] U [¢;, b;] determines 2* k-cell, and at least one of the k-cells, denoted

by I, is not compact because [ is not compact.

Continuing this process we obtain a sequence {I,} such that (a) I, D I,+1, (b) I,, cannot be covered by any finite
subcollection of an open cover {Gy}, and (¢) |z — y| < 27"0 if z,y € I,,. There exists z* € (I, by Lemma 2.1
and z* € G, for some « . Since G|, is open, there exists » > 0 such that N, (z*) C G, and there exists n € Z~q
such that 27" < r by the Archimedean property. This leads to a clear contradiction to (b). Hence I is compact. W

Suppose K is compact and E C K is an infinite subset. Then E has a limit point in K. v

Proof Proof by contradiction. Suppose £ has no limit point in /<, then for all ¢ € E there exists £, > 0 such that
NZ (¢) N E = @. Thatis, Ne,(¢) N E = {q}. The collection {N,(g) | ¢ € £} forms an open cover, there exists a
finite subcover by the compactness, contradicting to the fact that F is infinite. |
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2.3 Compact Space

Theorem 2.2 (Heine-Borel Theorem)

Suppose E is a subset of R¥ with Euclidean metric, then the following are equivalent:
(a) E is closed and bounded.
(b) E is compact.

(c) Every infinite subset of E has a limit point in E. v

Remark In general, (a) # (b) and (a) # (c).

Proof (a) = (b): E is bounded, so there is a k-cell containing . Then F is a closed subset of compact set, so F

is compact by Proposition 2.13.
(b) = (c¢): Lemma 2.2.

(¢) = (a): Suppose E is not bounded, then E contains points S = {z,,}7° ; such that |z,| > n. S has no limit
points since Ny /5(p) N £ contains at most two points, then (c) does not hold since S is infinite.

Now suppose E is not closed, then there exists a limit point « of E such that ¢ E. Construct S = {z,}72,
such that ¥, € Ny, N E. Assume y is another limit point of £, let d = |z — y|/2 > 0, and choose ng for which
1/ng < d. Then |z, —y| > |z — y| — |x — x| > 2d — 1/n, so |x,, — y| > d for n > ny. It implies that Ny(y) is
contains finitely many points in £, so y is not a limit point of £ by Proposition (2.6). Then S is infinite and the only
limit point is « but « ¢ E. Therefore, F is closed and bounded by contrapositive. ]

Theorem 2.3 (Weierstrass)

Every bounded infinite subset E of R* has a limit point in R, O

Proof E is a subset of a k-cell I C R* by the boundedness. Since I is compact, F has a limit point in I C R* by
Lemma (2.2). |
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2.4 Perfect Sets and Connected Sets

2.4 Perfect Sets and Connected Sets

2.4.1 Perfect Sets

Definition 2.11 (Perfect Sets)

Suppose (X, d) is a metric space and E C X. E is perfect if E = F', equivalently, E is closed and has no
isolated points. If p € E is not a limit point of E, p is called an isolated point of E. &

Example 2.4 For fixed a, b € R, the closed interval [a, ] C R is perfect.

Proposition 2.16

Let P be a nonempty perfect set in R¥, then P is uncountable. .

Proof P is infinite because it has a limit point. Assume P is countable and P = {x;}°;. Fix r; > 0, let
Vi = Ny, (x1). Since z; is a limit point, V1 N P # &. We can construct recursively a sequence of neighborhoods
Vo, Vs, -+ of points in E, for which (i) m C V, and (ii) z,, ¢ ‘Tﬂ and we know that V,, N P # & since the
center of V,, is a limit point of P.

Put K,, = V,, N P. K,, is compact since V}, is compact and P is closed. Then Ni2, Ky, is nonempty by the Lemma
(2.1). However, x,, # K, 11 implies ﬂflo:l K,, = @. By contradiction, P is uncountable. [ |

Remark Key Claim: Given an open set U and x € X, there exists an open subset V' C U such that z ¢ V, this
holds by the Hausdorff axiom.

Key idea: We can construct a strictly decreasing sequence {V},} of neighborhoods of points of P, for which every
V,, intersects P (by perfectness) but V;, converges to points outside of P (by excluding x,, in V,,41). Then there is a

contradiction regards to the intersection of {V,, N P}.

Corollary 2.4

Every interval [a, b] (a < b) is uncountable. In particular, the set of all real numbers is uncountable. O

Example 2.5 Cantor Set: Let Ey = [0, 1]. Recursively define F,, by removing the middle thirds of the intervals in
E,_1,eg., E1 =[0,1/3]U[2/3,1]. We obtain a sequence of compact sets £, such that

1) 1 D FEyD---,and
(i) FE, is the union of 2" intervals, each of length 37".
The set P = (1,2, Ej, is called the Cantor Set, and
o P is compact and P is nonempty by Lemma 2.1.

o P contains no segment. By the construction, the segment of the form ((3k + 1)/3™, (3k + 2)/3™) is not
contained in P, but every segment (cv, 3) contains such segment, so P contains no segments.
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2.4 Perfect Sets and Connected Sets

o Pisperfect. Let x € P and S be a segment containing x. Let I,, be the interval of E,, containing x, choose
n large enough so that I,, C S. Put x,, be the endpoint of of I, such that z,, # =z, it follows that z,, € P thus

Tn € SN P, so x is alimit point of P. Hence P is perfect.

The Cantor set is an example of totally disconnected, perfect, compact metric space.

2.4.2 Connected Sets

Definition 2.12 (Connectedness)

Suppose X is a metric space and A, B C X. A and B are said to be separated if AN B =ANB=a. A

set & C X is said to be connected if E is not a union of two nonempty separated sets. &

Proposition 2.17

Suppose E C R, E is connected if and only if it has the following property: if v,y € E and x < z < y, then
z € F. 'y

Proof (=) Proof by contrapositive. Assume there exists z € (z,y) such that z ¢ E. Then £ = A, U B, where
A,:=EN(—o00,z)and B, := EN(x,00). A, B, are clearly nonempty and separated, then F is not connected.

(«<=) Proof by contrapositive. Assume E is not connected and A, B is a separation. Choose z € A and y € B,
assume x < y without loss of generality. Let a = sup(A U [z, y]) and b = inf(B U [z, y]). Clearly a < b. If a < b,
choose ¢ € (a,b),thenc ¢ AU B = Ebutx < ¢ < y, contradiction. Otherwise if a = b, a € AN B, it means that
a¢ AUB=FEsince ANB=ANB=2.Thenz<a<yanda ¢ E. [

Remark The following are criteria of connectedness:

(a) The subsetset ' C X is connected if and only if there exists no disjoint nonempty open (relative to E') subsets
A,Bof Esuchthat E = AU B.

(b) The subset set & C X is connected if and only if the only subsets that are both open and closed (relative to £)
are empty set and F itself.
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Chapter 3 Numerical Sequences and Series

Introduction

(1 Convergent Sequences [ Subsequence and Subsequential Limits

1 Cauchy Sequences

3.1 Convergent Sequences

3.1.1 Convergent Sequences

Definition 3.1 (Convergence)

A sequence {p,} in a metric space X is said to converge if there is a point p € X such that for all ¢ > 0,
there exists an integer N such that d(p,,p) < € if n > N. We denote the convergence by p, — p or

limy, o0 P = p. If {pn} does not converge, it is said to diverge.

Proposition 3.1

Let {py} be a sequence in a metric space X,
(a) {pn} converges to p € X if and only if every neighborhood of p contains p, for all but finitely many n.
(b) If p,p' € X and {p,,} converges to both p and p/, then p = p'.
(c) If {pn} converges, then {p,} is bounded.
(d) If E C X and if p is a limit point of E, then there is a sequence {p,} in E such that p = lim,,_, oo pp,.

)

Proof (a) (=) The forward direction is trivial by definition, since for all N.(p), we can choose N by definition such
that N.(p) contains all p,, for whichn > N. (<) Conversely, lete > 0 be given. Put E = {n € Z~¢ : p, ¢ N:(p)},
E is finite. Let N = max F, then p,, € N.(p) foralln > N + 1.

(b) Suppose {p,,} converges to both p and p’. Assume p # p/, let d = d(p,p’)/2. Then there exists N such that
Pn € Na(p) N Ny(p') forn > N, but Ng(p) N Ng(p') = @, contradiction.

(c) Suppose p, — p. There exists N such that d(p,,p) < 1 for all n > N, then diameter is bounded by
M = max{d(plap)a T ad(pN—lap)v 1}

(d) For all n € Z, choose p,, € Ny, (p), then the sequence {p,, } converges to p. [ |

Proposition 3.2

Suppose {sn},{tn} are complex sequences, and lim,,_,~ S5, = s, limy, 00 ty, = t. Then

(a) hmn—)oo(sn + tn) =s+t



3.1 Convergent Sequences

(b) limy, o0 (csp) = ¢s, limy, 00 (¢ + sp) = ¢+ s, for any number c;
(c) limy, o0 Sptn = st;

(d) limy, o0 1/s, = 1/s, given s, # 0 and s # 0. .

Proof (d) Choose M such that |s, — s| < |s|/2if n > M, then we see |s,| > |s|/2 (n > m). Given € > 0, there
is an integer N > M such that n > N implies |s,, — s| < |s|?c/2, then

Sp — S

- 2 | <
—5 |80 — 8| <e.
5nS |2

Proposition 3.3

(a) Suppose x,, € RF and x,, = (a1, - ,Qip). Then {x,} converges to x = (o, - -, ay) if and only
iflim,, o ajn = a; for every j.
1. Suppose {x,} and{y,,} are sequences inR¥, { 3,} is a sequence of real numbers, and x,, — x, y,, — Y,

Bn — B. Then limn—mo(xn + yn) =Tty 1imn—>oo(33n : yn) =x-y, and hmn—)oo(ﬂnxn) = Bz, o

3.1.2 Subsequence and Subsequential Limits

Definition 3.2 (Subsequence)

Given a sequence {p,}, consider a sequence {ny} of positive integers such that n; < ng < ---. The the

sequence {py, } is called a subsequence of {py}. If {pn,} converges, its limit is called a subsequential limit

of {pn}- &

Remark {py,} converges to p if and only if every subsequences of {p, } converge to p.

Proposition 3.4

(a) If {pn} is a sequence in a compact metric space X, then some subsequence of {p,} converges to a point
of X.

(b) Every bounded sequence in R* contains a convergent subsequence. o

Proof (a)Let E = {p, |n € N}. If E is finite, there is p € E appears infinitely many times, then the subsequence
consisting only p converges to p € X. If F is countable, E has a limit point p in X by Lemma 2.2. Choose n; such
that d(p, p,,;) < 1/i and n; > n;_1, which exists because N, /;(p) N E contains infinitely many points. Then {p;,, }

converges to p.

(b) Follows directly from (a), since E bounded means it lies in some k-cell. |
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3.1 Convergent Sequences

Proposition 3.5

The subsequential limits of a sequence {p,} in a metric space X form a closed subset of X.

Proof Let E* be the set of all subsequential limits, and let ¢ be a limit point of E*. Choose {¢,,} C E* such that
d(gn,q) < 1/n for all n. For every n € N, there exists a subsequence {p,, ; };cn converging to gy, so there exists
M such that d(py,,qn) < 1/n fori > M, choose m,, := n; such that ¢ > M and m, > m,_;. Consider the
subsequence {pm,, }, for each i € N, d(pm,,q) < d(pm,,q:) + d(gi,q) = 2/i. Lete > 0, there exists N such that
2/N < ¢g,30d(pm;,q) <2/N < efori> N, hence p,,, — q. [ |

Definition 3.3 (Upper and Lower Limits)

Let {3y} be a sequence, let E be the set of subsequential limits (in the extended real number system), we define
the upper and lower limits of {s,} to be s* = sup E and s, = inf E, denoted by s* = limsup,,_, S, and

S« = liminf,, oo Sp. &

Proposition 3.6

Let {sy, } be a sequence of real number, let E and s* be defined as above, then
(a) s* € E.
(b) If x > s*, there is an integer N such that n > N implies s,, < x.

Moreover, s* is the unique number with both properties. The result for s, is analogous. o

Proof (a) If s* = 400, E is not bounded, so s* = 400 € F. If —0o < s* < +00, since FE is closed (Proposition
35),s* e B. Ifs* = —o00, & = {—oo}, so s* = —o0.

(b) Assume there is x > s* such that s, > x for infinitely many values of n, then there is a subsequential limit y

such that y > = > s*, contradiction.

Uniqueness: Assume p, ¢ satisfy both (a) and (b) and p # q. WLOG, let p < g, then there is x such that p < = < q.
Since p satisfies (b), s,, < = whenever n > N for some N, so g ¢ E, contradiction the fact that g satisfies (a). W

Note Suppose s, < t, for n > N, where N is fixed, then liminf,_, s, < liminf,, i, ¢, and liminf,, . s, <

lim sup,, _,q,p tn-

3.1.3 Cauchy Sequence

Definition 3.4 (Cauchy Sequence)

A sequence {pn }nen in a metric space (X, d) is a Cauchy sequence if for all ¢ > 0, there exists N > 0 such
that m,n > N implies d(pm,, pn) < €. %
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3.1 Convergent Sequences

Proposition 3.7

In a metric space, every convergent sequence is a Cauchy sequence. o

Proof Suppose p, — p. Let e > 0 be given, there exists N > 0 such that d(p,,p) < €/2 if n > N. Then for
n,m > N, d(pn,pm) < d(pn,p) +d(p, pm) = €/2 +¢/2 = €, 50 {p, } is Cauchy.

Proposition 3.8

(a) If X is a compact metric space and if {p,} is a Cauchy sequence in X, then {p,} converges to some
point of X.

(b) In particular, every Cauchy sequence converges in R¥. o

Proof (a) By Proposition 3.4, there exists a convergent subsequence {py, }ren and denote by p the point it converges
to. Let £ > 0 be given, There exists NV such that d(p,, pm) < €/2 for n,m > N by Cauchy condition; and there
exists M > N and d(py,,p) < €/2if n, > M, by convergence of the subsequence. For n > max{M, N}, choose
Pn, such that ng, > M > N, then d(p,,p) < d(pn, Pn,) + d(Pn,,p) < €/2+¢/2 = c. Hence {p,, } converges to p.

(b) Every Cauchy sequence is bounded in R¥: diam Ey < 1 for some N, so the diameter of F is at most

max{xy, -+ ,xy,2znN + 1}. Hence E has a bounded closure in R and the proposition then follows from (a). [ |

Remark The property that used in part (a) can be stated as: every Cauchy sequence with a convergent subsequence

is convergent.

Definition 3.5 (Complete)

A metric space in which every Cauchy sequence converges is said to be complete. &

Example 3.1 The set of all rational, denoted by Q, is not complete. Consider the sequence “approaching” .

Definition 3.6 (Monotonicity)

A sequence {s,} of real numbers is said to be monotonically increasing if s, < s,+1(n=1,---), and it is

monotonically decreasing if s, > sp11 (n=1,---). A

Proposition 3.9

Suppose {s,} is monotonic in R. Then {sy,} converges if and only if it is bounded.

Proof One direction follows directly from Proposition 3.1. For the other direction, without loss of generality,
assume {s, } is monotonically increasing. Consider E = {s,, }, there exists & = sup F by the Lu.b. property. Let
€ > 0 be given, there exists N > O suchthata — e < sy < a,thena —¢ < s, < aforn > N by the monotonicity.
Hence {s,,} converges to a. u
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Chapter 4 Continuity

Introduction

[ Limit of Functions 1 Continuity
(1 Extreme Value Theorem (A Uniform Continuity
[ Intermediate Value Theorem 1 Discontinuity

(1 Normed Vector Space, Banach Space

4.1 Limits of Functions

Definition 4.1 (Limit of Functions)

Let X, Y be metric spaces; suppose E C X, f : E — Y, and p is a limit point of E. We write f(x) — q as

x — porlim,_,, f(x) = q if there is a point ¢ € Y such that: for every € > 0 there exists a 6 > 0 such that

0 <dx(z,p) <d=dy(f(z),q) <e 2

Proposition 4.1

Let X, Y, E, f,p be defined as above. Then lim,_,, f(x) = q if and only if lim,,_,o f(pn) = q for every
sequence {py} such that p,, # p and lim,,_, o pp, = p. .

Proof (=) Suppose lim,_, f(z) = ¢ and ¢ > 0, there exists 6 > 0 satisfying the definition above. For every
sequence {py, } that satisfies the above properties, there exists N such that 0 < dx (p,,p) < 6 forn > N, in which

dy (pn,p) < e. Hence lim,, s f(pn) = ¢.

(<) Suppose lim,_,, f(z) # g, there exists € > 0 such that for all § > 0, there is x € E suchthat0 < dx(p,z) < ¢
but dy (q, f(x)) > e. Construct a sequence {p, } by choosing d,, = 1/n, then it satisfies the desired properties but

dy (q, f(pn)) = €, s0 limp,o0 f(pn) # g. L
Proposition 4.2
If f has a limit at p, the limit is unique. o
Proof  Since the limit of a sequence {p, } is unique, the proposition follows directly from Proposition 4.1. |

Binary Operations Suppose f, g are functions defined on E to R¥, we define addition f + g by (f + g)(z) =
f(z) + g(z) and multiplication fg by (fg)(x) = f(z)g(z). Similarly, we define f — g and f/g (defined only at
points x such that g(z) # 0). The scalar multiplication A f is defined by (Af)(z) = Af(x) for all A\ € R. The limit
laws still holds.



4.1 Limits of Functions

The change of variable in limits is stated as follows: If x = ¢(¢) is an invertible function with inverse
g~ ! in the deleted neighborhood of ¢ = b, and lim; ., g(t) = a, lim,_,, g~ '(z) = b, then either both the limits
lim,_,, f(2z) and lim;_,;, f(g(t)) exist and are equal or both of them don’t exist.
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4.2 Continuity

4.2 Continuity

4.2.1 Continuous Functions

Definition 4.2 (Continuity)

Suppose (X, dx) and (Y, dy) are metric spaces. A function f : X — Y is continuous at p if for every ¢ > 0,
there exists § > 0 such that dy (f(x), f(p)) < € for all x such that dx (x,p) < 0.

If f is continuous at every point of X, then f is continuous on X. &

Proposition 4.3

Suppose f : X — Y and p is a limit point of E. Then f is continuous at p if and only if lim,_,, f(z) = f(p). N

Remark Ifp € X is an isolated point, then f is continuous at p € X.

Proposition 4.4 (Composition of Continuous Functions)

Suppose X,Y, Z are metric spaces, and E C X. If f : E — Y is continuous atp € E, and g : f(E) — Z is
continuous at f(p), then go f : E — Z is continuous at p. .

Proof Lete > 0 be given. Since g is continuous, there exists 6 > 0 such that dz(g(f(p)),9(f(q))) < e if
dy (f(p), f(q)) < 6. Again since f is continuous, there exists A > 0 such that dy (f(p), f(q)) < d if dx(p,q) < A.
Hence dz((go f)(p), (go f)(q)) < eifdx(p,q) < A, so go f is continuous by definition. [

Proposition 4.5

A mapping f : X — Y is continuous on X if and only if f~*(V') is open in X for every open set V in'Y. .

Proof (=): Suppose f is continuous and V is open in Y. For every p € f~1(V), there exists ¢ > 0 such that
N:(f(p)) C V, and by continuity of f there exists 6 > 0 such that dy (f(p), f(q)) < eifdx(p,q) < dforall¢g € X.
It follows that N(p) C f~1(V), i.e., p is an interior point in f~1(V'), thus f~1(V) is open.

(<) Givenp € X and e > 0, let V = N.(f(p)) be the open neighborhood of f(p). By the hypothesis f~1 (V) is

open, thus there exists § > 0 such that N5(p) C f~1(V). In other words, dy (f(p), f(q)) < e if dx(p,q) < &, s0 f
is continuous at p. The choice of p is arbitrary implies that f is continuous on X. |

Example 4.1 The converse does not necessarily hold. The function f : R — R defined by f(x) = 1/(2? + 1) is
continuous on R (which is both open and closed). However, its image f(R) = (0, 1] is not open nor closed.
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4.2 Continuity

Corollary 4.1

A mapping f : X — Y is continuous on X if and only if f~(C) is open in X for every closed set C in'Y. O

Example 4.2 Thomae’s function f : R — R is defined by
0 ifrédQ
f(z) = | -
1/n ifz =m/n € Q, where m € Z, n € Z~q, m,n coprime.
This function is continuous at irrationals and discontinuous at rationals.

The function may also be continuous at finitely many points. The function f : R — R defined by f(z) =z ifz € Q
and f(x) = 0 otherwise is continuous only at z = 0.

4.2.2 Continuity and Compactness

Definition 4.3 (Bounded Function)

A mapping f : E — RF is said to be bounded if there is a real number M such that | f(z)| < M for all
< DN )

Proposition 4.6

Suppose f : X — Y is continuous mapping of a compact metric space X into a metric space Y. Then f(X)

is compact. o

Proof Suppose {V,,} is an open cover of f(X). Since {f~1(V,)} is an open cover of X because each f~1(V,) is
open by Proposition 4.5, the compactness implies that there is a finite subcover { f ~1(V;)}_; of X. Note that hence
{V;}™_, is a finite subcover of f(X) since f(f~!)(E) C E, it follows that f(X) is compact. [ |

Corollary 4.2

Suppose f : X — RF is continuous mapping of a compact metric space X into R¥, then f(X) is closed and
bounded, and f is thus bounded.

Q
Proposition 4.7 (Extreme Value Theorem)
Suppose f is a continuous real function on a compact metric space X, and M = sup,cx f(p), m =
inf,ex f(p). Then there exists points p,q € X such that f(p) = M and f(q) = m. .
Proof Since f(X) is closed and bounded, hence f(X) contains M and m. [ |
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4.2 Continuity

Proposition 4.8 (Inverse of Continuous Function)

Suppose f is a continuous bijective mapping of a compact metric space X into metric space Y. Then the

inverse mapping f~! defined on'Y by f~'(f(z)) = x is a continuous mapping of Y onto X. N

Proof For every closed set V' C X, V is compact, so (f~1)~1 (V) = f(V) is compact and thus closed. Therefore,
f~! is continuous by Corollary (4.1). |

Definition 4.4 (Uniform Continuity)

Suppose f : X — Y be a mapping of metric spaces, f is said to be uniformly continuous on X if for every

e > 0, there exists 0 > 0 such that dy (f(p), f(q)) < e forall p,q € X such that dx (p,q) < 9. %

Example 4.3 Consider f : R — R defined by f(z) = x2. Lete > 0, given § > 0,letp = 1/§and ¢ = §/2 + 1/6.
Then |p — ¢q| = 6/2 < 6, but

[f() = f(@)] =11/6° = (6°/4+1+1/8%)| =1+ 6% > ¢,

so f is not uniformly continuous on R. Note that the issue is that R is not compact.

Proposition 4.9

Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is uniformly

continuous on X. P

Proof Let e > 0 be given, choose §, > 0 such that dx(p,q) < §, = dy(f(p), f(¢)) < /2. Since X is
compact, there exists a finite cover of neighborhoods {Ng, /2(p;)}. Put 6 = mind;/2, then for all p, g such that

dx(p,q) < 9, there exists p; such thatp € N, /5(p;), thenp, ¢ € N5, (p;). Thendy (f(p), f(q)) < dy (f(p), f(pi))+
dy (f(p:i), f(q)) <e/2+¢/2 = e. Hence f is uniformly continuous. [ |

Example 4.4 The compactness is essential. The continuous function f is not necessarily uniformly continuous even

it is bounded. Consider f : (0,00) — R defined by f(z) = sin(1/x), and g : R — R defined by g(z) = sin(x?). f

and g are both bounded and continuous, yet they are not uniformly continuous.

4.2.3 Continuity and Connectedness

Proposition 4.10

Suppose f : X — Y where X,Y are metric spaces. If E is a connected subset of X, then f(E) is connected.

[ )

Proof  Proof by contrapositive. Suppose f(FE) is not connected and A, B forms a separation of f(F). Let
A= fl(A)NFEand B = f~Y(B)NE, then E = AU B'. A’ B’ are nonempty because A, B C f(FE) are
nonempty, and A'NB C f_l(;l N B) =2 (WLOG, AN B’ = @). Therefore, A’, B’ form a separation of E, so F/
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is not connected. [ |

Proposition 4.11 (Intermediate Value Theorem)

Let f : [a,b] — R be continuous. If f(a) < f(b) and f(a) < ¢ < f(b), then there exists a point x € (a,b)

such that f(zx) = c. .

Proof  Since [a, b] is connected, f([a,b]) is connected, so ¢ € f([a, b]) by connectedness. [ |
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4.3 Discontinuity, Monotonicity

Definition 4.5 (One-sided Limit)

Let f be defined on (a,b). Consider any point x such that a < x < b, we write f(z+) = q if f(t,) — q as

n — oo for all sequences {t,} in (x,b) converging to x. The definition of f(x—) is analogous.

L3

Remark The limit of f at = exists if and only if the one-sided limits coincide, namely f(x+) = f(xz—); in this
case, limy_,, f(z) = f(az+) = f(z—).

Definition 4.6 (Discontinuity)

Let f be defined on (a,b). If f is discontinuous at a point x, and if f(x+) and f(x—) exist, then f is said to
have a discontinuity of the first kind (or a simple discontinuity). Otherwise the discontinuity is said to be of
the second kind. &

Remark There is two types of simple discontinuity: (a) f(x+) # f(x—) (removable discontinuity), and (b)
f(z+) = f(z—) # f(x) (jump discontinuity).

Definition 4.7 (Monotonicity)

Let f : (a,b) — R, then f is said to be monotonically increasing on (a,b) if a < © < y < b implies

f(a) < f(b). The definition of monotonically decreasing function is analogous.

&
Let f be monotonically increasing on (a,b). Then
(a) f(z+) and f(x—) exist at every point of x € (a,b).
(b) SUP,ciey f(t) = flz—) < f(2) < f(a+) = infocicp (D).
(c) Ifa<x<y<b,then f(z+) < f(y—).
Analogous results hold for monotonically decreasing functions. o

Proof (a) Consider S = {f(t)|a < t < z}, there exists A := sup S since S is nonempty and bounded above
by f(x). Let e > 0 be given, there exists typ € (a,z) such that A —e¢ < f(tgp) < A. Put 6 = = — ¢, then
|[A—f(t)] <|A— f(to)| <eif |xr —t| < 6. Thus, f(z—) = A exists, and f(z+) exists WLOG.

(b) By the definition of f(x—) in Part (a), inf,<i<, f(t) = f(z—), and f(z—) < f(z) holds by monotonicity. The
inequality for f(z+) holds WLOG.

(c) This assertion follows directly from the inequality f(z+) = inf,<i<p f(t) = infocicy f(t) < sup,yey f(E) =
SUPg<t<y f@t) = fly—). u

gé} Note Corollary: Monotonic functions have no discontinuities of the second kind.
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Proposition 4.13

Let f : (a,b) — R be monotonic real function, then the set of points at which f is discontinuous is at most

countable. P

Proof WLOG, assume f is monotonically increasing and £ = {z € (a,b) | f is discontinuous at z:}. Since f is
increasing, f(x—) < f(z+) if z € E, then there exists r,, € Q such that f(z—) < r, < f(x+). Definep: E — Q
by ¢(z) = rs, then @ is clearly injective since f(z+) < f(y—) if < y. Therefore, E ~ f(F) C Q, so E is at
most countable. |
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4.4 Normed Vector Spaces

Definition 4.8 (Norm, Normed Vector Spaces)

A norm on a vector space V' is a function ||-|| : V' — [0, 00) satisfying
(i) (positivity) 0 < ||z|| < oo forallz € V
(ii) (definiteness) ||x|| = 0 if and only if x = 0
(iii) (scalar multiplication) ||ax|| = |a|||z|| for all scalar o and x € V.

(iv) (triangle inequality) ||z + y|| < ||z|| + [ly[| for all z,y € V.

The pair (V. ||-]|) is called a normed vector space. Iy

A function ||-|| : V' — [0, oo) satisfying all properties above except (i) is called a pseudonorm on V.

If (V,||-]|) is @ normed vector space, then the function d : X x X — [0, 00) is defined by d(x,y) := ||z — y|| is a
metric on V. This is called the usual metric or induced metric on V.

Definition 4.9 (Convergence)

Suppose {x,} is a sequence in a normed vector space (V, ||-||). The series y .o, x; is said to converge
if the sequence of partial sums {s,}, where s, = Y " | x; converges to some x € V in the sense that

limy ool — D1y @y || = 0. In this case, we write Y .2 | &, = .

&

Definition 4.10 (Banach Space)

A Banach space is a normed vector space which is complete with respect to the induced metric. &

Proposition 4.14

A normed vector space (V,|-||) is Banach (namely complete) if and only if a series y .o x; converges

whenever 2 ||z;|| converges.

[ )

Proof (=):LetS, =Y  x;jand T, = > " ||, suppose {T},} converges. Let ¢ > 0 be given. Since {7},} is
Cauchy, so there exists N > 0 such that n > m > N implies |1,, — T;,,| < €. Then

m m
190 = Smll = || D @il < D Nl =1Tn = Tn| <.
1=n+1 1=n-+1

Hence {S,, } is Cauchy and thus converges since X is complete.

(«<): Let {z,} be Cauchy in X. For each i € Z~¢, choose N; such that N; > N;_; for which n > m > N;
implies that ||z, — 2, < 1/2°. Define y; = @5,,, — @, then [[ys]| = |zn,,, — zni]l < 1/2% s0 S5 ||yl
converges, followed by > "7, y; converges. Note that > "' | i = Zp,+1 — Zn,, then {z,,} is convergent. By the
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Cauchy condition and the convergence of {xy, }, it is not hard to show that {x,,} converges to lim; ,~ =, using

triangle inequality. |

Definition 4.11 (Equivalent Norms)

Two norms ||-||1 and ||-||2 on a vector space X are called equivalent if there exists c1,ca > 0 such that

allzllz <zl < e2llzl2 for all z € X. Iy

Proposition 4.15

All norms on a finite dimensional vector space X are equivalent. o

Proof Suppose {e1, - ,e,}isabasis of X, define |3 7" | aie;|li := > 1" |ai|, andput S := {u € X ||ul; = 1}.
Given ||-||2, we can define f : (X, ||-||1) — R by the equality f(z) = ||z||2. We now want to show f is continuous
and S is compact, thus, it follows that im f|s = {||lul|2| v € S} has a maximum and a minimum by the extreme
value theorem. Then for x € X, we can put u = x/||z||;. As shown above, using the above inequality, multiplying
by ||z||1 yields the desired result ¢; ||z||1 < ||z]l2 < ca|z]|2. [ |
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Chapter 5 Differentiation

5.1 Differentiation and Mean Value Theorems

Introduction

([ Differentiation [ Operations and Chain Rule
1 Darboux 1 Mean Value Theorems

[ Taylor’s Theorem

5.1.1 Differentiation

Definition 5.1 (Differentiable)

For function f : [a,b] — R, we say f is differentiable at x € [a, b] if the limit of ¢(t) := [f(t) — f(z)]/(t — x)

exists when t — z, i.e, the limit

: _ S — f(=@)
fim 6(t) = lim ————
exists. In this case, we denote by the limit f'(x) := lim;_,, ¢(t). Iy

Proposition 5.1

If f : [a,b] — Ris differentiable at x € [a,b], then f is continuous at .

Proof Suppose f is differentiable at z, then limy_,,. (f () — f(2)) = limy—, ¢(¢)-(t—2) = f'(z) limy_,(t—2) = 0,

so f is continuous.

Property Suppose f, g are real-valued functions differentiable at x, then f + g, fg, and f /g are differentiable at x,

and
(a) (f+9)(x) = f'(z) +4'(z)
(b) (f9)'(z) = f'(x)g(z) + f(z)g'(2),
(c) (f/9)(x) = [f'(z)g(z) — f(x)g (x)]/g(x)* if g(x) # 0.

Theorem 5.1 (Chain Rule)

Suppose f is continuous on [a, b] and differentiable at x € [a,b], and g is defined on f([a, b]) and differentiable
at f(x). If h(t) = g(f(t)), then h differentiable at x and




5.1 Differentiation and Mean Value Theorems

Proof Note that f/(x) and ¢'(f(x)) exists by the differentiability, so

V(o) — tim 20 0) = 9 @)

t—>a t—=x t—a f(

Proposition 5.2 (Derivative of Inverse Function)

Let f : X — Y (X,Y C R) be an invertible function that is differentiable at p € E. Suppose that
f~': F — E is continuous at q := f(p) and that f'(p) # 0. Then f~! is differentiable at ¢ = f(p), and we

have (=Y (q) = 1/f'(p). o

5.1.2 Mean Value Theorems

Definition 5.2 (Local Extrema)

Let f be a real function on a metric space X. We say that f has a local maximum at p € X if there exists

d > 0 such that f(q) < f(p) for all ¢ € X with d(p,q) < 6. Local minimums are defined likewise. Iy

Proposition 5.3 (Rolle’s Theorem)

Let f be defined on [a,b]; if f has a local maximum at a point x € (a,b) and if f'(x) exists, then f'(x) = 0.

The analogous statement for local minima also holds. o

Proof Since f’(x) exists, lim;_,, ¢(x) exists thus ¢(x+) and ¢(x—) exists. Note that f(t) — f(z) < 0 for all ¢, it
follows that ¢(z+) < 0 and ¢(x—) > 0. Hence the existence of f’(x) implies that f/(z) = lim;_,, ¢ = 0. [ |

Theorem 5.2 (Cauchy Mean Value Theorem)

If f and g are continuous real functions on |a,b] which are differentiable in (a,b), then there is a point
x € (a,b) at which

[£(0) = f(a)lg'(z) = [9(b) — g(a)]f' (). .

Remark For non-degenerated cases, the condition is equivalent to: there exists x such that ¢'(z)/f'(z) =
[9(b) = g(a)]/[£(b) = f(a)].

Proof We may assume f(b) — f(a) # 0, otherwise the results follows directly from 5.3. Define s(z) = f(x)/[f(b)—
f(a)] and t(z) = g(x)/[g(b) — g(a)], then s(b) — s(a) = t(b) — t(a) = 1. Notice that (s — t)(b) = (s — t)(a),
then by Rolle’s Theorem, (s — t)’(z) = 0 for some = € (a,b), then s'(x) = t'(x). Hence ¢'(z)/f'(x) =
[9(b) — g(a)]/[f(b) — f(a)].
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Corollary 5.1 (Mean Value Theorem)

If f is a real continuous function on |a,b] which is differentiable in (a,b), then there is a point x € (a,b) at

which f(b) — f(a) = (b—a)f'(z). O

Proof Follows immediately from Cauchy MVT by taking g(x) = x. [ |

Proposition 5.4

Suppose f is differentiable in (a,b). If f'(x) > 0 for all x € (a,b), then f is monotonically increasing; if
() =0, then f is constant; and if f'(x) < 0, then f is monotonically decreasing.

)

Proof Suppose 1 < xg, then f(x2) — f(x1) = (x2 — x1)f'(x) for some z € (x1,x2) by MVT. The assertion
follows immediately. |

Proposition 5.5 (Darboux)

Suppose f : [a,b] — R is differentiable, and f'(a) < A < f'(b). Then there exists x € (a,b) such that

fl(x) =\ N

Proof Letg(z) = f(x)—At. Notethat ¢’(a) < 0 < ¢(b), there exists t1, ta suchthat g(¢1) < g(a)and g(t2) < g(b),
so g(a) and g(b) are not the absolute minimum. Then minimum is attained at some x € [t1,t2] C (a,b),so ¢ (z) =0

and thus f'(x) = A. [ ]

If f is differentiable on [a, ], then f' cannot have any simple discontinuity on |a, b).

Example 5.1 The function f can be differentiable on [a, b] but still have second kind of discontinuity. Suppose

2zsin(1l/z) —cos(1/x) ifx #0

B x?sin(1/x) ifx #0
f(m)_{ 0 ifz=0

, then f'(z) =
0 ifr=0

1 is differentiable and has a second kind of discontinuity at z = 0 since f’(0+) and f’(0—) do not exist.
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5.2 Derivative of Higher Order, Vector-Valued Functions

Theorem 5.3 (Taylor’s Theorem)

Suppose f : [a,b] = R, n € Zwq, fV is continuous on [a,b), and f™) exists for every t € (a,b). Let v, B
be distinct points of [a, b], and define

nl (k)
k=0 '
Then there exists x € (o, 3) such that
F ()

£8) = PB) + L2 (6 - o)

In general, the theorem shows that f can be approximated by a polynomial of degree n — 1, and it allows us

10 estimate the error, if we know bounds on | f™ (x)].

Q

Proof Define g(t) = f(t) — P(t) — M(t — )™, where M is defined for which f(5) — P(8) + M (8 — «). Note
that g(a) = ¢'(a) = --- = g™ Y(a) = 0 and g() = 0. Then there exists x; € («a,3) such that ¢/(x1) = 0 by
MVT; continuing in this manner, we obtain z; € (c, x;_1) such that g®)(z;) = 0. Therefore, g™ (x,,) = 0, thus
M = f'(x,)/nl.

Example 5.2 The Mean Value Theorem does not hold explicitly for vector-valued functions. Consider F(t) =
(cost,sint). F(2r) — F(0) = (0,0), but 2 F’(t) = 2w (—sint, cost) # (0,0). It follows that F'(t) # [F(27) —
F(0)]/(2m — 0) for all t. However, the following generalization holds.

Proposition 5.6

Suppose f is a continuous mapping of [a, b] into R* and f is differentiable in (a, ), then there exists x € (a, b)

such that | £(5) — F(B)] < (b— a)|f ()] .

Proof If f(b) — f(a) = 0, the inequality holds immediately. Suppose z = f(b) — f(a) # 0, define (t) = z - f(¢),
then ¢ is a real-valued function differentiable on (a,b). By MVT, ¢(b) — ¢(a) = (b — a)¢'(z) for some x, so
|2[* = 2 (f(b) = f(a)) = (b—a)z - f'(x). Then

|22 = (b~ @)z - /()] < (b= a) 2l ()],

where the inequality holds by Cauchy-Schwartz. Therefore |z| < (b — a)|f'(x)]. [ |
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Chapter 6 Sequences and Series of Functions

Introduction

[ Pointwise Convergence, Uniform Convergence [ Criteria of Uniform Convergence

(1 Uniform Convergence Properties [ Equicontinuous Family

6.1 Uniform Convergence

Definition 6.1 (Convergence of Sequence of Functions)

Suppose E C X where X is a metric space and { f,,} is a sequence of complex-valued functions defined on
E. Define a function f by f(x) = limy,_oo fn(x), then f is the limit function of { f,,}, and { f,.} is said to
converges to f pointwise. &

Example 6.1 The double limit of a sequence of continuous function is not interchangeable, i.e., in general,

lim lim f,(z) # lim lim f,(z).

t—x n—o0 n—oo t—x
Suppose m, n € Zs, let Sy, = m/(m + n). Then for every fixed n, lim,;,—y00 Sm.n = 1, so that
limy, o0 liMy,—500 Sm,n = 1. On the other hand, for every fixed m, lim;, ;o0 Sim,n = 0 so that

limy, 00 limy, 00 Sm,n = 0.

Definition 6.2 (Uniform Convergence)

A sequence of functions { f,, : E — R} is said to converge uniformly to f on E if for every ¢ > 0 there is an

integer N such that n > N implies |f,(z) — f(z)| < e forall x € E. &

Remark The difference between pointwise convergence and uniform convergence is that NV depends only one > 0

in uniform convergence, and /N depends on € > 0 and z € E in pointwise convergence.

Proposition 6.1 (Uniformly Cauchy Criterion)

The sequence of functions { f,,} converges uniformly on E if and only if for every € > 0 there exists an integer

N such that m,n > N and x© € E implies |f,,(x) — fm(z)| < e. .

Proof (=) Suppose {f,} converges uniformly to f. Let £ > 0. There exists N > 0 such that n > N implies
[fu(z) = f(@)] <e/2forallz € E, 50 |fu(z) = fm(@)| < |fn(z) = f(2)| + [f(2) = fm(2)] <e.

(«<=) Suppose { f,,} is uniformly Cauchy. The sequence converges pointwise to some f because { f,,(z)} is Cauchy



6.1 Uniform Convergence

forall x € E. Lete > 0 be given, let N be chosen so that | f,,(z) — fi(z)| < /2. Fix n and let m — oo, then
|[frn(z) = f(2)] = limpm—oo | fr(2) — fin(x)] <e/2 < eforall z, so {f,} converges uniformly. [ ]

Proposition 6.2

Suppose limy, o fn(z) = f(z) (x € E), put My, = sup,cp |fn(x) — f(x)|. Then f, — f uniformly on E

if and only if M, — 0 asn — 0. o

Proposition 6.3 (Weierstrass M-test)

Suppose { fn} is a sequence of functions, and | f,,(x)| < M,. Then >, f, converges uniformly on E if Y M,

converges.

[ )

Proof {M,} is convergent and thus Cauchy. Lete > 0. Forn, msufficiently large, | > fo(z)| < >0 M, <e¢
forallz € E,so{>_"" | fn} is uniformly Cauchy. Then ) f, is uniformly convergent. |

42



6.2 Uniform Convergence, Continuity, and Differentiation

6.2 Uniform Convergence, Continuity, and Differentiation

6.2.1 Uniform Convergence and Continuity

Theorem 6.1

Suppose f, — f uniformly on E in a metric space. Let x be a limit point of E, and suppose that A, :=

limy_sy fn(t). Then { Ay} converges, and limy_,, f(t) = lim,, oo Ay. That is,

Rl s R L 0

Q©

Proof (a) Let ¢ > 0. For sufficiently large N, n > m > N implies |f,(t) — fm(t)] < ¢/2 forall t € E, so
|Ap, — Ap| <limyy [fn(t) — fm(t)| < e/2 < e. This implies that { A, } is Cauchy, so it converges.

(b) Let A :=lim,,—,0 A, and f;, — f uniformly. Let & > 0 be given. Notice that
‘f(t) - A’ < |f(t) - fn(t)‘ + ’fn(t) - An| + |An - A|

For all t € E, for sufficiently large NV, we have |f(t) — f,(t)| < /3 by the uniform convergence given that f,, — f
uniformly; | f,,(t) — Ay| < £/3 by the definition; and | A,, — A| by the definition of A. Therefore, lim;_,, f(t) = A,
as desired. |

Corollary 6.1

Suppose the sequence { f,,} is continuous on E for each n, and f, — f uniformly on E, then f is continuous

on E. V)

Remark The converse does not hold. Consider the below example where we let f,, be defined on (0, 1). Then f is

continuous but f,, does not converge uniformly.

Example 6.2 Suppose f, : [0, 1] — R is defined by f,,(z) = ™. The sequence { f,,} converges pointwise to
0 ifz#£1
fz) = , :
1 ifz=1

We see that limy;_1 lim, o0 fr () = limy—1 f(¢) = 1, whereas lim,,_, o lim;_,1 f,(t) = lim,, 00 1 = 1. Indeed,
there exists = such that ™ > 1/2 for all n by intermediate value theorem, then M,, = sup,cp | fn(x) — 0] > 1/2. It

implies that M,, does not converge to 0, so { f,,} does not converge to f uniformly.

Proposition 6.4

Suppose K is compact, and

(i) {fn} is a sequence of continuous functions on K,
(ii) {fn} converges pointwise to a continuous function f on K,

(iii) fn(x) > fo+1(x) forallx € K.
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Then f, — f uniformly on K. o

Set g, = fn — f for each n € Z~, then g, are continuous and g,, — 0 pointwise. Let £ > 0 be given. Let
K, ={z € X|gn(x) > e}, K, is closed because f is continuous, thus K, is compact by Proposition 2.13. Note
that g, (z) > gn+1(x), so K, D K. Since gn(z) — 0, z ¢ K, for sufficiently large n, so (| K, = @. Then
there exists K,, = @ by the finite intersection property, so |g,(z)| < e forall z € X. [

Example 6.3 Compactness is essential in the assumption of the above proposition. Consider f,, = 1/(nz + 1)
defined on (0, 1), the sequence { f,,} converges to 0. It satisfies all of the three conditions, but f,, does not converge

to 0 uniformly.

Definition 6.3 (¢'(X))

If X is a metric space, then € (X ) denotes the set of all complex-valued continuous bounded functions with

domain X. &
¢ (X) is a normed vector space (over C) by associating the supremum norm || f|| = sup,cx |f(x)| to each
function f.

Proposition 6.5

The metric induced by the supremum norm makes ¢ (X ) into a complete metric space.

[ )

Suppose { f,,} is Cauchy in € (X). It is uniformly Cauchy, so it converges uniformly to a function f by
Proposition 6.1. The continuity of f follows from Corollary 6.1. Since there exists N such that ||f,, — f|| < 1 if
n > N, then f is bounded by || f| + 1. [ ]

6.2.2 Uniform Convergence and Differentiation

The goal is to investigate the relationships between differentiability and uniform convergence. Suppose {f,} is a

sequence of differentiable function on [a, b] C R, and suppose f,, — f pointwise (or uniformly). The questions are
(a) Is the limit function f differentiable?

(b) If f differentiable on [a, b], do we have [/ (z) — f'(z) for x € [a, b]?

Example 6.4 Define f,,(x) = 2" for x € [0, 1]. The limit function is given by f(z) = lifx = 1 and f(z) =0
otherwise. f is clearly not differentiable at x = 0 since it is not continuous, so (a) fails if the convergence is
pointwise.

Define f,(z) = y/2? 4+ 1/nforz € [—1, 1]. The limit function is given by f(z) = |z|. Although f,, — f uniformly,
f is still not differentiable at z = 0, so (a) fails even under uniform convergence.
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Example 6.5 Define f,, : [~1,1] — R for each n € Z~q by fu(z) = 2/[1 + (n — 1)2?]. If z = 0, £,(0) = 0
for all n; on the other hand, lim,,_,~ fn(z) = 0 for each fixed . The limit function is thus f(z) = 0, and it is

differentiable. However,

h) — fa(0) . h/[1+ (n—1)h? 1
'(0) =1 —fn( =] =lim — =1
1 (0) B0 h B0 h h—01+4 (n—1)h? ’
so f} does not converge to f.
Proposition 6.6
There exists a real-valued continuous function which is nowhere differentiable. o

Example 6.6 (Weierstrass) Define ¢(z) = |z| for —1 < 2 < 1 and let p(x 4+ 2) = ¢(x), then ¢(x) is continuous

on R. Define the function (by a series of fractal sawtooth)
3 n
= z = (1) e
n=0
By Weierstrass M -test, the series )  f,, convergence uniformly to f, so f is continuous.
Fix ¢ € R and m € Zsg, put 0,, = £47""/2, so there is no integer between 4™x and 4" (x + J,,). Define

T = [e(4™(x + 6m)) — @(4™x)] /6. Note that |y,| < 4™ because |¢(s) — ¢(t)| < |s — t[; in particular, if n = m,

|vn| = 4", and if n > m, vy, = 0 because 4"0,, is even. Then

f(@+0m) = f(z) i (i)"

1)
m n=0

> 3" — 23"— (3™ +1).

Since &, — 0 when m — oo, the limit of the above expression does not exist, it follows that f is nowhere
differentiable on R.

The Weierstrass function is defined as Fourier series: f(z) =Y. 2 ;a" cos(b"mx), where 0 < = < 1.

'h“r’ i

Suppose {f.} is a sequence of differentiable functions on [a,b], such that {f,(xo)} converges for some

xo € [a,b]. If {f]} converges uniformly on |a, b], then { f,} converges uniformly on |a, b] to a function f, and
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6.2 Uniform Convergence, Continuity, and Differentiation

f(x) =limy 00 f1 ().

(a) Let £ > 0 be given. Since { f,,(x0)} is convergent and thus Cauchy, there exists N; such that n,m > N;
implies | f,(x0) — fm(x0)| < &/2. Since { f},} converges uniformly and thus uniformly Cauchy, there exists N2 such
that n, m > Ny implies |f] (z) — f],(z)] < £/2(b — a) for all z.

Let N = max{Ny, No}. For n,m > N, by Mean Value Theorem, there exists = € (z,t) such that

|(fn = fn) (@) = (fn = f) )] = |(f5, = Fr)) (@)@ = B)] <

3

B P
2(1)—@)’&j s

DN ™

Then the triangle inequality implies that

[fn(@) = fm(2)] < |(fr = fin) (@) = (fn = fn) O] + [ fulz0) = fim(z0)| <€/2+e/2=e.
Hence { f,,} is uniformly Cauchy and thus converge uniformly to some function f.

(b) Let f be the limit function of { f,,}, for fixed x, we define ¢y, (t) := [fn(t) — fn(2)]/(t — x) for t # x, and define
o(t) = [f(t) — f(x)]/(t — x). As shown above, for n,m > N,
€

‘ﬁbn(t) - ¢m(t)| < Ma

so {¢n} converges uniformly, for ¢ # z. Since {f,} converges to f, we conclude that lim, o ¢, () = @(t).

Applying Theorem 6.1 yields lim,, oo f, () = limy_, limy, 00 @p (8) = limy, o0 limy 5 ¢, (2) = limy—y, $(t) =

f'(z).
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6.3 Equicontinuous Families of Functions

Definition 6.4 (Pointwise bounded, Uniformly bounded)

Let { fn,} be a sequence of functions define on a set E, we say that { f,,} is pointwise bounded on E if { f,,(x)}
fn(x)| < &(z) for all n and some finite-valued function ¢.

is bounded for every x € F, i.e.,

We say that { f,,} is uniformly bounded on E if there exists M such that |f,(x)| < M forall n and x € E. Iy

Remark In C, every bounded sequence contains a convergent subsequence. However, the generalization fails to
hold on the set of functions:
(i) Itis not generally true that every sequence { f,,} of bounded continuous functions (even if uniformly bounded
on a compact set) contains a pointwise convergent subsequence. For instance, consider f,(x) = sinnz on
[0, 27].
However, a desired subsequence exists on a countable subset F; of E for the sequence of pointwise bounded
functions. (See Proposition 6.7)
(ii) It is not generally true that every convergent sequence of functions {f,} (even if uniformly bounded on a

compact set) contains a uniformly convergent subsequence? (See Example 6.7)

Example 6.7 Let f,,(7) = 2%/[2%2 + (1 —nx)?] forx € [0,1]. {f,} is uniformly bounded on [0, 1] since | f,,(z)| < 1
for all n and x, and lim,,_,~ fn () = 0. However, f,,(1/n) = 1 for all n, so that no subsequence converge uniformly
on [0, 1].

= | w/—L

-0:5 0 0.5

The concept needed in this connection is “equicontinuity”.

Proposition 6.7

If {fn} is a pointwise bounded sequence of complex functions on a countable set E, then {f,} has a

subsequence { fp, } such that { f,,, } converges for every x € E.

)

Proof Suppose E = {z;}icz.,. Note that { f, (1)} is bounded in C, there is a subsequence S1 := { fi ;}, such that
{f1,j(x1)}; is convergent. We define S; = {f; ;} recursively as follows, for every ¢ > 1, S;_1(z) = {fi—1,j(xi)};
is bounded and infinite, so there is a subsequence S; := { fi ; } jez-, of Si—1 for which converges at z;.

Consider the subsequence S = { f; ;} (diagonal process). Note that S' is a subsequence of .S; except for the first i — 1
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6.3 Equicontinuous Families of Functions

terms, so S(x;) converges forevery i =1,---. [ |

Definition 6.5 (Equicontinuity)

A family % of complex functions f defined on a set E in a metric space X is said to be equicontinuous on £
if for every € > 0 there exists a § > 0 such that |f(x) — f(y)| < € whenever d(z,y) < ¢ forall z,y € E and

fez. ' 3

Remark The concept of equicontinuity is similar to uniform convergence. In the equicontinuous family, functions
are uniformly continuous in the same extent, whereas in uniformly convergent sequence, functions converge in the

same extent for every point.

Proposition 6.8

If K is a compact metric space, f,, € € (K) for n € Z~o, and { f,} converges uniformly on K, then { f,,} is

equicontinuous on K. o

Proof Lete > 0 be given, and suppose the limit function is f. By uniform convergence, there exists N such that
|fn(z) = f(x)] < e/3forn > N and x € K. Since {f,} is continuous and K is compact, f is continuous by
Corollary 6.1, and thus f is uniformly continuous by Proposition 4.9. Then there exists dg such that | f(x) — f(y)| < €
if d(z,y) < dp. It follows that

[fn(x) = @)l < |fu(@) = fF@)| + [f (@) = fW + 1f(y) = fuly) =€/3+¢/3+e/3=¢

for d(z,y) < do.

Forn < N, f, is uniformly continuous by Proposition 4.9 since f;, is continuous on a compact set. Then there exists
dn, > Osuch that |f,(x) — fu(y)| < eifd(z,y) < op.

Hence putting § = min{dp, d1,- -+ ,0ny—1} suffices. [ ]
Remark We use the uniform convergence degenerate the case into finite case. For n > N, we use triangle inequality

to convert f,, to f, which is uniformly continuous, and then bound |f,,(z) — f,(y)| for allm > N. Forn < N, we
can directly use uniform continuity for each individual f,,. Then taking the minimum of §’s suffices.

Theorem 6.3 (Arzela—Ascoli)

If K is compact, { fp,} € € (K) forn € Z~o, and { f,,} is pointwise bounded and equicontinuous on K, then
(a) {fn} is uniformly bounded on K,

(b) {fn} contains a uniformly convergent subsequence.

Proof (a) By equicontinuity, there exists 6 > 0 such that |f,,(z) — f.(y)| < 1 for d(z,y) < §. By compactness,
K = {Ns(z;)}1<i<n. Forevery 1 < i < N, there exists M; such that |f,(x;)| < M; by boundedness. Put
M = max{Mj,--- ,M,}. Forevery z € K, there exists xj, such that d(z, ) < J, then for every n € Z~y,

|[fr(@)] < |fu(x) = fulap)| + [ folzr)] < 14+ M, <1+ M.
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6.3 Equicontinuous Families of Functions

Hence |f,| is bounded uniformly by 1 + M. [

(b) For each n, K is covered by finite neighborhoods of the form N; /n(wl) let K, be the set of x;’s. Define
K’ :=|J Ky, then K is countable, so there exists a subsequence {gn }ncz-, of { fn} for which converges on K’ by
Proposition 6.7.

Let € > 0 be given. By equicontinuity, there exists § > 0 such that |g,(z) — gn(y)| < €/3 for d(z,y) < ¢ and all
n. Choose ¢ > 0 such that 1/¢ < 4, then for every x € K, there exists x; € K. C K’ such that d(z, z;) < ¢ by the
construction of K’. Also, by the convergence, for each x; € K, there exists NN; such that |g, (z;) — gm(z;)| for all
n,m > N;. Put N = max{N;}. For n,m > N and every z € E, choose z; as above, then

190 (%) = gm ()| < |gn (@) = gn(@i)| + |gn (i) = gm ()| + [gm (i) — gm(2)| = /3 + /3 + /3 = ¢.
Hence {g,,} converges uniformly on K. [

(a) We use compactness to degenerate the problem into finite points {z;}. For every point x;, { f,(z;)}
bounded by pointwise boundedness, then the equicontinuity allows us to bound the function on the neighborhood of
x;.

(b) For each ¢, we can choose a finite subset by compactness so that their neighborhoods covers K. The equicontinuity
implies that bounding |f,, — f,,| on the finite subset allows us to bound |f,, — fy,| on their neighborhoods. Then
it suffices to prove a subsequence converges on the finite subset; this can be done because there exists a countable

dense subset of K and thus a subsequence converging on it.

49



6.4 The Stone-Weierstrass Theorem

6.4 The Stone-Weierstrass Theorem

Property The following equalities hold by considering the binomial distribution:

zn: (Z)xk(l gk =1,

k=0

Zk( ) (1 —z)" % = E[X] = na,

zn:(nx — k)2 <Z) 2P (1 — 2)" % = Var[X] = na(1 - z).

k=0

Proposition 6.9 (Weierstrass Approximation Theorem)

If [ is a continuous complex function on [a,b], there exists a sequence of polynomials P, such that
limy, o0 Pp(x) = f(x) uniformly on [a,b]. If f is real, then P, may be take real.

[ )
Proof Without loss of generality, we may assume [a,b] = [0,1]. Let B, (f)(z) = > ji_, f(k/n) - by, (z) where
ben(2) = (})2*(1 — 2)"~* is the Bernstein polynomial, we therefore want to show B,,(f) — f uniformly.

Since f is continuous on a compact set, f is uniformly continuous and bounded by some M. Let € > 0 be given.
There exists § > 0 such that | f(z) < f(y)| < €/2 whenever |z — y| < §. Choose N = M /&%c. For n > N, since

£@) = (@) Sy (k1 - )
BN - S| < 1/ - @) () )@ -0t

k=0
(6.4.1)
= > fk/n) = f@lbgal)+ Y [f(k/n) = f@)] brae).
|lz—k/n|<d le—k/n|>0
A B
For |z — f(k/n) — f(z)| < e/2, then
A< |f(k/n) - |Zbkn = [f(k/n) = f(z)] = /2.
For |x — k/n| > 6, (Chebyshev’s inequality)
"\ (x — k/n)? oM
Bt Y b)) <3 T ) = 2 S e k()
lx—k/n|>6 k=0 k=0
2M 2M 1 ¢
“e TN SN 1T
Then |B,(f)(z) — f(z)| < A+ B =cforall x € |0, 1], so B, (f) converges uniformly to f. [ |

Remark The polynomial B, (f)(x) may be viewed as the weighted average of f on [0, 1] where the weight is given
by the binomial distribution. For every x(, when n approaches oo, the binomial distribution is concentrated at zq, SO
the term by, , () vanishes when & /n is far from x, i.e, the polynomial B,,(f)(zo) converges to f(xo).
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6.4 The Stone-Weierstrass Theorem

Corollary 6.2

For every interval [—a, al, there is a sequence of real polynomials P, such that P,(0) = 0 and such that

limy, o0 Pp(x) = |x| uniformly on [—a, al.

Q

Definition 6.6 (Algebra of Functions, Uniform Closure)

Let &7 be a family of of functions on a set E, then <f is an algebra if f + g, fg,cf € < forall f,g € </ and

constant c.

If &/ has the property that | € of whenever f,, — [ uniformly for f, € <, then <7 is said to be uniformly
closed. The uniform closure of < is the set of all limit functions of uniformly convergent sequences in </ . &

Example 6.8 The set of polynomials on R is an algebra. C([a, b]) is the uniform closure of the set of all polynomials

on [a, b], by the Weierstrass approximation problem.

Proposition 6.10

Suppose A is the uniform closure of an algebra <7 of bounded functions. Then A is a uniformly closed
algebra. .

Proof Sketch: Suppose f,, — f uniformly and g,, — ¢ uniformly. It is not hard to see that f, g are (uniformly)
bounded on F, and f, + g, — f + 9, frngn — fg,and cf,, — c¢f. Hence f + g, fg,cf € A, i.e., & is an algebra.

By Proposition 2.9, the uniform closure 4 is (uniformly) closed. [ |

Definition 6.7 (Separate Points, Vanish at No Points)

Let of be a family of functions on a metric space E. o/ said to separate points on E if to every pair of distinct
x1,x9 € E, there corresponds a function f € of such that f(x1) = f(x2).

If to each x € FE there corresponds a function g € <f such that g(x) # 0, we say that </ vanishes at no point
of E.

[ )

Example 6.9 The algebra of all polynomials in one variables separates points and vanishes at no points. The algebra

of all even polynomials on [—1, 1] does not separate points on [—1, 1] since f(—1) = f(1) for all even polynomials

f.

Proposition 6.11

Suppose </ is an algebra of function on a set E, o separate points on E and vanishes at no point of E.
Suppose x1, xo are distinct points of E, and ¢y, co are constants (real if </ is a real algebra). Then <f contains

Sfunction f such that f(x1) = c¢1 and f(z2) = ca. .
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6.4 The Stone-Weierstrass Theorem

Proof Since <7 separate points and vanishes at no point of F, there exists g, h, k € o/ such that g(x1) # g(z2),
g(x1) # 0, and g(z2) # 0. Set uw = gk — g(z1)k and v = gh — g(x2)h. It is not hard to show u(z1) = v(z2) =0
and u(z2),v(xz1) # 0. Then the function f := c1v/v(x1) + cou/u(z2) is the desired function. [ |

Theorem 6.4 (Stone-Weierstrass Theorem)

Let </ be an algebra of real continuous functions of a compact set K. If &/ separates points on K and if o/

vanishes at no point of K, then the uniform closure 9 of </ consists of all real continuous functions on K.

Q

Proof Step 1: If f € A, then | f| € A.

Proof: Let a = sup,c |f(z)|, and let € > 0 be given. By Corollary 6.2, there exists ¢y, - ,¢, € R such that
>0 ey’ —|y|| < eforally € [—a,a]. Since & is an algebra, g(z) = >, ¢;if(x)' € B, and |g(z) — f(z)| <
for all x € K. Hence |f| is an uniform limit of sequence in 4, so | f| € £ since £ is uniformly closed.

Step 2: If f, g € A, then max(f, g) € % and min(f, g) € AB.

Proof: Notice that max(f,g) = ((f +g) + |f — g|)/2, so max(f, g) € £ follows immediately from the fact that
|f — g| € . The result holds for min( f, g), and the result may be extended to any finite set of functions.

SteP 3: Given a real function f, continuous on K, a point z € K, and € > 0, there exists a function g, € & such
that g () = f(z) and g, (t) > f(t —¢) forallt € K.

Proof: For each y € K, there exists h, € 2 such that h,(x) = f(z) and hy(y) = f(y) by Proposition 6.11.
By the continuity of h,, there exists an open set .J, such that h,(t) > f(t) — ¢, and the compactness implies that
K C Jy, U---UJ,, forsome yi,--- ,y,. Then setting g, := max(hy,,- -, hy,) suffices.

SteP4: Given areal function f, continuous on K, and e > 0, there exists a function h € A suchthat |h(x)—f(x)| < e
forx € K.

Proof: Consider g, for each x € K. By the continuity of g,, there exists open set V, containing = such that
9z(t) < f(t) + €. Since K is compact, K C V,, U--- UV,  for some m. The setting h := min(gz,,- - , gx,,)
suffices since h(t) > f(t) — € by Step 3 and the construction implies that h(t) < f(t) + . [ |

Remark The Stone-Weierstrass Theorem does not hold for complex algebra.

Definition 6.8 (Self-Adjoint Algebra)

An algebra </ of complex functions is said to be self-adjoint if the complex conjugate f € of forall f € <. &

Theorem 6.5

Suppose <7 is a self-adjoint algebra of complex continuous functions on a compact set K, and </ separates
points and vanishes at no point of K. Then the uniform closure % of <f consists of all complex continuous

functions on K. In other words, < is dense in € (K).

Q
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Chapter 7 Measure Theory

Introduction

(1 Lebesgue exterior measure (1 Lebesgue measure
[ Properties of exterior measure and measure (A o-algebra and Borel set
[ Cantor set and Vitali Set A Measurable Functions

([ Littlewood’s three principles of real analysis

7.1 Preliminaries

7.1.1 Riemann Integral Recitation

Suppose f : I — R is abounded function defined on a rectangle I C R". We define Riemann integral as follows:

o We partition [ into a finite collection of almost disjoint rectangles I' = {In}nN:1 (whose interiors are pairwise
disjoint), select points &, € I, and define the Riemann partial sum be

Rp(&y, -, &n) fok (Zk)

where v(]) denotes the volume of the rectangle 1.

o f is said Riemann integrable if the limit of Rp exists as the norm of partition I" (|T'| := maxy, diam(1))
satisfies |I'| — 0.

o More precisely, the Riemann integral of f, denoted as [, f ; f(z)dx = A, exists if for all € > 0, there exists
0 > 0 such that for any partition I" of I such that [I'| < 5 w1th any choice of {Ek}k:p the inequality

|RF(§17”' 751\7) _A| < E.

Alternatively, we may use upper and lower Riemann sum to define Riemann integral:

Definition 7.1 (Riemann Integral)

Define the upper and lower Riemann sum by

N

N
Ur = v({l) sup f(x), v(Ig) inf f(
> ollk)sup fa), L= > oll) jof o),
then f is Riemann integrable if and only if limp_o Ur = limp|,o Lr = A, and its Riemann integral is

denoted by [, f ; f(z)dx. Iy

Example 7.1 Riemann integral is very restrictive. For instance, Dirichlet function xgn[o,1], i-€., the characteristic

function on rationals on [0, 1], is not Riemann integrable, because Ur = 1 and Lp = 0 for any partition I".

Indeed, for a function to be Riemann integrable, it need to be continuous “almost everywhere”.



7.1 Preliminaries

7.1.2 Rectangles and Cubes

A rectangle R in R is given by the product of d one-dimensional closed and bounded intervals R = ng j<d [aj, bj]
where a; < b; are real numbers, and its volume is given by [R| = [ [, ;<,(b; — a;|. A cube is rectangle for which
the all its side lengths are equal.

Two rectangles A, B are said to almost disjoint (non-overlapping) if their interior are disjoint, then we use the

convention A LI B to denote their (almost) disjoint union.

Proposition 7.1

If a rectangle I is the union of finitely many non-overlapping rectangles, i.e., I = |_|7]:[:1 I, then |I| =

SN || In particular, if rectangle I, Iy, - - -, I, satisfy I € \JN_, Iy, then |I| < SN | T N

Sketch: For each rectangle I,,, we may divide it into grids of rectangles {—fn,j }]Ai"l of non-overlapping
rectangles, for which {,, ;},, ; is a grid of rectangles that forms I. Then |I| = >ong Hngl = SN ij\inl | I ;| =
27]2[:1 |I,|. The second statement follows from the first statement by breaking Iy,--- , I, into (not necessarily
distinct) non-overlapping rectangles.

Lemma: Every open set G C R can be written as a countable union of disjoint open intervals.

The above lemma does not hold in general Euclidean space R".

Every open set G C R"™ can be written as a countable union of non-overlapping (closed) cubes.

Consider the collection Fy of all cubes of side length 1 whose vertex points are integer lattice points in Z", let
Fo C Fo denotes the collection of cubes in F which are contained in G. Repeatedly, for step k, subdivide all cubes
in F;, that are not contained in |_|i-€:1 F; into 2" cubes (i.e., divide side length by 2 for each dimension), denoted by
ka. Define Fj1 to be the collection of cubes ) € ]:"kH contained in G. Note that for each k, I}, is a countable
collection of non-overlapping cubes of side length 2%, so does their union F := | J F. Denote by H := |—|Qe FQ

the union of all chosen cubes.

It suffices to prove G = H. H D ( is obvious because () C G for all Q € F. Conversely, for every x € G, there
exists an open ball B of radius contained in G. By the Archimedean principle, there exists a cube () in some Fi, such
that z € (Q C B. This contradicts to the construction of F;. Hence any open set G can be written as a countable

union of non-overlapping cubes. |
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The decomposition shown in the proof is the “dyadic decomposition of R™”
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7.2 Lebesgue Exterior Measure

7.2.1 Lebesgue Exterior Measure

Definition 7.2 (Exterior Measure)

Let E C R"™, we define the exterior (outer) measure of E by

my(E) := inf {Z Q5] ‘ Qj are cubes, E C U Qj}
n=1 n=1

where the infimum is taken over all countable covering of E by (closed) cubes and |Q| denotes the volume of

Q. &

It is not suffice to allow finite sums (Jordan outer measure). In this case, we obtain m.(Z) = oo and

m«([0,1]) = 1, while Z is countable and [0, 1] is uncountable.

Example 7.2 Suppose E = {z} is a singleton, the outer measure is m. (F) = 0 since we can cover the point x with
an arbitrarily small cube.

Suppose E = {x,}52, is countable. For all ¢ > 0, we may cover each z,, with a cube (),, whose volume is no
greater than €/2" "L, then m.(E) < Y 0% | |Qn] < Y200, e/27T! = . It follows that m.(E) = 0, i.e., the outer

measure of countable set is zero.

Example 7.3 The outer measure of a cube () equal to its volume |Q)|.

m«(Q) < |Q| because () covers itself. Suppose {Q);} is a countable covering of () by cubes. For each @),
find Q7 such that (Q7)° D Q;, Q| < [Q;] + 27J¢. Since @ is compact and {(Q7)°} forms a open covering of @,
there exists N € N such that ) C Ujvzl Q;. By Proposition 7.1,

N N
Q< DI <3 (1@l +2776) < D 1Qs1 +=.
Jj=1 J

j=1
It follows that |Q| < >, |Q;| for arbitrary covering {Q; }, so m.(Q) > |Q|. Hence m.(Q) = Q. [

The approach is to prove |Q| < > 77, |Qx]| for any covering {Qy, }, which we proved by reduce it to finite
cubes by compactness (through enlarging each (); to a slightly larger open cube) and apply Proposition 7.1.

It is valid to replace the coverings by cubes with rectangles or closed balls.

Denote by m* the outer measure by rectangles. Notice that every cube is a rectangle, mX(E) < m.(E).

Suppose { R;}72, is a covering of E by rectangles. For each j, there exists a countable covering {Q; 1 }32, of R; by
cubes such that Y322 |Q; x| < |R;j| + 27 7e. Since {Q;x};x form a covering,
[ee]

m(B) <Y N 1Qiul < Y (|Rj| + 2—%) =3 IRl +e.
j=1 k=1 j=1 j=1

It follows that m..(E) < 22, |R;], then m.(E) < mPR(E). Hence m,(E) = mI(E). [
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7.2 Lebesgue Exterior Measure

Remark One direction is trivial, and for the other direction, we use the fact that every rectangle is almost a countable

union of cubes.

Example 7.4 For a rectangle I, m.(I) = |I|.

Proof The proof is analogous to the previous example since cubes can be replaced by rectangles. |

Example 7.5 m.(R") = +oo0.

Proof Since cubes 9 C R" can have arbitrarily large volume, we must have m.,.(R™) = +o0o by monotonicity (see
Proposition 7.2 (a)). [ |

7.2.2 Properties of The Exterior Measure

Proposition 7.2

(a) Monotonicity: If E1 C Es, then m.(E1) < m,(E»).
(b) Countable sub-additivity: If E = |J;Z, Ej, then m.(E) < 3222, m.(Ej).

Proof (a) This proposition follows directly from the fact that every covering of F» covers Fj.

(b) Lete > 0 be given. For each j, there exists a covering {Q; » }1 such that > 3> ; |Q; x| < m.(E;)+ 2 7e. Notice
that {Q); 1} 1 forms a covering, then

[ee] o [ee] [ee]
SZZ Qinl < (mu(Ey) +277e) = mu(B)) +¢
=1 k=1 j=1 j=1

Hence m.(E) < 3772, m.(E). [ ]

(a) Completeness: If my(F) = 0and E C F, then m.(E) = 0.
(b) If m.(Ey) = 0 for all k, then m.. (| Ex) = 0.

Proposition 7.3 (Approximation by Open Sets)

If E C RY, then m, (E) = inf m.(O), where the infimum is taken over all open sets O containing E.

Proof my(F) < inf m,(O) follows immediately from the monotonicity. Conversely, let ¢ > 0 be given, there
exists a covering {Q;} such that }_ |Q;| < m.(E) + /2. For each Q;, there exists Q] such that (Q})° D Q; and
Q5] < 1Q;| + 2-UtDe, Let O = U(Q7)°, then Ois open and E C O C |JQ;. Note that

Z <Z(|Q!+2 G0 < z|cz]|+e/2<m*< ) +e,

| A
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it follows that inf m.(O) < m.(E). Hence m,(E) = inf m.(O). [

Remark Itsuffices to prove ) |@Q;| > inf m.(O) — ¢ for all covering {Q; } and € > 0 by the properties of infimum.
Note that we have a slightly larger open cube @} contains Q; for each j, adjoining ()}’s gives an open set that is
slightly larger than | J; Q; 2 E.

Proposition 7.4

If E = E1UEyand d(Ey, E2) > 0, then my(E) = my(E1) + m.(E2). .

Proof By subadditivity, m.(F1 U Ea) < my(E1) + my(E2). Conversely, for any covering {Q;} of £y U E», we
can subdivide each (); into finitely many nonoverlapping cubes whose diameter is less than d(E1, E5), forming a
covering {I;} of E4 U Es. Let Sy and So denotes all Ij,’s which intersects £ and Es, respectively. Notice that no
cubes [ intersects both ' and F», namely S; N Se = @, and S, .S> form a covering of F, s, resp. Then
Do =D Mkl = D Il + Ykl 2 ma(Br) + mu(Ey),
I.€51 I1L,€S2
followed by m.(E1 U E) > my(E1) + my(E2). Hence my(E) = my(E1) + my(E2). [ |
Remark The approach is to divide each cube in the covering to smaller cubes so that no cubes intersect both E

and F, then it is not hard to show the equality.

Proposition 7.5

If a set E is the countable union of almost disjoint cubes E! = | J;2; Qj, then m.(E) = > -2, |Qj].

)

Proof m.(E) < 3772, |Q;] by monotonicity. Conversely, let & > 0 be given. For each (), choose Q] be a cube
contained in @; such that |Q}[ > [Q;] — 27 J¢. Note that d( 7, Qy) > 0for j # k; by Proposition 7.4, for every IV,

N N M ) N
ma(E) =Y ma(Q) =) _1Q51 = (1Q;] —277e) = > Q| —«.
j=1 j=1 j=1 j=1

Let n — 0o, m«(E) > 3772, |Q;| — ¢, followed by m..(E) > >°2, |Q;|. Hence m.(E) =372, |Q;| — & [ |

Remark The approach is to take slightly smaller cube Q) for each Q; (so they have positive distance), then applying
Proposition 7.4 gives the desired result for finite case, thus letting N — +o0 yields the desired equality.
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7.3 Lebesgue Measure

Definition 7.3 (Lebesgue Measure)

A set E C R" is said to be (Lebesgue) measureable if for all ¢ > 0, there exists an open set G such that

E C Gand m(G \ E) < e. If E is measurable, we define its (Lebesgue) measure to be m(E) := m.(E). Iy

That is, F is measurable if it can be approximated by open set from above.

Property Every open set and every rectangle are measurable.

Proof It is trivial that open set is open by definition. For rectangle R, there exists rectangle R* such that
m.(R*) < m«(R) + ¢, then (R*)° is the desired open set. [

Property Every set with zero outer measure (aka, null sets) is measurable.

Proof  Suppose m,(E) = 0, Proposition 7.3 implies that for all ¢ > 0, there exists open G D E such that
m.(G) < my(F) +¢e =¢e. Then m,(G \ E) < m.(G) < ¢, so E is measurable. [

Property A countable union of measurable sets is also measurable.

Proof Let Ey,--- be measurable sets and F = |J Ey. For all € > 0, for each E}, there is an open set G, such
that m. (G}, \ Ey) < 27%¢. Let G = |J G}, then G is open, and m.,. (G \ E) < Y. m.(Gy \ Ex) < ¢. Hence F is
measurable. [ |

Property Every closed set is measurable.

Proof  Suppose F is closed. Proposition 7.3 implies that for all £ > 0, there exists G' open such that m.(G) <
my(F) + €. Suppose F' is bounded and thus compact. Note that G’ \ F' can be written as the countable union
of non-overlapping cubes, Uj’;l ();. For each N, note that U;V: 1 @; is compact and F' is closed implies their
distance is positive, Proposition 7.4 implies that m,(G) = m(F) + m*(|_|§\[:1 Qj) = m.(F) + Zjvzl |Q;], then
Z;V:l |Qj] < mu(G) —mu(F) < e. Let N — o0, the subadditivity yields m..(G'\ F') < 3777, [Q;| < e.

If F is not bounded, let Q. be cubes of side length &, note that R” = | J Q. Since F' LI Qy is closed and bounded,
thus measurable, F' = |J(F N Qy) is also measurable. [

Proof Consider the bounded case, for any open set G O F', we see that m(G) = m(F') +m(G \ F) by the property
of compactness, thus m..(G \ F') can be arbitrarily small.

Property The complement of any measurable set is measurable.

Proof Forevery k € N, there exists G, O E open such that m, (G}, \ E) < 1/n, and the complement G, is closed
and thus measurable. Then S = J;7 | G¢ is measurable. Note that S C E°and E¢\ S C E\ G = G} \ E, then
my(E°\ S) < 1/n for all n, followed by m.(E°\ S) = 0 and E€\ S is measurable. Hence £¢ = S U (E°\ S) is

measurable. [ |
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Property A countable intersection of measurable sets is also measurable.

Proof Follows immediately from property 3 and 5. |

Theorem 7.1 (Countable Additivity)

If B\, Es, - - - are disjoint measurable sets, then m(| |y~ Ey) = > po m(E}).

Proof Let E := | |2, Ej. One direction m(E) < )", m(E},) follows immediately from countable subadditivity.
Conversely, suppose all Ej, are bounded, let € > 0 be given. For each k, there exists a closed set I}, C Ej such
that m,(F \ F) < 2~ k¢ (since E° is measurable). Note that F},’s have positive distance since they are disjoint, then
for each N € N, m(|_|f€V:1 Ey) > m(|_|f€\f:1 Fy) = chvzl m(Fy) > Zévzl m(Ey) —e. Let N — +oo, we have
m(E) > >, m(E)) — ¢, followed by m(E) > 3, m(E}). Hence m(E) = >, m(E}).

For K}, that is not bounded, choose cubes @; ,* R™. Then {E} ; := E, N (Q; \ Q;—1)}; is a pairwise disjoint
collection of bounded sets, for which Ej, = | |; Ey j. Apply the previous result, we have m(Ey) = >, m(Ej,;),
hence m(E) = 3 s m(Ey,;) = 32, m(Eg)- u

Remark Consider the bounded case, note that E' can be approximated by closed set from inside, this gives sets with
positive distance. We obtain the desired equality for finite case by applying Proposition 7.4, and this can be easily

extended to the countable case.

Let {I},} be a countable collection of non-overlapping rectangles, then m(| |, I.) = >, m(I}).

Definition 7.4 (Monotonicity)

IfEq, By, - - - isacountable collection of subsets thatincreases to F, i.e., E, C Ey forallkand E = | J;, E,
we write Ey, 2 E. Similarly, if E1, Es,--- is a countable collection of subsets that decreases to E, i.e.,

Ej D Ejy1 forallk and E = (", Ey, we write Ej, \, E. 3

Theorem 7.2 (Continuity from above/below)

Suppose E1, Ey, - - are measurable subsets of R%.
(a) If Ey, /' E, then m(E) = limy_, oo m(E}).
(b) If Ey, \y E and m(E},) < oo for some k, then m(E) = limy_,oc m(E},).

Proof (a) We may assume F}’s have finite measure, otherwise the equality holds obviously. Denote by G1 = E
and G, = Ej, \ Ej_1 for k > 1, then E = | |, Gy,. It follows that
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(b) Without loss of generality, we may assume m(FE;) < oo, then m(Ey) < oo for all Ey. Define G}’s as above,
then E1 = E U (||, Gk). By the previous result,

m(Ey) =m(E)+ lim ;m (Ex \ Ex—1) = m(E) +m(Ey) — klggo m(Ey),

n—oo

hence m(F) = limg_,o m(Ek). [
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7.4 o-Algebra and Borel Sets

Definition 7.5 (0-Algebra)

A collection % of subsets of some universal set U is called a o-algebra if it satisfies:
(1) UeX
(2) Closed under complement: If E € %, then E¢ € X
(3) Closed under countable union: If Ey, € ¥ for all k € N, then | J,, E}, €

Example 7.6 The collection of all (Lebesgue) measurable sets in R" is a o-algebra.

Definition 7.6 (Borel o-Algebra)

The smallest o-algebra containing all open sets in R™ is called the Borel o-algebra, denoted 9%, and the sets

in & are Borel sets. &

Example 7.7 All open sets, closed set, Fi,-sets (countable union of closed sets), and Gs-sets (countable intersection

of open sets) are in Borel o-algebra.

Remark 2 is a proper subset of .# (the collection of Lebesgue measurable sets).

Proposition 7.6

A subset E of R? is measurable
(a) if and only if E differs from a G5 by a null set (set of measure zero),
(b) if and only if E differs from a F,; by a null set.

Proof Suppose H is a G5 set and Z = H \ FE is a null set for some Z, H. Since H and Z are measurable, then
E = H\ Z is measurable. Conversely, for all &, there exists G, D E such that m(G}, \ E) < 1/k. Let H = (), G},
be a G set, then m(H \ E) = 0. The second statement is analogous. [ |
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7.5 Vitali Sets

Lemma 7.2 (Invariance of Lebesgue measure)

Translation invariance: Suppose E € .4 and h € R", then E+h = {x + h | v € E} is measurable and the
measure is m(E + h) = m(E).

Dilation invariance: Suppose E is measurable, E = {(d1x1,- - ,0nxy) | * € E}, then E is measurable
and m(0E) = 01 -+ - d,m(E).

Q

Define an equivalence relation on [0, 1] as follows: x ~ y if and only if z — y € Q. The equivalence classes
[x] = {x+q €[0,1] | ¢ € Q} are either disjoint or coincide. They form a partition of [0, 1] = | | oy [2] (under the
axiom of choice), where V' consists of one representative from each class.

The Vitali set V is not measurable. V)

Proof LetV, :=V +¢ = {x+¢q|x € V}, and denote by Q = [—1,1] N Q. We have the following three

observations:

(@) [0,1] C U,ex Vy: suppose x € [0, 1], then z ~ y for some y € V' by the definition of V. Thatis,y —z € Q,
in particular z — y € [—1,1] N Q = @, so there exists ¢ € Q) such that z = y + ¢, i.e., z € V.

(b) Vy’s are disjoint: If z € V, NV, then 2 = y +p = ¢ + ¢ for some y,y/ € V, p,g € Q. Then
v —ye[-1,1]NQ = Q, soy =y by the definition of V, followed by p = ¢, hence V,, = V.

(©) Uyeq Ve C [—1,2]: the statement is trivial since V' C [0, 1] and ¢ € [-1,1].

Combining the above observations, we have the following claim:

0,1 c | |Vv,cl-12] (7.5.1)
q€eQ

Assume FSOC that V' is measurable, then V is measurable and m(V;) = m(V') for all ¢ € ). By the Equation
(7.5.1) and monotonicity, given that m(|| <o V) = D_,cqm(V) by additivity,

1=m([0,1]) < m( || Vq> => m(V) <m([-1,2]) =3

qe@ qe@
which is impossible since > .o m(V) = [@Q| - m(V) and Q is countable. Hence V' is not countable. [ |
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7.6 Measurable Functions

7.6.1 Measurable Functions

Definition 7.7 (Measurable Functions)

Consider the real-valued function f defined on a measurable set E C R", f : E — R U {£oo} (NB: we
say [ is finite-valued if —oco < f(x) < oo for all x € E). The function f is measurable, if for all o € R,
{f <a}:={x € E|f(x) < a} is measurable.

Proposition 7.7

The equivalent definition/characterization of measurable functions includes: f is measurable if and only if
{f < a} (or {f > a}, or {f > a}) is measurable for all a € R.

In particular, if f is finite-valued, then f is measurable if and only if {a < f < b} is measurable for all

a,beR .

Proof  The equivalence between {f < a} and {f < a} follows from {f < a} = (), cn1f < a+ 1/n} and
{f <a} = U,en{f < a—1/n}. The equivalence between {f < a} and {f > a} and between {f < a} and
{f > a} follows directly from taking complement.

For finite-valued f, note that {f < a} = Uyez{b < f < a}and {b < f < a} = {f < a} = U,eqq<{f <0}
therefore f is measurable if and only if {a < f < b} is measurable. |

Proposition 7.8

A finite valued function f is measurable if and only if f~1(G) is measurable for every open set G C R.

[ )

Proof (=) Suppose G is open in R, G can be written as a union of open intervals G = | |, (ax, by). Since the
preimage of intervals f 1 ((ag, b)) = {ax < f < by} are measurable, f~1(G) = ||, f~'((ax, b)) is measurable.
(<) Conversely, the statement follows immediately from the fact that every {f < a} is a preimage of an open

interval. [ |

Proposition 7.9

(a) If f is continuous on R", then f is measurable.

(b) If f is measurable and finite-valued, and  is continuous on R, then @ o f is measurable. o

Proof (a) follows immediately from the fact that f~!(G) is open and thus measurable for every open set G by
continuity.

(b) Note that {po f < a} = {x € E|f(z) € ¢ ((—00,a))}, and G := p~1((—00, a)) is open by the continuity
of o, then {p o f < a} = f~1(G) is measurable by Proposition 7.8. [ |
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Proposition 7.10

Suppose { fr.} is a sequence of measurable functions f defined on E, then supy, fi, infy fx, lim supy, fx, and

lim infy, f are all measurable functions. .

Proof Note that {sup,, fr > a} = J,,{fn > a}, so sup fj is measurable, and similarly inf f}, is measurable. The

result holds for lim sup since lim supy,_, ., fx(x) = inf,{supy>, f»}, and it holds for lim inf wlog. |

Suppose { fi} is a sequence of measurable functions, and f(x) = limy_,~ fr(x), then f(x) is measurable.

@ |

Proposition 7.11

Suppose f, g are finite-valued measurable functions, then f + g and fg are measurable. o |

Proof Notethat {f +g>a} ={f>a—g} =U,olf >¢>a—gland{f >q¢>a—gt={f>qtn{g>
a — q} is measurable, so { f + g > a} is measurable, followed by f + ¢ is measurable.

Notice that fg = £[(f +9)? + (f — 9)*]. and f + g, f — g are measurable thus (f + g)%, (f — g)? are measurable,

then fg¢ is measurable. |

Definition 7.8 (Almost Everywhere)

A property is said to hold almost everywhere in E (abbreviated as a.e.) if it holds in E except for a subset of

FE with zero measure. &

Proposition 7.12

If f is measurable, f = g a.e., then g is measurable and m({g < a}) = m({f < a}) forall a € R.

7.6.2 Approximate Measurable Functions by Simple Functions

Definition 7.9 (Characteristic Function, Simple Function)

The characteristic function (indicator function) of a set A is defined as x o(x) = 1 if x € A and otherwise
xa(z) =0.
A simple function is a function of the form f(z) = Z,{C\f:l axX i, where aj, € R and Ey, is measurable of finite

measure for all k. &

Remark Without loss of generality, we may assume ay’s are distinct and F}’s are disjoint in a simple function.
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Proposition 7.13

(a) Suppose f is a non-negative measurable function, then there exits an increasing sequence of non-negative

simple functions fi, converge to f pointwise.

(b) Suppose f is a measurable function, then there exists an increasing sequence of simple functions fy

such that | fi.(z)| < | fxy1(x)| and fi converge to f pointwise.

)

Proof (a) Suppose f is a non-negative measurable function; for each £ € N, define
0 if |z| > k
i >

- L
J iff(:n)e[]%,‘7> forj € {1,-- k- 2%}

2k 2k

Each fi(z) is simple because fi = kx (k) + ijf (jz—kl) XB, - Where each Ejj, = [(j — 1)/2%, j/2F) is
measurable with finite measure.

©

fx is clearly nonnegative.

©

To prove fi(z) < fr+1(z) is increase, consider the following three cases:
() If[z] > &, fra(z) > 0= fi(2);

(ii) If f(z) > k, assume f(z) € [g[—fl, Q,fﬁ), then fi1(z) > min(k

+
—

L Ieh) = k= fula);

(iii) If f(x) < k, assume f(x) € [72;,3, ;—k>, then fi1(z) > 23;12 = ]2%1 = fi(x).

©

Lastly, we want to prove fr — f pointwise. If f(x) = +o0, then for k > x, fi(z) = k, so fx(z) ~ +o0.
Suppose f(z) < 400, let ¢ > 0 be given. There exists N such that 1/2"V < ¢, then for k > max(f(z), N),
f(x) — fe(z) < 1/2F < g, 50 limy 00 fr(z) = f(2).

Hence there exists an increasing sequence of nonnegative simple functions that converge to f.
(b) Suppose f is a measurable function, let f* = max(f,0) and f~ = —min(f,0). By part (a), there exists
sequences of simple functions gx — fT and hy — f~. Let fr = gr — he |fe(2)|] < |frr1(z)| because

Ifx] = gr() + hi(z) < grr1(x) + hgy1(x) = |fra1(2)| since either gx(x) or hy(x) will be zero for every z. In
addition, limg_, fr(z) = limy_oo[g(z) — h(x)] = fT(x) — f~(x) = f(z). Hence f} converges to f. [
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7.7 Littlewood’s Three Principles of Real Analysis

Theorem 7.4 (Littlewood’s Three Principles of Real Analysis)

(a) Every (measurable) set is nearly a finite union of cubes. [Proposition 7.14]

(b) Every (measurable) function is nearly continuous. [Lusin’s Theorem, 7.15]

(c) Every convergent sequence (convergent almost everywhere) of function is nearly uniformly convergent.
[Egorov’s Theorem, 7.16]

Q

Note that “nearly” means the condition holds for £\ N where N is a set with small measure.

Proposition 7.14

Ifm(E) is finite, then there exists a finite union F' = Ujvzl Q; of closed cubes such that m(EAF) < e (where

EAF :=(E\ F)U (F \ E) is the symmetric difference). .

Proof Suppose E is measurable with finite measure. Choose {Q;} such that 372, m(Q;) < m(E) + £/2. Since
Uj=1 Qj /" E, there exists N s.t. 3222 vy m(Q;) < &/2. Define F' = Ué\;l Q;, then

m(EAF)Zm(E\F)+m(F\E)Sm< U Qj)+(zm<@j>—m<E>)sg+gza.
j=1

j=N+1

Proposition 7.15 (Egorov’s Theorem)

Suppose { fi.} is a sequence of measurable functions that converge (a.e.) to a finite-valued function f on a
measurable set E of finite measure. Then for all n > 0, there exists closed F' O E such that m(E \ F') < n

and fi, — f uniformly on F. .

Lemma: Under the same hypothesis, for all € > 0 and > 0, there exists a closed set /' D E and N € N such that
m(E\ F) <nand|f(z)— fr(z)| <ecforallz € Fand k > N.

Proof: Define E,, = (o, {f(z) —e < fi < f(z)+ €}, then E, is measurable. Note that E, , E, so
m(E) = lim,_,o m(E,,), followed by there exists NV such that m(E \ En) < n/2. We may choose a closed set
F C En suchthat m(En \ F) < n/2. Therefore, n(E\ F) < nand |f(z) — fx(z)| < eforalla € Fand k > N.

Proof Foralln € NT, there exists a closed set F,, such that m(E \ F},) < 1/2" such that | f(x) — fx(z)| < 1/n on
Fy, fork > N,. Put ' = ()77, F,, then F is closed and m(E \ F') < . For all ¢ > 0, there exists N s.t. 1/N < ¢,
so |f(z) — fx(z)| < 1/N <eon F C Fy forn > Ny. Therefore, fi, — f uniformly on F. [ ]
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Proposition 7.16 (Lusin’s Theorem)

Let f be a finite-valued measurable function defined on a measurable set E, then for all € > 0, there is a

closed set F' C E such that m(E \ F) < ¢, and f| is continuous. N

Lemma: A simple measurable function f defined on F satisfies: for all € > 0, there is a closed set F' C F such that

m(E \ F') < € and f|F is continuous.

Proof: Suppose [ = Z,ivzl arXE,- We may choose a closed set ), C Ej, s.t. m(Ey \ F) < 2= k¢ for each k, and
let F = | |n_, F. Then m(E\ F) = 3, m(Ey \ F) < e. It suffices to prove f|r is continuous: note that the
Fiforall {x;} C F suchthatz; — x € FF, there exists N such that z; € F forall ¢ > N since { F } have positive

distance pairwise, so f(x;) = ax = f(z).

Proof There exists a sequence of simple functions f; converges to f pointwise. Suppose m(E) < +oco. By the
above lemma, for each k, there is a closed set Fy, such that f;|p, is continuous and m(E \ F;) < 2-(*+De Then
m(E\(Fg) <Y m(E\ Fy) <¢/2,and fi|n g, is continuous for all k. By Egorov’s Theorem, there is a closed
set F’ such that f; — f uniformly on F’ and m(E \ F') < €/2. Let F := F' N (\g—; Fi. Then F is closed,
m(E\F) <m(E\ F')4+m(E\ () Fr) = . In addition, since fi|r is continuous for all k and f; — f converges

uniformly, f|r is continuous.

On the other hand, suppose m(E) = +oo. Let B, = EN{z |k < |z| < k + 1}, and choose a closed set Fj, C Ej,
s.t.fx| F, is continuous and m(Ey \ Fy,) < 27 %e for all k. Let F = |J32, F, then m(E \ F) < e. Note that F is
closed (by proving every point in F' is open since F}’s are closed sets with positive distance pairwise), and f|p is
continuous (since fi|r, is continuous and F},’s have positive distance pairwise). Hence the statement holds even if
m(E) = +oc. [ ]

69



Chapter 8 Lebesgue Integration Theory

Introduction

J

8.1 The Lebesgue Integral

We are going to define integration progressively on (i) simple function, (ii) bounded functions supported on a set of
finite measure, (iii) non-negative functions, and then (iv) integrable functions (the general case).

8.1.1 Stage One: Simple Functions

Suppose ¢ is a simple function with canonical form ¢(x) = fo:l arX g, where a;’s are distinct and nonzero, and
F}’s are disjoint. Then we define the Lebesgue integral of by

N
/cp(x) dx := Z a;m(E;).
j=1

If E is measurable with finite measure, then we define the integral on E by |’ pP= [ oxe.

Property
(a) Independence of the representation: If p = Z,ivzl akX B, is any representation of ¢, then [ ¢ = Z;v: 1 a;m(Ej).
(b) Linearity: If ¢ and 1 are simple and a,b € R, then [(ap + b)) =a [ o +b [ 1.
(c) Additivity: If E and F are disjoint subsets of R% with finite measure, then J EUF P = i) p¥ Tt i) PP
(d) Monotonicity: If ¢ < ) are simple, then inf ¢ < [ 1.
(e) Triangle inequality: If ¢ is a simple function, then so is ||, and | [ | < [ |¢|.

8.1.2 Stage Two: Bounded Functions Supported on a Set of Finite Measure

Definition 8.1 (Support)

The support of a measurable function f is defined to be the set of all points where f does not vanish,

supp(f) = {z| f(z) # 0}; f is said to be supported on E if supp(f) C E. Iy

Suppose f is a bounded function supported on a set F with finite measure, there is a sequence of simple functions
{¢r} such that ¢ — f. The goal is to define [ f := limy_,o0 @y
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Lemma 8.1 (Well-definedness of Lebesgue Integral)

Let f be a bounded function supported on a set E of finite measure. Suppose {py} is a sequence of simple

function bounded by M, support on E, and . — f a.e.. Then
(a) The limit lim f VO exists.
(b) If f =0 a.e., lim [ ¢, = 0.

Q

Proof (a) By Egorov’s Theorem, @3, — f uniformly on some F;, C E s.t. m(E \ F;) < n, then there exists N s.t.
lor — fl < e/2fork > N. Then for k,j > N,

/Isok—w!=/ \wk—ij/ o — i < m(E)e +2Mn.
F77 E\Fs

By choosing appropriate € and 7, we can bound |¢ — ¢;| by an arbitrarily small number. Therefore { [ ¢y} is
Cauchy thus converges.

(b) We may choose [, such that m(E'\ F})) < 7, and ¢|r, < € for sufficiently large &, applying the same argument
as above yields that [ |px| < m(E)e + Mn, hence we see that lim [ ¢}, = 0. [ ]

Remark Consequently, it is valid to define the Lebesgue integral [ f = limy_,o [ k. The linearity, additivity

monotonicity, and triangle inequality holds.

Proposition 8.1

Let f be a nonnegative bounded function supported on a set of finite measure. If [ f =0, then f = 0 a.e.

)

Proof  For an arbitrary o, [ f > [ax(ssa} = am({f > a}) by monotonicity, then m({f > a}) < 1 [ f
[Chebyshev’s Inequality]. Since [ f = 0, m({f > 1/k}) = O forall k, then {f > 0} = |J,{f > 1/k} has measure
0, followed by f = 0 a.e. |

Theorem 8.1 (Bounded convergence theorem (B.C.T.))

Suppose { fi.} is a sequence of measurable bounded by M and supported on a set E of finite measure, fi, — f
a.e. Then f is measurable, bounded and support on E a.e., and [ |fi, — f| — 0. Consequently [ fi, — [ f. 0

Proof Similar to Lemma 8.1, there is a £, such that m(E '\ F;)) < nand fi, — f uniformly on F;, then | f, — f| < e
on F, for sufficiently large k. Then [ |f; — f| < an |f — f] + fE\Fn |fr — f| < m(E)e + 2Mn, followed by
lim [ |fi, — f|=0,and [ fr — [ f follows immediately from Proposition 8.1. [ ]

Remark The bounded convergence theorem implies the validity of interchanging the integral and limit: lim [ f,, =

Jlim f,.

Proposition 8.2

Suppose f is Riemann integrable in [a,b|. Then f is Lebesgue measurable, and f[a ] = f[fb] f, namely two

integrals agree over [a, b].

)
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8.1 The Lebesgue Integral

Proof For each lower Riemann sum, we may write it as an integral of simple functions
N

N
Le(f)=)_ inf f(2)-(zx—ap1) = / v where o =Y inf f(2)  Xuy_y 00
k—1 [xkflzxk] [a7b] k=1
By taking the refinement, we have a sequence @1 < o < --- < f. Analogously, we have a sequence v >

19 > -+ > f corresponding to upper Riemann sums. The sequences {¢x}, {1} are bounded. Then the Riemann

integrablity implies that lim [ ¢, = lim [ ;. Let @, 1 be the limits of {py,}, {11}, resp (the limit exists because

they are monotonic and bounded). Note that [ (1) —@) = lim [+ —lim [ ¢ = 0, then f = = 1) a.e. by Proposition
- R

8.1. Hence f[a’b] f= f[a’b] P = f[%b] f. [ |

8.1.3 Stage Three: Nonnegative Measurable Functions

Definition 8.2 (Lebesgue Integral)

Let f > 0 be a measurable function. Define the (extended) Lebesgue integral [ f(z)dx := sup [ g(z) dx
where the supremum is taken over all measurable functions g such that 0 < g < f, and where g is bounded

and supported on a set of finite measure. We say f is Lebesgue integrable if [ f(x) dx < +oo. 3

Proposition 8.3

The integral of non-negative measurable functions enjoys the following properties:

(a) Linearity: If a,b > 0, f, g are nonnegative measurable functions, then [(af +bg) =a [ f+b [ g.
(b) Additivity: If E and F are disjoint subsets of R%, and f > 0, then /, EUF = I gf+ / sl

(c¢) Monotonicity: If0 < f < g, then ff < fg.

(d) If h is integrable, and 0 < f < h, then f is integrable.

(e) If f is integrable, then f < +o0 a.e.

() If [ f =0, then f =0 a.e.

[ )

Example 8.1 The analogy of bounded convergence theorem does not necessarily hold, i.e. f, — fae. # [ fr —
[ f. Consider the sequence of functions

Tk =nX0,1/k)-
Note that f, — f:= 0, yet [ f = 1 for all k, it follows that [ f =0 # 1 = lim [ f.

Lemma 8.2 (Fatou)

Suppose { [} is a sequence of measurable functions with f, > 0. If lim,,_, fn(z) = f(z) for a.e. x, then

Proof Choose an arbitrary ¢ for which 0 < g < f are bounded function supported on a finite measure set. Let
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8.1 The Lebesgue Integral

g = min{g, fr} < g, then note that g, — g a.e. By the bounded convergence theorem (8.1), f g = lim f gk, then
we have [ g =lim [ gx < liminf [ fj since g5 < fj, hence [ f =sup [ ¢g < liminf [ fj

Corollary 8.1

Suppose f is a non-negative measurable function, and { f, } a sequence of non-negative measurable functions

with fn(z) < f(x) and fn(x) — f(x) for almost every x. Then lim, o [ fn = [ f. v

Proof Since f,(z) < f(z), wehave [ f, < [ f,itfollows thatlimsup [ f, < [ f. Combined with Fatou (Lemma
8.2), we have [ f =lim [ f,. [ ]

Corollary 8.2 (Monotone convergence theorem (M.C.T))

(a) Suppose {f} is a sequence of non-negative measurable functions with f,, /* f. Then lim,,_,oc [ fr =

f.
(b) Consider the series »_, ap(x) where ay > 0 is measurable for all k, then [, ap(z)dz =
Sk [ ar(z) dz. Moreover, if > [ ay, is finite, the series Y, ay(z) is convergent for a.e. x.

Q

Proof (a) follows immediately from Corollary 8.1.

(b) The first statement follows by taking f; = Zi:l a(x) and note that f; ", a;. The second statement follows
from Proposition 8.3 (e). [ |

8.1.4 Stage Four: General Case

Definition 8.3 (Lebesgue Integral)

Let f be a real-valued measurable function on RY, we say that f is Lebesgue integrable if | f| is integrable as

a nonnegative function.
If [ is Lebesgue integrable, let f*(x) = max(f,0) and f~(x) = max(—f,0), and define the Lebesgue
integralof fby [ f= [fT— [ f~.

&

Property The integral of Lebesgue integrable functions is linear, additive, monotonic, and satisfies the triangle

inequality.

Proposition 8.4

Suppose f is integrable on R?, then for every € > 0:
(a) There exists a set of finite measure B such that [». |f| < .

(b) Thereis ad > 0 such that f i |f| < € whenever m(E) < 6, i.e., the absolute continuity holds.
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8.1 The Lebesgue Integral

(a) implies that integrable function vanish near oo (however, is is not true that lim, |, f(x) = 0).

(b) implies that the map M — RT defined by E — [ |f| is (absolute) continuous.

(a) WLOG, assume f > 0. Let By, be the ball centered at the origin with radius &, and put f, = fxp, / f.
By monotone convergence theorem (Corollary 8.2), limy, f fr = f f. Then there is N such that | f f— f frl <e
for £ > N, followed by By is the desired set.

(b) Let By, = {f < k} and fr = fxE,. then f;  f. Then for sufficiently large %, | [ f — [ fix| < /2. Choose
d = &/2k, then for E such that m(E) < 4,

/Efs/EfH/E(f—fk)gm(Em;<5. =

Suppose { f} is a sequence of measurable functions such that fp(x) — f(x) a.e. z. If |fn(2)] < g(x) ae.,
where g is integrable, then lim [ f, = [ f.

In fact, lim [ |fx, — f| — 0.

Note that —g < fr < g for all k, then each f; and f are integrable. By Fatou (Lemma 8.2), since
gt fr,gt f>0ae. andg+ frr = g+ f,

/(g+f)Sliminf/(g-l-fk)Z/g+liminf/fk — /fﬁliminf/fk,
Jto- 5 <timint [tg— )= [g—tmswp [ 5 = [ 1=t [ £

Combining both inequalities gives lim [ fr = [ f. [

8.1.5 Complex-valued Functions

A complex-valued function f : R — C may be written as f () = u(x)+iv(x) where u, v are the real and imaginary
parts of f, resp. The complex-valued function f is Lebesgue integrable if | f| := \/|u|? + |v|? is integrable, if and

only if u, v are integrable. In such case, we define its Lebesgue integral as

/f(:v) dmz/u(x) d:v+i/v(x) da.

Note that |(f + g)(z)| < |f(z)| + |g(z)|, the monotonicity yields that f + g is integrable if f, g are integrable; and
similarly a f is integrable if f is integrable. Therefore, the integral is linear over C.
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8.2 The Space L1 of Integrable Functions

8.2 The Space L1 of Integrable Functions

8.2.1 L1 Space

Definition 8.4 (Norm, L' Space)

For any integrable function f on R? (over C) we define the norm of f, || f||1 = [ga |f(x)|dz. The space
L1 (R9) is the space of equivalence classes of integrable functions, where the define f ~ g if f = g a.e.

L)

Property L'(RY) inherits the property of vector spaces: suppose f, g are two functions in L' (R%),
(i) lefll L2 ey = lalll fll 1 (ray for all a € C.
(ii) || + gllprway < 1flpr ey + 191l 21 mey-
(iii) |l L1 (ray = 0 if and only if f = 0 a.e.
(iv) d(f,9) = If — gllp1(me) defines a metric on L'(R9).

Theorem 8.3 (Riesz-Fischer)

The vector space L' is complete in its metric.

Proof Suppose {f,} is Cauchy in L*(R?). For each k, we may choose f,,, such that ng > ny_1 and || f, — finll <
27F for m > ny; then the subsequence { f,,, } satisfies that || f,,, — fn,+1]] < 27%. Define f = f, + 3 501 (frpss —
fnk) and g = |fn,| + 220:1 |fnk+1 - fnk|

By M.C.T. (monotone convergence theorem), [ g = [ [ fu, |+ Y52, [frypr — Sy | < [ [fon| + 2202, 277 < 00, 50
g is integrable. By D.C.T. (dominated convergence theorem), since | f;,,| < g and the partial sum of f is simply f,,,
ie., fn, / fothen || fo, — fll = [ | fur — f] = 0, namely f,,, converges to f both pointwise a.e. and in L'. Finally,
{fx} — fin L since {f;.} is Cauchy and contains a convergence subsequence. [ |

Remark Summary: We first find a subsequence { f,,, } whose norm stabilizes rapidly, then apply D.C.T. to prove the
convergence of { f,, } — fin L', finally we show that containing a convergent subsequence implies the convergence

of {fn}.

Corollary 8.3

IF{fn}52 converges to f in LY, then there exists a subsequence { fn, } such that f,, — f(z) a.e. x. v

Remark Note that {f,} converges in L' does not implies that f,, — f a.e., indeed, f,, may converge nowhere to f.

Proposition 8.5

The following families of functions are dense in L' (R?):

(a) simple functions
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8.2 The Space L1 of Integrable Functions

(b) step functions

(c) the continuous functions of compact support (denoted by C.. (Rd) )

Proof It suffices to consider nonnegative real-valued functions f.

(a) By Proposition (7.13), there exists a sequence of nonnegative simple functions ¢y, * f. Note thatlim [ ¢ = [ f
by M.C.T, then || f — @xll = [(f — ¢x) — 0.

(b) It suffices to approximate x g by step functions. By Littlewood’s first principle, there exists rectangles {Q;};
such that m(EAQ) < e where Q := |JQ;. Then ||xg — x| < m(EAQ) < e.

(c) It suffices to approximate y¢ by functions in C.(R?). Let @' 2 @Q be a rectangle such that m(Q’ \ Q) < e.
Define f such that f|g = 1, f|ge = 0, and f |Q/\Q is linear, then f is continuous and supported on @Q’. Note that

If = xell = [lflonell < M@\ Q) <e. ]

8.2.2 Invariance Properties, Translation and Continuity

Proposition 8.6 (Invariance Properties)

(a) Translation Invariance: Forall f € L'(R?), [ f(z — h)dx = [ f(z)dx.
(b) Dilation Invariance: §° [, f(0z) dz = [gq f(z)dz for § > 0.
(c) Reflection Invariance: [ f(—x)dz = [ f(z)dx

Proof By Proposition 8.5, the family of simple functions are dense, it suffices to show the translation invariance for
xe: [xe(x—h)de= [,_, pde= [ _p. ., de=m(E+h)=m(E)= [xgdr. The proof for (b) and (c) are

analogous. |

In particular, suppose f,g € L'(R?) such that y — f(z — y)g(y) is integrable for some fixed 2. In such case,

[ f@=y)g(y)de = [ f(y)g(z —y) da.

Definition 8.5 (Convolution)

Suppose f,g € L*(R?), we define the convolution for f, g by (f * g)(z) == [ f(y)g(x — y) dy. s |

Proposition 8.7

Let fr(x) := f(z — h). Suppose f € L'(RY), then || fi, — f||;2 — 0 as h — 0. N |

Proof Let g € C.(R%) (continuous function of compact support), clearly ||g;, — g|| — 0 as |h| — 0. For every
f € LYR?), |lg — f|| can be bounded arbitrarily small for some g € C..(R™) by Proposition 8.5. Then the triangle
inequality

1w = FI < W = gnll + llgn — gl + llg = fIl = 2llg = £Il + llgn — gl
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8.2 The Space L1 of Integrable Functions

implies that || f, — f|| — O as |h| — 0.
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8.3 Fubini’s Theorem

8.3 Fubini’s Theorem

8.3.1 Fubini’s Theorem and Tonelli’s Theorem

Foraset E C R™ x R", we define its slices by £, = {z € R™ | (z,y) € E}. Suppose f(x,y) is a function defined
on R™ x R", we then define its slices corresponding to y € R" by f,(y) : z — f(x,y).

Example 8.2 It is not necessarily true that £ being measurable in R™*" implies that E, if measurable for all
x € R™. Consider the Vitali set V and let E = V x {0}. E is clearly measurable in R? because  is the subset of a
null set R x {0}, but the slice £, with y = 0 is not measurable.

Note that the above statement holds for “almost every” = € R™. This is an immediately corollary of Fubini’s

Theorem by taking the function f = xg.

Suppose f(x,y) is integrable on R™T" = R™ x R", then for almost every v € R™:
(a) The slice f; : y — f(x,y) is (measurable and) integrable on R™ for each x € R™ fixed.
(b) The function defined by f]R" f=(y) dy is (measurable and) integrable on R™.

Moreover,

(€) Jgmin f(@,y)dedy = [gm (fgn f(z,y) dy) da.

Let F denotes the family of functions in L' (R™*") who satisfy the above conditions.

Step I: (F is closed under linear combination): Suppose {fj};_, is a finite collection of functions in F, then
Z]kvzl apfr € F for a;, € R.

Proof: The above three conditions follow from the linearity of Lebesgue integral.

Step 2: (F is closed under (monotonic) limit) Suppose { fx }x is a sequence of functions in F such that f; * f (or
respectively f, N\, f) where f € L(R™*"), then f € F.

Proof: (i) For a.e. x (on where all f, satisfy the above conditions), note that f, : y — f(z,y) = sup; fx(x,y) and
fr(z,y) is measurable, then f, measurable. Since fx(x, ) 7~ f(z,-), by M.C.T. (NB: the nonnegative condition can
be easily satisfied by subtracting each function by fi(z,y)), we see that hy(z) := [ fe(z,y)dy & [ f(z,y)dy =
h(z). We will prove the integrability after part (iii).

(ii) For a.e. x, since  — h(x) = sup hi(x) and hy(z) is measurable, then x — h(z) is measurable.

(iii) For a.e. =z, apply M.C.T. (to hy — h; as above), we have f hi(z)dz N f h(zx)dz. Tt suffices to show
that [ hy(z) 7 [[ f(z,y)dxdy. Apply the third condition for fj and M C.T again, we see that [ hy(z)dz =
fffk(:n,y dmdy/‘fff x,y) dx dy.

Note that [ h(z)dz = [[ f(z,y)dxdy < +oo, this proves the integrability of h(z) = [ fz(y) dy in (ii); indeed,
[ foly)dy = ( ) < oo for a.e. z, proving the integrability of f, in (i).

Step reduced the proof to 0 < f € L'(R™*"). Step 2 and the fact that any f > 0 can be approximated
by {@x} simple functions s.t. ¢  f a.e. implies that if we know ¢, € F and f € L'(R™™), then f € F.
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8.3 Fubini’s Theorem

Therefore, we may reduce the proof to characteristic functions x g where E is measurable with finite measure, which

can be further deduced to G set by Proposition 7.6.
Step 3: Let E be a G5 set in R with finite measure, then yg € F.
Proof: Tt suffices to show the statement for open set G of finite measure, by step 2. We can write G as G = | | Q)

where ();’s are almost disjoint cubes, thus G = (|| Q7) U (L] F;j) where E; C 9Q);.

(a) In order to show XU Qs € F, by step 1 and 2, it suffices to show XQs € F. Suppose x1,x1, € F where I and
I, are open cubes in R™ and R™, resp. (i) For x € R™, if x € I, (I x I3); = I is finite-measurable in R";
on the other hand if = ¢ I, (I} X I2), = @. (ii) x — mpn(([1 X I3);) is v(I2)x1,, thus it is measurable. (iii)
[Jgmen Xnix1, = m(I1 X I2) = |I1 X Io| = o m(I1)X1, = Jgm (Jgn X(11 x 1), dY)dex.

(b) We want to show that £ C Q) where @ is a cube in R™*™, then xz € F. It is not hard to show this statement
since F is a hyperplane in R”*"

Hence G' € F and thus we proved the statement.

Step 4: (null set belongs to F) Let N be a null set in R™*™, then yy € F. In particular, the slice N, is a null set
fora.e. x € R™.

Proof: There exists a G set H s.t. N C H and mgm+n(H) = 0. Then N, C H, by definition. By step 3,
Mgm+n(H) = [gn mgn (Hy) de implies mgn (H,) = 0 for a.e. © € R™, therefore mgn(N,) = 0 a.e.. Therefore,
N e F.

Step 5: xg € F if E is finite-measurable in R™ 7,
Proof: The statement follows immediately from Proposition 7.6, F differs from a G set by a null set.
Step 6: Every function f € L'(R™*") belongs to F, namely Fubini’s Theorem holds.

Proof: For all f € LY(R™*"), ¢ 7 f for some increasing sequence of simple functions {¢}, and ¢ € F by
step 6 and step 1, then f € F by step 2. |

The converse does not necessarily hold, i.e., it is not the case that f measurable in R™*" and
Jgm (Jgn f2(y) dy) dz being finite implies that f € L'(R™+").

Example 8.3 Consider the union of cubes Q); C R? aligning in the diagonal with side length 277, For each cube, we
subdivide it into 4 sub-cubes, and assign f(x) = 1/|Q;| for upper left and lower right sub-cubes and f(x) = —1/|Q;|
for the other two. It is not hard to show that the slices are zero everywhere. However, [ [, f is not defined because

ffR2 Ifl = Zj m(Qj) : (1/|Qj\) = +00

Let f(z,y) be a nonnegative measurable function in R™*". Then
(i) for a.e. © € R™, the slice f, : y — f(x,y) is measurable in R™;
(ii) the function x — fRn fz dy is measurable in R™ (in the extended real number system); and moreover,

(iii) meJrn flz,y)dedy = me (f]R" T,y dy) dx (in the extended real number system).
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Fubini-Tonelli’s Theorem: we commonly apply Tornell’s theorem to | f| to check f € L}(R™*") & |f| €
LY(R™*"), then we may compute [ [p.m+n f(%,y) dy dz using Fubini’s Theorem.

Cosntruct f, € L*(R™™) s.t. fi, 7 f by defining
_]o if |[(z,y)| > k
= {min{ﬂm,y),k} i (2,9)] < k

Since f}, is nonnegative, bounded and supported on a set of finite measure, f, is integrable. Moreover, fi(z,y)
f(z,y) for all (z,y), and fx € F for all k. M.C.T. implies that (i) fmeM fe / [Jgmin fo Forae. z, (fi)s is

measurable and integrable, then (fi), ' f, for ae. x, so hy(x) == [pu fu(z,y)dy 7 [pn f(2,y) dy =: h(x),
and thus (ii) [, hi(2)de = [, h(x)dz. Note that [[p,.n fk = Jgn hi(z) dz by Fubini’s Theorem, hence
Jgmin f(z,y) de dy = me (fan f(z, y) dy) da follows from (i), (ii), and the uniqueness of limit. [ |

8.3.2 Application of Fubini’s Theorem

Proposition 8.8

Let Ey1, E5 be measurable sets in R™,R", resp. Then E = Ey x Es is measurable in R™ " with mgm+n (E) =

mpm (E1)mgn (Es), with the understanding that if one of the sets has measure 0, then m(E) = 0.

[ )

If E is measurable in R™*™, apply Tonelli’s theorem to g, we see that
Mmgm+n (E) = mpn(Ey)dz [ mpn(E2) de = mpm (Ey)mpn (E2).
Rm™ FE1q
It suffices to show E is measurable. Note that there is G5 set Hy s.t. H; 2 E; and mgm(H; \ E1) = 0, and
analogously there is Ho corresponding to Ey. £ C Hy x Hs is a G setin R™*™, and

(H1 X HQ)\E = (Hl X HQ) \ (El X Eg) - ((Hl \El) X HQ) U (H1 X (HQ \EQ)) .

Lemma 1: m.(A; x Az) < mu (A1) x my(Az) where A; C R™ and Ay C R", with the understanding that if one
of the sets has exterior measure 0, then m.(A; x Ag) = 0..
Proof: Let ¢ > 0. By the definition of outer measure, there exists {Q}}, {Q?} covering of A;, Ay by cubes s.t.
> |Q]1\ < my (A1) + ¢, and similarly for Ay. Then A; x Az C <UJ le) X (U] Q?) = U”(Ql1 X Q?), followed
by

«(A1 x Ag) < Z\Ql x Q3] <Z\Q - Z\QQ\ < (m(A) + ) (ma(B) + €).

If m. (A1), m.(Az) < +o0, passe — 0, we see that m, (A1 X A2) < (m.(A)+e)(my(B)+e¢). Onthe other hand, if
m. (A1) = 0and m.(Az) = +oo, then A} := Ay N {y € R"[[y| < j} 7 Ay, we see that Ay x Ay = [J;(A1 x AY)
is a null set. |

Apply the lemma to the above equality, we see that (H; \ E1) X Ha and H; x (Hs \ E») are null sets, so E is
measurable since it differs from a G set by a null set. |
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Proposition 8.9

Let f be a nonnegative function on R" and A := {(z,y) € R" x R|0 <y < f(z)}. Then
(i) f is measurable on R™ if and only if A is measurable in R" 1,

(ii) If the condition in (i) holds, fRn f(x)dx = mgn+1(A). N

Remark The Riemann integral of f > 0 can be viewed as area below the graph of f, we generalize it to Lebesgue
integral to be the measure below the graph.
Proof (ii) Apply Tonelli’s theorem to x 4,
Mmgn+1(A) = mr(Ag) de = f(z)dx,
R R™
where the second equality holds by the fact that A, := {y € R|(z,y) € A} = [0, f(x)]. [ ]
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Chapter 9 Lebesgue Differentiation Theory

9.1 Differentiation of the Integral

Theorem 9.1 (Lebesgue Differentiation Theorem (L.D.T.))

If f € LY(R™), then
/ f=f(z) forae xecR",
Q—)x m

where Q’s are cubes containing x passing to the limit m(Q) — 0.

Q

Proof The desired statement holds for all g € C(R™) (continuous function on compact support) because they are

uniformly continuous.

Let fe Ll(R") and ¢ > 0. There exists g € Cco(R™) such that || f — g|[;1 < e since Co(R™) is dense. Note that
m(Q fQ f=f= fQ f=9l+1 (1Q) ng —g()] + [9(x) — f(x)]. by taking the limit,

WQ)/Qf—f(x) @L(f—g)‘ﬂigjgp ﬁ@/@zg_g(x)
For any o > 0, define

m(Q) /Q f=1(=)
it suffices to prove m(Eq) — 0 as & — 0. Note that

=0
1 "ilg(x) - fz «
W/Q(f—g)|>a}U{m€R tg(z) — f(2)] > }

+lg(x) = f(2)].

< lim sup
Q—x

lim sup
Q—x

/

Q—x

E, = {l‘ € R" : limsup

>2a},

E, C {1: € R" : lim sup

Q-
A, Ba
By Tchebychev’s inequality, m L fg(x x)|dr = ||f — g||/a < €/a, thus m(B,) = 0 as ¢ can be

arbitrarily small. We now con51der the measure of Aa, let s first define the maximal function.

Definition 9.1 (Hardy-Littlewood Maximal Function)

Let h € L*(R™), we define its Hardy-Littlewood maximal function of h as

*(z) := su 1
@) = [




9.1 Differentiation of the Integral

Lemma 9.1 (Elementary version of Vitali lemma)

Suppose F = {Q1,--- ,QnN} is a finite collection of cubes in R? then there exists a disjoint subcollection

{Qi;}j of F sit. m(Uf\il Q;) < 3¢ 22:1 m(Qy,). :

Proof We claim that if two cubes @, R intersect, where [(Q)) < [(R), then @ C 3R (where 3R is defined to be the
cube centered at the center of R with triple side length). Let ();, be the cube in F with largest side length, and define
Fi1={Qr € F: QrNQ;, =} tobe the set of cubes which does not intersects ¢);,. We then recursively choose

Q;; to be the largest cube in F;_; and define the corresponding F;. Then we see {Q;, } are pairwise disjoint and
covers all cubes in F, thus m(lJ; Qi) < m(U, 3Q;;) < 34 >~ m(Qi;) as desired. [

Lemma 9.2 (Hardy-Littlewood)

Suppose h is integrable on R, Then

(a) h* is measurable.
(b) h* belongs to weak-L*(R?): for some constant C, h* satisfies m({h* > a}) < (C/a) - ||h|| 11 for all
a > 0. Q@

Proof (a) For any A > 0. For x s.t. f*(x) > A, there exists @ 2 x s.t. m fQ |f| > A. Then for all y € Q,
fy) > @ fQ |f| > A ie., @ C {f* > A}, hence { f* > A} is open thus f* is measurable.

(b) For each x € {f* > a}, there is Q, > x s.t. m Jo, |fI > a. Let K C {h* > a} be an arbitrary compact
subset, there exists {x1,---,xy} such that K C Uf\il QS C Ufil Q; where Q; := (), by the compactness.
Apply Lemma 9.1, there exists pairwise disjoint collection {Qy;}; s.t. m(J; Q) < 3¢ >_;m(Qi,), therefore
m(K) <3732, m(Qs,).

Recall that each Q,; satisfies that m(Q;) < ész | f], then m(Q;;) < (1/a) - fQij | f1, followed by

! 1 1
E m(Q;.) < — < - .
st ( J) « /|_|z Q; /] « /Rd /]

j=1
Combining the above inequality m(K) < 3¢ > m(Qi;), we see m(K) < (3%/a) - || f|| 2 for any compact
K C {f* > a}, hence the desired statement holds. |

Remark It is not necessary that f € L'(R?) implies f* € L'(R%). (Ex. 4)

Proof (cont. Theorem 9.1) By Lemma 9.2, we see that m(A4,) < (C/a) - ||f — gl < Ce/a, then m(A,) =0
since ¢ can be arbitrarily small. Therefore, m(E) < m(Aq) + m(Bas) = 0, completing the proof. [ |

Definition 9.2 (Locally integrable)

A measurable function f is locally integrable, denoted f € Li,.(R?), if f € LY(B) for all balls B in R%. &
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9.1 Differentiation of the Integral

(a) L.D.T holds even if f € L;,.(R%): suppose f € Lj,.(R?), then limg s —=y il fQ f=f(x)forae. z.

(b) For any measurable E C RY, xp € Ljo.(RY). Apply L.D.T. to xx we obtain limg_, W fQ xE = xe(T)
for a.e. © € R?. Therefore,

. m(ENQ) y 1 / 1 forae. xz€F,
m —————— = llim ———= XE =
Q—z  m(Q) Q—zm(Q) Jo 0 forae. z ¢ E,

and we refer to a point such that limg_,, mff;g?) = 1 as Lebesgue density point of F.
(c) We have shown limg_,; —~ o fQ f—f(z))dy = 0forae. x. In fact, limg_,, —=~ ol fQ |f(y)— f(z)|dy =0

for a.e. x € R"; a point satlsﬁes the above equality is called a Lebesgue point of f

If f € Lipe(RY), then limg_,, m fQ |f(y) — f(z)|dy = 0 for a.e. x € R™. That is, almost every point is

a Lebesgue point.

Foreach ¢ € Q, apply L.D.T. to | f(y) —q| gives that lim¢_,, @ fQ |f(y)—q| = |f(z)—q|forz € R} Z,,
where Z, is a null set; then the above equality holds for a.e. = (i.e., z ¢ |J 40 Zq)- Let e > 0 be given. For such
x € RY, there is ¢ € Q such that | f(z) — ¢| < ¢, then

. 1
égnxm(@/cglf—f(fc gggnm/v dl +lg - f(@)] < 2= o
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9.2 Approximations to the Identity

9.2 Approximations to the Identity

Let k be a bounded integrable function in R” s.t. [k = 1. Let ks(z) := 3-k(%). We obtain the following

observations

o [gn ks(x)dx = [p, k(x) dx (analogous for |ks(x)|) by the dilation invariance.

o If k has compact support, denoted Bp,,, then k; is supported in Bsp,.
For any f € L'(R"), consider the convolution f x ks(x) := [ f(y)dr(z — y)dy. Recall that ||f * ks||;1 <
[RAITAN LA VRN A (VAR (L AR

Remark Under some additional assumptions on k, f * ks — f, this is known as the approximation to the identity.

Proposition 9.1

Let k be a bounded integrable function in R™ s.t. [ k = 1. Suppose k has compact support, then f * ks(z) —
f(x)as 6 — 0, for any x that is a Lebesgue point of f (in particular, for a.e. x).

)

Remark Approximation to the identity: the proposition asserts that the map f — f * ks converges to the identity
map f+— fasd — 0.

Proof  Suppose | f(z)| is bounded by M, and supported on Bp,. Note that
frho(e) = £@) = [ £ = kst dy — 1) = [ @~ p)kst) dy = 1(2) [ Ks(w)dy
— [t =)~ F@) ks(w) dy

Suppose x is a Lebesgue points, the above equality yields

F + kaa) — £(2)| s/

ly|<dRo

(9.2.1)

fo—9) ~ F@lks)ldy < 55 [ 1fw =) - fa)ldy

ly|<6Ro
1
R /lz_l_l% () - F(@),

where wo(0Rp)" represents the volume of the ball Bsg,. The first part of the expression is equivalent to Mwo Ry,

= 57100(5}%0)”

which is a constant independent of §, and the second part converges to 0 as § — 0 by the definition of Lebesgue
point, hence we see f * ks(z) — f(x) — 0asd — 0. [

Proposition 9.2

Let k be a bounded integrable function in R" s.t. [k = 1. Then f x ks(x) — f(z)in L' as § — 0. N

Remark Since CVin L, thereis {5;} — 0T s.t. fxks(x) — f(z) fora.e. x (this does notimply f* ks(x) — f(z)
for a.e. x).

Proof  Apply Equation (9.2.1), f * ks(z) — f(z) = [[f(z —y) — f(x)]ks(y) dy. Apply Tonelli’s theorem, we see
that
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9.2 Approximations to the Identity

/If*ka(fﬂ) |d:c</ @ —y) — F(@)] - Iks(y >|dxdy—/|k5 )| - ay) dy,

where a(y) := [|f(z —y) — f(z)|dz, and it is clear that ||a(y)||z1 < 2|/ f||z1. Fix e > 0, there is n > 0 s.t.
a(y) < e for y < n by Proposition 8.7. Then

/ ks()] - aly) dy < /| V)] -atw) dy + /| k)] -aty) dy
y|<n Yy|>n

<e / ks(w)] dy + 201 11 / ks(w)| dy = ellkll g2 + 20112 / Iks(y)] dy.

ly|>n ly[>n

Note that f\y|>n lks(y)|dy = 6" f\y|>n |k(y/d)|dy = le|>n/5 |k(2)| dz < ¢ for sufficiently small §. Therefore,
[1f *ks(x) — f(2)| do < e||k|[z1 + 2¢|| f| 1, it follows that f x ks — f(z) in L. [ |

Let f € L*(R™) and x be a Lebesgue point of f. Let

a(r) = — |f(z —y) = f(y)|dy.

n
" Jyl<r

Then a(r) — 0 as r — 0; and moreover, a(r) is bounded for all r > 0.

Q©

Proof The convergence follows immediately by the definition of Lebesgue point. Then there exists rg > 0 s.t.

a(r) < 1 whenever r < ro. For r > r,

a < [ Afe-wldy s [ I@ldy
lyl<r I Jlyl<r
< [ 1=l du+ - @) = e+ wl o)
so a(r) is bounded. [ |

Proposition 9.3

Let k be a bounded integrable function in R" s.t. [k = 1. Suppose k(z) € O(1/|z|"™) for some X > 0,

then f x ks(x) — f(x)asd — 0. N

Proof Similarly to previous two propositions,

s |</|fa: — f(x)||ks(y |dy—/|<§ /|>5

Let k£ be bounded by M, then

W= 10— S@ gkl < g [y = @)y = M)

ly|<d

We denote by f(a) the integration on annulus 2°6 < |y| < 2¥+1§. For sufficiently small §, k(y/8) < ¢/|y/d["t,
then
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9.2 Approximations to the Identity

> 1 c
@=3 Lo =) = Sty < ) J =0 =T s dy

— s ) — ) gy < e ST ot
_5%:/(a)|f( y) = f(=)] |y‘n+/\dy§5;(2k5)n+/\/(a)|f( y) — f(z)| dy

N (2k+16) 1
= Ek: (2k§)n+A ' (2k+1g)n /y|<2k+15 |fx—y) = f(z)|dy
=c2" ) 27 P (2 6),

Combining both parts and the fact that a(z) is bounded by some A, we see that

£ #ks@) = F@)] < (1) + (2) < Ma(8) + 20 Y 27 a(2415).
k
For sufficiently large N, we have k>N 27k* < ¢; and for sufficiently small §, we have a(§) < ¢, and a(2F+1§) <
e/ > jen 27" for k < N. Therefore,

If s ks(x) — f(a)| < MA+ > 27Fa(2M16) + Y~ 2R (2F 1)

k<N k>N
SM@#—ZZ*“ 52 k/\+A22’”\ Me + ¢ + Ae,
k<N 2 k<N k>N
ie,|f*ks(x)— f(x)] = 0asd — 0. [ |

Proposition 9.4

If k € C"(R™) is m-th order differentiable, then f x k € C™(R™), with bounded derivatives. .

Proof Claim: If k € C.(R"™), then f x k is continuous and bounded (HW question). It thus suffices to show
a%i( fxk(x))=f=* a%ik(x), then the desired statement follows from induction. Note that

f*k(x+ he;) — /f k(x + he; —y) — k(x — y)

m
h h y

Since the integrand is bounded above by |f(y)|sup |%k:| (the supremum exists because k is continuous on a

compacts set), which is independent of h. Apply D.C.T., we see that as h — 0,

gy = ek

aml

f*k(x+he) — fxk(x
s [
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Chapter 10 Hilbert Spaces

10.1 The Hilbert Space L2

Definition 10.1 (L?(R"))

L?(R™) is the collection of complex-valued measurable function in R"™ such that Jgn 1f(2) 2 dz < 4o00. We

define the L2%-norm of f as 12
I = ([ 1P ac)

Remark We take 1/2-th power on L?-norm to preserve the linearity of the operator.

Remark
(i) Suppose f,p € L*(R") for which f = pa.e., then || f — g| 2 = 0, we may identify them as the same element
in L2.
(i) Wesay f € L?(E) if fxg € L?(R™).
(ili) For 1 < p < 400, we define LP-norm by | f||» := ([ | f(x)|P dz)'/P.

Definition 10.2 (Inner product in L?)

We define the inner product for any f,g € L*(R") by (f,g) := [ f(=

Proof The inner product is well-defined because fg is integrable:

/ fal = / Fllgl < / (172 + 192) < +oo (10.1.1)

where the first inequality follows from ab < (a? + b?)/2 for a,b > 0 by AM-GM inequality, and the second follows
from the fact that f,g € L?(R"™).

Proposition 10.1

(a) The inner product (-, ) in L*>(R™) satisfies the Cauchy-Schwartz inequality: |(f,g)| < || f|/|lgll.
(b) Forany g € L*(R") fixed, f € L*(R") — (f, g) is linear, and (g, f) = (£, g).

(c) L?>(R") is a vector space over C, and || - || 2 is a norm of L>.

)

Proof (a)If || f]| = 0or||g|]| =0, wlog, || f|| =0, then f = 0 a.e., then the statement is trivial. On the other hand,
suppose || f[| = [lgl| = 3 (If? +1g[?) = 1. Then for £, g, consider f/|f|

and g/||gl, we see that
—|[ fa| <111l
’/ I171] HQH ‘/




10.1 The Hilbert Space 1.2

(b) follows from the linearity of the integral.

(c) It suffices to prove the triangle inequality: for f, g € L2,

If+9lP=(f+ag.f+9) =IfI>+{f,9)+ {f.9) + lgll”
< |IfI*+2Re(f,g) + llg* < IF1* + 20 £ Mgl + gl < (£ + gl

where the second last inequality in line 2 holds by Cauchy-Schwartz inequality. Taking the square root gives the
desired statement. |

Theorem 10.1

The space L?(R™) is complete with respect to the metric d(f,g) = ||f — g|| 2 induced by the L*-norm. 0

Proof Let {f} be a Cauchy sequence, we want to show 3 f € L?(R") s.t. d(fx, f) = ||/ — f|| = 0. Choose a
subsequence { fi, }; of { fi} s.t. kix1 > kjand || fr,,, — f,|| < 27" foralli. Define f(z) := fi, + > pey (frsry — f5:)
and g(x) = |fk1| + 2211 |fki+1 - sz‘

Step 1: g € L*(R"), then f € L?(R").

Denote by Py (f)(z), Pn(g)(z) the partial sum of f(z) and g(x), resp. Then

N N
1PN I < el + 1PN (9) = eIV < |+ D Wi = Srall S Mfll + D270 < oo
k=1 i—1

Apply M.C.T., [ |g]? = limy_00 [ |Pn(g)|? < +00, therefore g € L*(R™). Hence | f| < g implies f € L*(R™).

Step 2: || fr, — fll = 0.ie., fx, — fin L2

Since Py (f)(z) = fry,,(x) by telescoping series, we see fiy () = Pry_,(f)(z) — f(x) ae. Note that
|f = frl = 1f = Bi(f)I* < (29)* Apply D.C.T, || f — fi | = [ |f — fw.[? — O, namely || fy, — fI| = 0.

Step 3: f, — fin L?, namely f;, converges.
Givene > 0. Thereis N s.t. || fn, — fin|| < &/2forn >m > N,and || fx, — f|| < &/2forn > N. Thenforn > N,
1o = I < Mlfn = frnll + 1 = fII <& u

Theorem 10.2

The space L? (R™) is separable, i.e., it contains a countable dense subset.

Proof Let C be the collection of all finite linear combinations of xyp where D is a dyadic cube in R", with the

coefficients being complex numbers whose real and imaginary parts are rational (i.e., Q(7)), then C is countable.
It suffices to prove C is dense in L?(R™).

(1) Given f € L*(R"). Let

f(x) if[z| <kand|[f(z)| <k
gr() ==

0 otherwise

Then gx(z) — f(x) ae., and |gr — f|> < |f|>. Apply D.C.T., [ |gr — f|> — 0; in particular, there exists gn s.t.
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10.1 The Hilbert Space L2

lgn = fllzz <e.
(2) Let g := gn, then g € L'(R™) since it is bounded and supported on a compact set. Then there exists a step
function ¢ s.t. [ |g — ¢| < €2/2N. Therefore, [|g — ¢|*> <2N [|g —¢| < % hence ||g — ¢|| < e.

(3) Note that open sets can be decompose into dyadic cubes, there exists ¢ € C such that || — ||

Consequently || f — 9| < 3¢, hence C is dense in L?(R").
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10.2 Hilbert Spaces

10.2 Hilbert Spaces

10.2.1 Hilbert Spaces

Definition 10.3 (Hilbert space)

A set ‘H is a Hilbert space if it satisfies the following:

(HI) H is a vector space over C (or R).
(H2) H is equipped with an innter product (f, g) so that
o [ (f,g) is linear on H for every fixed g € H,

° <gaf> = <fag>’ and
o (f,f) =0 forall f € H, with equality hold iff f = 0.
We let || fI| = (f, f)'/2.
(H3) H is complete with respect to the metric d(f, g) = || f, g||-
*(H4) H is separable. &

Remark Cauchy-Schwarz inequality and the triangle inequality follows from (H1) and (H2).
Example 10.1 (L?(R"), (-,-)) is a Hilbert space over C.

Example 10.2 Finite dimensional vector space CV = {(21,---,2n)|2 € C}, equipped the inner product
(z,w) = Zfil 2;w;, is a Hilbert space over C.

R” with the standard Euclidean inner product is a Hilbert space over R.

Example 10.3 Denote 12 := [5(N) = {(z1,29,---)|2; € C, Y, |z;|> < +00}. Define the inner product
(z,y) = >, z:%i. Then (12, (-,-)) is a Hilbert space over C.

Example 10.4 (Supplementary example) Denote W12(R") := {f € L2(R") ||V f| € L?(R")}. Define the inner
product (f, g) := (f,9)r2 + > 11 (0if, 0ig) 2. Then (W12 (-,-}) is a Hilbert space over C.

10.2.2 Orthogonality

Remark A Banach space is a normed vector space + (H3), thus all Hilbert spaces are Banach. The advantage of

Hilbert space is that it equips an inner product, containing the notion of orthogonality.

Definition 10.4 (Orthogonality)

Two elements f and g in a Hilbert space H with inner product (-,-) are orthogonal or perpendicular if

(f,g) =0, and we then write f L g. .
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10.2 Hilbert Spaces

Remark The Pythagorean Theorem holds: if f | g, then ||f + g[|? = || f|I* + |lg]|*.

Definition 10.5 (Orthonormal)

A collection {eq }aca in M is orthonormal if (e, eg) = 1 if « = [ and otherwise (eq, e5) = 0.

.

Remark Any orthonormal collection in H is at most countable, since H has a countable dense subset. Therefore,

we may use N as the index set A.

Proposition 10.2

If {ex} is orthonormal in H, and f = S0, apey, € H, then || f]|> = Sp, |ax/?.

Proof The proof follows from Pythagorean theorem and the fatc that a, = (f, ex). |

Definition 10.6 (Orthonormal basis)

We say an orthonormal collection {ey.} of H is an orthonormal basis if the finite linear combination of ej’s

over C is dense in H. &

Theorem 10.3

Let {ey} be a orthonormal collection {ey} in H, then the following are equivalent:
(a) Finite linear combinations of elements in {ey} are dense in H (i.e., {ex} is a orthonormal basis).
(b) If f € Hand (f,ej) =0 forall j, then f = 0.
(c) If f € H, and SN (f) := Z]kvzl axer, where ai, = (f, ey), then Sy(f) — f in the norm as N — oo;
e, Yopoy (frex)er — f.
(d) If ar, = (f,ex), then || f||* = > |ak|* (Parseval’s identity)

Q

Proof  (a) = (b): Let e > 0 be given. Suppose f L e; for all j. By (a), there exists {ar}j_; s.t. |f —
E]kvzl agek|| < . Then

0
71 = f) = <f - zakek,f> n M .
k=1 =1

so either || f|| = O or || f|| < e. Hence || f|| = O since the choice of ¢ is arbitrary, so f = 0.

LA < el £,

f=Y" arex

k=1

(b) = (c): For any k, by orthonormal condition, (Sn(f), ex) = ar = (f,er). Then f — Sn(f) L e for each k,
followed by f — Sn(f) L Snv(f). By Pythagorean theorem,

N
1A = 1f = Sv(DIP + 1SN (AN = I1f = Sv(HIP + D laxl*. (10.2.1)
k=1

I” =

To prove Sy (f) converges, it suffices to prove it is Cauchy. For N, M, ||Sny(f) — S (f) D M<k<N lax|?. By
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10.2 Hilbert Spaces

(10.2.1), we have Bessel’s inequality

00 N

2 . 2 2
E = lim E < . 10.2.2
£ |ak| Nl £ |ak| = Hf” ( )

Then we see ||Sn(f) — S (f)|I? = > M<k<N |ax|? can be arbitrarily small for sufficiently large M, N, thus Sy (f)

is Cauchy thus convergence in .

Lastly, we prove Sy (f) — f. Let k be fixed, (f — Sn(f), ex) = ar — (Sn,ex) = 0 for N > Fk, then the hypothesis
(b) implies that f — Sx(f) — 0in #, as desired.

(c) = (d): By (c), Sn(f) — finH. Apply (10.2.1) as N — oo yields S5, |ar|? — [|f]| as N — oo.

(d) = (a): Letw := 3231, (f, ex)ex € M, lete > 0. Apply (10.2.1), then || f —l|* = || £ =371, |(f, ex)|* < &
by the hypothesis, by choosing sufficiently large N. |

Theorem 10.4

Any Hilbert space has an orthonormal basis.

3

Proof H has a countable dense subset & = {f;} by definition. We may assume F is linearly independent by
removing elements that are linearly dependent with previous terms. We then apply the Gram-Schmidt algorithm:
Lete; = f1/|f1]|. For each k > 1, define recursively

o — 2 j<ilfrr€5)€)
S T SR A e

Then eq,--- ey are orthonormal for all N, because [lex| = 1 and (ex,e)) = o(fi — >_; o (fkr€j)ej,e1) =

(fx,er) — ({fx,er)er, e;) = 0 for k > [ (where ¢ denotes a constant).

It suffices to show eq, - - - , ey has the same span as f1,---, fy. Note thatey = c- ey = c¢(fv — > Aie;), then f
may be written as the linear combination of ey, - - - , e)y. By induction, we see that the span remains the same. H

Remark We say H is finite-dimensional if there exists a finite orthonormal basis, i.e., the Gram-Schmidt algorithm

terminates.

Definition 10.7 (Unitary isomorphism)

Let H and H' be Hilbert spaces, we say a mapping T : H — H' is a unitary isomorphism if
(i) T is a linear map, i.e., T(af + Bg) = T (f) + BT (9g),
(ii) T is a bijection, and

(iii) || T fllz = || fll3 for all f € H. %

Remark The condition (iii) implies that inner products are preserved under 7', namely (T'f, T'g)y = (f, 9) -
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10.2 Hilbert Spaces

Proposition 10.3

Any two infinite dimensional Hilbert spaces are unitary equivalent.

Proof Let {e1,---} and {¢],---} denote the orthonormal basis of H; and Ha, resp. Define T : H; — Ha by
T'(e;) = e}. Suppose f € H, we can identify it with ), a;e; where a; = (f, e;)%, by Theorem 10.3 (c), then by
the definition T'(f) = >, a;el.

It suffices to show 7' is a unitary isomorphism. (1) 7" is linear. (2) 7 is bijective follows from that T e e
is the inverse of 7. (3) For all f = Y, a;e; € H, since [|[T(f)|| = || >; aieill = >, lai|® < +oc, then T(f) is
well-defined (as a convergent series) and || 7'(f)|| = || f|| by Parseval identity. [ ]

Remark Any infinite dimensional Hilbert space is equivalent to [2.
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10.3 Fourier Series

Consider L?([—, w]) with inner product (f, g) := 5= ["_ f(z)g(z) dz.

{eik‘x}kez is an orthonormal basis for L2([—7T, 7).

Suppose k, j € Z, then

(ke ¢iiy = 1 /“ ik T _ 1 /w i _ 0 ifk#j
2 J_. 2 J_. 1 ifk=j

where the last equality follows from the periodicity of sin and cos. Therefore, we see that {¢**} is orthonormal.

Example 10.5 Suppose f is Riemann integrable or piecewise continuous function on [—m,7]. Define a; =
= |7 f(x)sin(kz) dz and by, = 5= [ f(z) cos(kz) dz. Then we may write f as

f= Z ay sin(kz) + by, cos(kx).
keN
Here the basis is {sin(kx), cos(kz) }ren.

Remark 1: e % = coskx — isinkx for k € N, we may establish that the two bases are approximately identical:

{e7 eikr),  ~ {sin kz, cos kx}pen.

Remark 2: If f is Riemann integrable or piecewise continuous function (they are pre-Hilbert space), then f € L?.

Let f € L*([—m,7]), we extend f to be defined on R, and we define the Fourier coefficient to be

1 m m

—kx ikx 1 —ikx
a == (f,e k%) = Py (x)ethe dy = Py f(z)e " da.

—T

Proposition 10.4

(a) If ap, = 0 forall k € Z, then f(x) = 0 for a.e. x.

*b) D opez apr*le=ke s f(z) for ae. xasr — 1.

[ )

(b) is beyond the scope of this class. Note that » ;- 2¥ = 1/(1 — z) from Harmonic Analysis, then letting

z = re' yields

Zr\k\eikx _ Zrkeika: + Zr—keikx _ Z(reix)k + Z(Te—iac)—k

kez k>0 k<0 k>0 k<0
1 z 1—2z B 1—r?

T2 ti=zT (1-2)(1—2) 1—2rcosz+r2

We claim that P, (z) = o —_1=r® __isagood kernel with § = 1 — 7. The proof is omitted.

= 27 1—2rcos T+

(a) follows immediately from (b). [ |
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10.3 Fourier Series

Remark It follows from this proposition that {e?**}, forms an orthonormal basis of L?([—, 7]), proving Theorem
10.5.

Corollary 10.1

For any f € L*([-m, 7)),

1 ™
2 )y

@)= lawl.

keZ
Moreover, the Fourier series of f converges to f in L? norm, i.e., Sn(f)(z) := D lkl<N are™® in L2,
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Chapter 11 Abstract Measure Theory

11.1 Abstract Measure

Definition 11.1 (Measure space)

A measure space on a set X is a triple (X, M, p) where

(1) M is a o-algebra, which is a (i) non-empty collection of subsets of X closed under (ii) complements
and (iii) countable unions (thus countable intersections). We refer to elements in M as measurable

sets.

(2) p: M — [0,00] is a function satisfying countable additivity: for any countable collection of disjoint
setsin M, Eq, Eo, - - -,
o0 o0
p <|_| Ek) = ZM(Ek)-
k=1 k=1

We refer to u(E) as the measure of E.

&

Example 11.1 Consider Lebesgue measure, X = R", M = collection of Lebesgue measurable sets, and px = m is

the Lebesgue measure.

Example 11.2  Let X = {x}r, M be all subsets of X, and define u({xr}) = pr where {ux} is a sequence of
numbers in [0, co]. Then for any £ € M, u(E) =

E). The triple (X, M, u) is measure space. In particular, if yp, = 1, then p is the counting measure.

el M (intuition: p(E) is the weighted sum of the entries in

Example 11.3  Let X = R", M be all Lebesgue measurable sets in R", and for any E € M, define u(E) = [ f
where f is a nonnegative measurable function on R™. The triple (X, M, 1) is measure space. In particular, if f = 1,

the measure corresponds the Lebesgue measure.

Lebesgue-Radon—Nikodym theorem implies that any measure on R™ must be a combination of measurable

spaces in example 11.2 and 11.3.

More precisely, let ;1 be a measure on R™. Then p1 = fi45 + ps, Where po5(E) = [ p fdx where f is some
non-negative integrable function, and u is singular w.r.t. m (i.e., us and m are supported on disjoint sets of R™).

Definition 11.2 (Outer measure)

An outer measure on a set X is a function p* from all subsets of X to [0, +00] satisfies
(1) w(2) =0
(2) Monotonicity: If E1 C Es, then p.(E1) < p.(Es).
(3) Countable subadditivity: For any countable collection of sets E1, Ea,--- in X, we have p.(|J E) <




11.1 Abstract Measure

Definition 11.3 (Caratheodory measurable sets)

A set E C X is (Caratheodory) measurable if for any A C X,
ps(A) = p (AN E) + p (AN E°).

Remark
(i) By the countable subadditivity, the condition can be reduced to one direction p.(A) > uANE) + (AN E°).

(ii) The definition of Lebesgue measurable set is equivalent to Caratheodory criterion in Lebesgue measure space.

Given an outer measure |1 on a set X, the collection M of all measurable sets form a o-algebra. Moreover,

1y restricted to M is a measure. ©

Proof (1) @ € M because j1+(E N D) + ps(E N D°) = pe (D) + p(E) = p(E) for all E. (ii) M is closed under
complement because the criterion is symmetry to complement.

(iii) Claim: M is closed under finite unions and is finite additive.
Proof: Let E1, E5 € M, then
pi(A) = pu(Er N A) + (BT N A) = po(Br N A) + pa (BT N Ea N A) + pu(Ef N E5 N A)
> w((E1UE2) N E) + p(Ef N EsN A),

where the inequality follows from the countable subadditivity; it follows that £; U Es is measurable. If E; and Fs
are disjoint, then

pt(Er U Ey) = p*((E1U E2) N Ex) + pa((E1 U E2) N EY) = pa(Ey) + pe(E2),
followed by the finite additivity. *
Claim: M is closed under countable union and is countable additive.

Proof: Suppose G = |J Ej where E;, € M, we may assume FEj}’s are disjoint WLOG. For any N, p.(A) >
Zévzl (AN Eg) + pe (AN G) by Caratheodory criterion. Let N — +o0, then

pe(A) 2> (AN Ep) 4 (AN G°) > (AN G) + pu (AN G°) (11.1.1)
k=1

where the second inequality follows from countable subadditivity. It follows that (11.1.1) becomes an equality, and
G € M. Take A = G in (11.1.1), we see that 1, (G) = > 72—, p1(Ex) + 0, followed by the countable additivity
property. |
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11.2 Metric Outer Measure

Definition 11.4 (o-finite)

Ww say a measure space (X, M, ) is o-finite if X can be written as the union of countable many measurable

sets of finite measure. Iy

11.2 Metric Outer Measure

Definition 11.5 (Borel o-algebra)

The Borel o-algebra B is the smallest o-algebra containing all open sets. &

Definition 11.6 (Metric outer measure)

We say an outer measure pi,. on (X,d) is a metric outer measure if 11,.(A U B) = p.(A) + p(B) for any

A, B C X such that d(A, B) := inf{d(z,y) |z € A,y € B} > 0. Iy

If . is a metric outer measure on (X, d), then Borel sets in X are Caratheodory measurable and . restricted

to B, is a measure. O

Proof By Theorem 11.1, M is a o-algebra and pu.|r¢ is a measure. To show Bx C M, it suffices to show all

open/closed sets are measurable.

Let F be a closed set in X and A C X. We may assume u.(A) < +oo, otherwise the statement is trivial.
Define Ej, := {x € AN F°|d(z,F) > 1/k}. Then by monotonicity and the definition of metric outer measure,
px(A) 2 (AN F)U E) = pa (AN F) + p(E).

It suffices to show limy_, oo pis(Ey) = p(A N F€), and < direction is trivial. Let C, = Ej11 \ Ey. Note that
d(Ek, Ck—H) > 0, then
pos(Ey2) > ps(Crpr U Er) = ps(Chpr) + ps(E)-

Inductively, p.(Ear) > Zle i (Coi—1) and gy (Eopi1) > Zle ps(Ca;); it follows that the series =, s (C;) is
bounded thus convergent. Notice that

pa(Br) < i ANF) < pa(Br) + > a(Ch),
i=k

and the >7°, 11,(C;) can be arbitrarily small as k& — oo. Hence p, (A N F¢) = limp_,o0 s (Ef). [ |
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11.2 Metric Outer Measure

Proposition 11.1

Suppose the Borel measure 1 is finite on all balls in X with finite radii. Then for any Borel set E/, any € > 0,

there exists an open set G D E, closed set F C E such that (G \ E) < e and W(E \ F) < e. N

Lemma: Let (X, M, ;1) be a measure space. If measurable sets E, * E, then u(Ey)  p(E).

Proof Let F be the collection of Borel sets satisfying these properties, F is nonempty because & € F.

(1) We first show F is a o-algebra. (i) @ € F. (ii)) If E € F then E° € F. (iii) Suppose Ej, € F,andlet E = |J E.
Let G = |JGy where Gj, 2 Ej is the open set s.t. p(Gr\Ex) < 27%c. Then u(G\E) < u(U,(Gr\Ex)) <
S u(Gr\E}) < €. On the other hand, we may choose F' = | J F}, where I}, C E}, is closed and p(Ey, \ Fy) < 27 e,
then u(E\F) < e. By the continuity from below, Fiy := Ui\;l Fy, 7 F implies u(Fn) 7 p(F'); then choosing a
sufficiently large N yields a closed set Fiy s.t. u(E\Fn) < u(E\F) + u(F\Fy) < 2¢. Hence E = |J Ey, € F.

(2) It suffices to show F contains all open sets. It is clear that open sets can be approximated by themselves,
so it suffices to show that an open set G can be approximated by a closed set ' C G s.t. u(G\F) < e. Let
Fy .= {z|d(z,G) > 1/k} be a closed set, and put G = |J E. Then F}, G, and thus p(Fy)  1(G); taking
sufficiently large k yields Ey s.t. u(G\F) < e. [
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11.3 Premeasure and The Extension Theorem

Definition 11.7 (Algebra)

Given a set X, analgebra in X is a non-empty collection of subsets of X which are (i) closed under complement

and (ii) closed under finite unions (and thus intersections). &

Definition 11.8 (Premeasure)

A premeasure on an algebra A is a function o : A — [0, +00] such that
(1) po(2) =0,
(2) If A1, Ag, - - - is a countable collection of disjoint sets in A such that | |72 | A € A, then po(| ], Ax) =
>k Ho(Ag). &

Remark The monotonicity follows immediately from (2).

Example 11.4 Consider the Lebesgue premeasure: let X = R"”, i defined rectangles is their the volume, and A
is the algebra generated by rectangles. The definition above give rise to a premeasure because (1) is obvious and (2)
follows from Proposition 7.5.

By the premeasure, it give rises to the Lebesgue outer measure . = m., (we are going to justify the extension in the
following lemma) defined on all subsets of R™ and satisfies the countable sub-additivity. Then we can extend it to

the Lebesgue measure ;1 = m using Caratheodory criterion.

Lemma 11.1

If o is a premeasure on an algebra A, define an outer measure i, on any subset E of X by

pix(E) = inf {Z to(Ek)

k=1

EC U Ey, where E; € Aforallj} .
k=1

Then . satisfies:
(a) p« is an outer measure on X.
(b) pui(A) = po(A)forall A € A.

(b) Any setin A is Caratheodory measurable w.r.t. [i,.

O

Proof (a)Itis clear that 41, (&) = 0, and the monotonicity and countable subadditivity follow from the corresponding

conditions in premeasure.

(b) By the definition of 1, f1.(A) < po(A). Forall A; € As.t. A C [JA;, we map assume {A;} are pairwise
disjoint, then A = | |;(A; N A). By the definition of 110 and monotonicity, we see that po(A) = 3, pro* (AN A;) <
> 1o(A;). Therefore, pg(A) < p.(A).

(c)Let Ac Aand B C X. Let A; € Ast. BC|JA;. Then BN A C [J(A; N A), followed by
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S 0(i) = D oA 01 4) + 37 oA\ A) = (B0 A) + pua(B\A).

J J

Therefore, . (A) > (B N A) + p«(B\A). [

The above extension is unique: Let M be a o-algebra containing A, let i be the measure generated from
x. Assume that p is o-finite, then for any other measure v defined on M s.t. v|4 = po, the two measure are
identical, i.e., v(E) = u(FE) for any E € M.

Example 11.5 Let (X1, M1, p1), (X2, Ma, uz) be two o-finite measure space. Construct a measure space on
X = X1 x Xy. Define the premeasure pg as: for sets of the form A x B (“measurable rectangles”) where
A € My,B € My, we defined po(A x B) = pui(A) - po(B). Let A be the algebra generated by measurable

rectangles.

We may extend this premeasure into a measure of the product space X = X7 x Xo.
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